当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Oxygen Vacancies in In2O3 with Enhanced Polysulfides Immobilization and Selective Catalytic Capability
Small ( IF 13.3 ) Pub Date : 2024-05-11 , DOI: 10.1002/smll.202401567
Ning Wang 1 , Huanhuan Li 1 , Jie Ji 1 , Jingjie Liu 1 , Qing Zhang 1 , Shexia Ma 2 , Jun Lu 3 , Zhengyu Bai 1
Affiliation  

Lithium–sulfur (Li–S) battery is identified as an ideal candidate for next‐generation energy storage systems in consideration of its high theoretical energy density and abundant sulfur resources. However, the shuttling behavior of soluble polysulfides (LiPSs) and their sluggish reaction kinetics severely limit the practical application of the current Li–S battery. In this work, a series of In2O3 nanocubes with different oxygen vacancy concentrations are designed and prepared via a facile self‐template method. The introduced oxygen vacancy on In2O3 can effectively rearrange the charge distribution and enhance sulfiphilic property. Moreover, the In2O3 with high oxygen vacancy concentration (H‐In2O3) can slightly slow down the solid–liquid conversion process and significantly accelerate the liquid–solid conversion process, thus reducing the accumulation of LiPSs in electrolyte and inhibiting the shuttle effect. Contributed by the unique selective catalytic capability, the prepared H‐In2O3 exhibits excellent electrochemical performance when used as sulfur host. For instance, a high reversible capacity of 609 mAh g−1 is obtained with only 0.044% capacity decay per cycle over 1000 cycles at 1.0 C. This work presents a typical example for designing advanced sulfur hosts, which is crucial for the commercialization of Li–S battery.

中文翻译:

利用增强的多硫化物固定化和选择性催化能力设计 In2O3 中的氧空位

考虑到其高理论能量密度和丰富的硫资源,锂硫(Li-S)电池被认为是下一代储能系统的理想候选者。然而,可溶性多硫化物(LiPS)的穿梭行为及其缓慢的反应动力学严重限制了当前锂硫电池的实际应用。在这部作品中,一系列的23通过简单的自模板方法设计和制备了具有不同氧空位浓度的纳米立方体。 In 上引入的氧空位23能有效地重新排列电荷分布,增强亲硫性能。此外,在23具有高氧空位浓度(H-In23)可以稍微减缓固液转化过程并显着加速液固转化过程,从而减少LiPSs在电解质中的积累并抑制穿梭效应。凭借独特的选择性催化能力,制备的H-In23作为硫主体时表现出优异的电化学性能。例如,609 mAh g的高可逆容量−1在 1.0 C 下超过 1000 次循环后,每个循环的容量衰减仅为 0.044%。这项工作为设计先进的硫主体提供了一个典型的例子,这对于锂硫电池的商业化至关重要。
更新日期:2024-05-11
down
wechat
bug