当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self‐Healing Magnetic Field‐Assisted Threshold Switching Device Utilizing Dual Field‐Driven Filamentary Physics
Advanced Electronic Materials ( IF 6.2 ) Pub Date : 2024-05-13 , DOI: 10.1002/aelm.202400140
Daeyoung Chu 1, 2 , Donghwan Han 1, 2 , Sanghyun Kang 3 , Gwon Kim 3 , Yejoo Choi 3 , Eungyo Jang 1 , Changhwan Shin 1
Affiliation  

Advanced filamentary devices are crucial for developing low‐power devices to implement high‐speed logic and neuromorphic devices. Among these, HfO2‐based filamentary devices have attracted attention as viable options due to their threshold‐switching characteristics and compatibility with complementary metal‐oxide‐semiconductor (CMOS) technology. However, the unpredictability of conventional filament formation/rupture driven by an electric field challenges consistency and reliability. A paradigm shift from conventional stochastic electric field‐driven ion migration to controllable ion‐based transportation is essential to devise functional low‐power devices capable of controlling the filament process. This work introduces a magnetic field‐assisted threshold switching (MA‐TS) device, which integrates a neodymium magnet and a nickel (Ni) barrier layer to enable controlled dual field‐driven ion transportation. The dual field‐driven process combining the conventional vertical electric field‐driven ion migration with lateral magnetic field‐driven ion transportation, reveals a distinctive aspect of ion movement. The MA‐TS device achieves superior performances characterized by an ultra‐low threshold voltage (≈0 V), minimized leakage current in the off‐state, a variation‐immune hysteresis‐free characteristic, enhanced yield, and revival‐ability (i.e., self‐healing) after a failed TS operation. By overcoming the limitations of conventional filamentary devices, the MA‐TS device opens up a promising avenue for efficient and stable low‐power applications.

中文翻译:

利用双场驱动丝状物理的自愈磁场辅助阈值开关装置

先进的丝状器件对于开发低功耗器件以实现高速逻辑和神经形态器件至关重要。其中,HfO2由于其阈值开关特性以及与互补金属氧化物半导体(CMOS)技术的兼容性,基于丝状器件作为可行的选择而引起了人们的关注。然而,电场驱动的传统细丝形成/断裂的不可预测性对一致性和可靠性提出了挑战。从传统的随机电场驱动的离子迁移到可控离子传输的范式转变对于设计能够控制灯丝过程的功能性低功耗器件至关重要。这项工作介绍了一种磁场辅助阈值切换(MA-TS)装置,该装置集成了钕磁铁和镍(Ni)阻挡层,以实现受控的双场驱动离子传输。双场驱动过程将传统的垂直电场驱动的离子迁移与横向磁场驱动的离子传输相结合,揭示了离子运动的独特方面。 MA-TS 器件实现了卓越的性能,其特点是超低阈值电压(≈0 V)、最小化关断状态下的漏电流、抗变化的无滞后特性、提高的产量和恢复能力(即,自我修复)在 TS 操作失败后。通过克服传统丝状器件的局限性,MA-TS 器件为高效、稳定的低功耗应用开辟了一条有前途的途径。
更新日期:2024-05-13
down
wechat
bug