当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemomechanics Engineering Promotes the Catalytic Activity of Spinel Oxides for Sulfur Redox Reaction
Advanced Functional Materials ( IF 19.0 ) Pub Date : 2024-05-13 , DOI: 10.1002/adfm.202404184
Lei Wang 1, 2 , Hongtai Li 1, 2 , Tianran Yan 1, 2 , Cheng Yuan 1, 2 , Genlin Liu 1, 2 , Gang Zhao 1, 2 , Pan Zeng 3 , Liang Zhang 1, 2
Affiliation  

Cooperative catalysis is a promising approach to enhance the sluggish redox kinetics of lithium polysulfides (LiPSs) for practical lithium–sulfur (Li–S) batteries. However, the elusory synergistic effect among multiple active sites makes it challenging to accurately customize the electronic structure of catalysts. Herein, a strategy of precisely tailoring eg orbitals of spinel oxides through chemomechanics engineering is porposed to regulate LiPSs retention and catalysis. By manipulating the regulable cations in MnxCo3‐xO4, it is theoretically and experimentally revealed that the lattice strain induced by the Jahn–Teller active and high‐spin Mn3+ at octahedral (Oh) sites can increase the eg occupancy of low‐spin Co3+Oh, which effectively regulates the chemical affinity toward LiPSs and establishes an unblocked channel for intrinsic charge transfer. This leads to a volcano‐type correlation between the eg occupancy at Oh sites and sulfur redox activity. Benefitting from the cooperative catalysis of dual‐active sites, MnCo2O4 with an average eg occupancy of 0.45 affords the most appropriate adsorption strength and rapid redox kinetics toward LiPSs, leading to remarkable rate performance and capacity retention for the assembled Li–S batteries. This work demonstrates the promise of chemomechanics engineering for optimizing the eg occupancy to achieve efficient sulfur redox catalysts.

中文翻译:

化学力学工程促进尖晶石氧化物对硫氧化还原反应的催化活性

协同催化是一种有前途的方法,可以增强实用锂硫(Li-S)电池中多硫化锂(LiPS)的缓慢氧化还原动力学。然而,多个活性位点之间难以捉摸的协同效应使得精确定制催化剂的电子结构具有挑战性。这里有一个精准定制的策略eG通过化学力学工程研究尖晶石氧化物的轨道,旨在调节 LiPS 的保留和催化作用。通过操纵 Mn 中的可调节阳离子X3-X4,从理论上和实验上揭示了 Jahn-Teller 活性和高自旋 Mn 引起的晶格应变3+在八面体(Oh)位点可以增加eG低自旋Co的占有率3+,有效调节对 LiPS 的化学亲和力,并为固有电荷转移建立畅通的通道。这导致了之间的火山型相关性eGOh位点的占据和硫氧化还原活性。受益于双活性位点的协同催化作用,MnCo24平均eG0.45的占有率可为LiPS提供最合适的吸附强度和快速氧化还原动力学,从而使组装的Li-S电池具有显着的倍率性能和容量保持能力。这项工作展示了化学力学工程在优化eG占据以实现高效的硫氧化还原催化剂。
更新日期:2024-05-13
down
wechat
bug