当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determining the Nanoflare Heating Frequency of an X-Ray Bright Point Observed by MaGIXS
The Astrophysical Journal ( IF 4.9 ) Pub Date : 2024-05-14 , DOI: 10.3847/1538-4357/ad2766
Biswajit Mondal , P. S. Athiray , Amy R. Winebarger , Sabrina L. Savage , Ken Kobayashi , Stephen Bradshaw , Will Barnes , Patrick R. Champey , Peter Cheimets , Jaroslav Dudík , Leon Golub , Helen E. Mason , David E. McKenzie , Christopher S. Moore , Chad Madsen , Katharine K. Reeves , Paola Testa , Genevieve D. Vigil , Harry P. Warren , Robert W. Walsh , Giulio Del Zanna

Nanoflares are thought to be one of the prime candidates that can heat the solar corona to its multimillion kelvin temperature. Individual nanoflares are difficult to detect with the present generation of instruments, but their presence can be inferred by comparing simulated nanoflare-heated plasma emissions with the observed emission. Using HYDRAD coronal loop simulations, we model the emission from an X-ray bright point (XBP) observed by the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS), along with the nearest available observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and the X-Ray Telescope (XRT) on board the Hinode observatory. The length and magnetic field strength of the coronal loops are derived from the linear force-free extrapolation of the observed photospheric magnetogram by the Helioseismic and Magnetic Imager on board SDO. Each loop is assumed to be heated by random nanoflares, whose magnitude and frequency are determined by the loop length and magnetic field strength. The simulation results are then compared and matched against the measured intensity from AIA, XRT, and MaGIXS. Our model results indicate the observed emission from the XBP under study could be well matched by a distribution of nanoflares with average delay times 1500–3000 s. Further, we demonstrate the high sensitivity of MaGIXS and XRT for diagnosing the heating frequency using this method, while AIA passbands are found to be the least sensitive.

中文翻译:


确定 MaGIXS 观测到的 X 射线亮点的纳耀斑加热频率



纳米耀斑被认为是将日冕加热到数百万开尔文温度的主要候选者之一。目前的仪器很难检测到单个纳米耀斑,但可以通过将模拟的纳米耀斑加热等离子体发射与观察到的发射进行比较来推断它们的存在。使用 HYDRAD 日冕环路模拟,我们模拟了马歇尔掠射 X 射线光谱仪 (MaGIXS) 观测到的 X 射线亮点 (XBP) 的发射,以及来自机载大气成像组件 (AIA) 的最近可用观测结果日之出天文台上的太阳动力学天文台(SDO)和 X 射线望远镜(XRT)。日冕环的长度和磁场强度是通过 SDO 上的日震和磁成像仪对观测到的光球磁图进行线性无力外推得出的。假设每个环路均由随机纳米耀斑加热,其幅度和频率由环路长度和磁场强度决定。然后将模拟结果与 AIA、XRT 和 MaGIXS 测量的强度进行比较和匹配。我们的模型结果表明,所研究的 XBP 观测到的发射可以与平均延迟时间为 1500-3000 秒的纳米耀斑分布很好地匹配。此外,我们证明了 MaGIXS 和 XRT 使用这种方法诊断加热频率的高灵敏度,而 AIA 通带的灵敏度最低。
更新日期:2024-05-14
down
wechat
bug