当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact behavior of periodic, stochastic, and anisotropic minimal surface-lattice sandwich structures
International Journal of Mechanical Sciences ( IF 7.3 ) Pub Date : 2024-05-04 , DOI: 10.1016/j.ijmecsci.2024.109359
Chukwugozie J. Ejeh , Imad Barsoum , Rashid K. Abu Al-Rub

Recent advancements in 3D printing technologies have made it possible to fabricate intricate lattice architectures with high precision. These lattices can now be utilized to design lightweight sandwich structures that serve multiple functions. To enhance the impact loading performance of these structures, it is crucial to understand how the lattice's topological properties, particularly those with minimal surface attributes like periodic or stochastic Primitive and Gyroid triply periodic minimal surfaces (TPMS) and spinodal-like stochastic cellular materials, associate with the mechanical properties of sandwich structures while keeping the skin thickness fixed. Thus, this paper explores the low-velocity impact behavior of various sheet/shell-based minimal surface-latticed cores of sandwich structures with woven composite skins. The elasto-plastic-damage numerical simulations consider lattice core periodicity, randomness, and anisotropy while keeping the relative density constant. Core lattice randomness and anisotropy are designed using the Gaussian Random Field (GRF) method for spinodal-based stochastic cellular materials and stochastic TPMS. The simulation results showed that the periodic Primitive-lattice core exhibits high out-of-plane shearing strength, enabling the sandwich structure to demonstrate the highest perforation limit. GRF spinodal-based core achieved the highest peak load due to its anisotropic mechanical properties. However, the post-yielding bending of the lattice sheet limited its ability to resist perforation, and absorb and dissipated energy. Interestingly, the stochastic Gyroid TPMS topology, with its inherent densely-distributed microstructure, showed high sensitivity to loading rate, resulting in enhanced energy absorption and dissipation of the sandwich structure. These findings offer valuable insights for optimizing multifunctional sandwich structures with superior impact performance and their design for additive manufacturing.

中文翻译:

周期性、随机和各向异性最小表面晶格夹层结构的冲击行为

3D 打印技术的最新进展使得高精度制造复杂的晶格结构成为可能。这些晶格现在可用于设计具有多种功能的轻质夹层结构。为了增强这些结构的冲击载荷性能,至关重要的是了解晶格的拓扑特性,特别是那些具有最小表面属性(例如周期性或随机原始和陀螺仪三周期最小表面(TPMS)和类旋节线随机细胞材料)的拓扑特性具有夹层结构的机械性能,同时保持蒙皮厚度固定。因此,本文探讨了具有编织复合材料蒙皮的夹层结构的各种基于片材/壳的最小表面格子芯的低速冲击行为。弹塑性损伤数值模拟考虑了晶格核心的周期性、随机性和各向异性,同时保持相对密度恒定。使用高斯随机场 (GRF) 方法针对基于旋节线的随机蜂窝材料和随机 TPMS 设计核心晶格随机性和各向异性。模拟结果表明,周期性原晶格核心表现出较高的面外剪切强度,使夹层结构表现出最高的穿孔极限。基于 GRF 旋节线的核心由于其各向异性机械特性而实现了最高峰值负载。然而,网格板的屈服后弯曲限制了其抵抗穿孔以及吸收和耗散能量的能力。有趣的是,随机陀螺仪TPMS拓扑结构以其固有的密集分布的微观结构,对加载速率表现出高敏感性,从而增强了夹层结构的能量吸收和耗散。这些发现为优化具有卓越冲击性能的多功能夹层结构及其增材制造设计提供了宝贵的见解。
更新日期:2024-05-04
down
wechat
bug