当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-performance thermoelectric composites via scalable and low-cost ink processing
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2024-05-13 , DOI: 10.1039/d4ee00866a
Ali Newaz Mohammad Tanvir 1 , Md Omarsany Bappy 1 , Minxiang Zeng 2 , Wenjie Shang 1 , Ke Wang 3 , Kaidong Song 1 , Yukun Liu 4 , Eleonora Isotta 5 , Mercouri G. Kanatzidis 4 , G. Jeffrey Snyder 5 , Alexander W. Dowling 3 , Tengfei Luo 1 , Yanliang Zhang 1
Affiliation  

Despite a significant increase in thermoelectric figure of merit zT achieved in the past two decades, the lack of scalable and low-cost device manufacturing methods has remained a major barrier to the large-scale adoption of thermoelectric devices for cooling and power generation. Here, we report a highly reproducible, facile, and cost-effective ink-based processing technique to fabricate thermoelectric composites with an exceptional room temperature zT of 1.3, which is by far the highest in materials processed using ink-based deposition methods. We found that the addition of tellurium (Te) to BiSbTe not only suppresses defects but also facilitates pressureless sintering and densification, optimizing the Seebeck coefficient and electrical conductivity while lowering thermal conductivity to achieve a high-performance thermoelectric device. The tuning of ink constituents leads to weighted mobility close to that of single-crystal BiSbTe while ensuring an optimal carrier concentration for maximizing the thermoelectric power factor. At a temperature difference of 97.5 °C, an in-plane thermoelectric device produces a high power density of 27 mW cm−2. The highly scalable and inexpensive ink-based processing technique to manufacture devices with reproducible high thermoelectric performance near room temperature opens up enormous opportunities for using thermoelectrics to harvest low-grade waste heat to improve energy efficiency, reduce CO2 emission, and enable environmentally friendly solid-state cooling and refrigeration without refrigerants or greenhouse gas emission.

中文翻译:


通过可扩展且低成本的油墨加工实现高性能热电复合材料



尽管在过去二十年中热电品质因数 zT 取得了显着提高,但缺乏可扩展且低成本的设备制造方法仍然是大规模采用热电设备进行冷却和发电的主要障碍。在此,我们报告了一种高度可重复、简便且经济高效的基于墨水的加工技术,用于制造室温 zT 为 1.3 的热电复合材料,这是迄今为止使用基于墨水的沉积方法加工的材料中最高的。我们发现,在 BiSbTe 中添加碲 (Te) 不仅可以抑制缺陷,还可以促进无压烧结和致密化,优化塞贝克系数和电导率,同时降低热导率,从而实现高性能热电器件。墨水成分的调整导致加权迁移率接近单晶 BiSbTe,同时确保最佳载流子浓度以最大化热电功率因数。在 97.5 °C 的温差下,面内热电装置可产生 27 mW cm −2 的高功率密度。高度可扩展且廉价的基于墨水的加工技术可制造在室温附近具有可重复的高热电性能的设备,这为利用热电技术收集低品位废热以提高能源效率、减少二氧化碳 2 排放提供了巨大的机会,并实现环保的固态冷却和制冷,无需制冷剂或温室气体排放。
更新日期:2024-05-13
down
wechat
bug