当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Silver Nanoparticle-Embedded Carbon Nitride: Antifungal Activity on Candida albicans and Toxicity toward Animal Cells
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2024-05-14 , DOI: 10.1021/acsami.4c02694
Ganeshkumar Arumugam 1, 2 , Sivaraj Durairaj 3, 4 , Juliana Caparroz Gonçale 1 , Paulo Henrique Fonseca do Carmo 1 , Maíra Terra Garcia 1 , Newton Soares da Silva 1 , Bruno Montanari Borges 5 , Flavio Vieira Loures 5 , Deepa Ghosh 3 , Juan F. Vivanco 4 , Juliana Campos Junqueira 1
Affiliation  

The development of engineered nanomaterials has been considered a promising strategy to control oral infections. In this study, silver-embedded carbon nitrides (Ag@g-CN) were synthesized and tested against Candida albicans, investigating their antifungal action and biocompatibility in animal cells. Ag@g-CN was synthesized by a simple one-pot thermal polymerization technique and characterized by various analytical techniques. X-ray diffraction (XRD) analysis revealed slight alterations in the crystal structure of g-CN upon the incorporation of Ag. Fourier transform infrared (FT-IR) spectroscopy confirmed the presence of Ag–N bonds, indicating successful silver incorporation and potential interactions with g-CN’s amino groups. UV–vis spectroscopy demonstrated a red shift in the absorption edge of Ag@g-CN compared with g-CN, attributed to the surface plasmon resonance effect of silver nanoparticles. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) confirmed the 2D layered sheet like morphology of both materials. The Ag 3d peaks found in X-ray photoelectron spectroscopy (XPS) confirmed the presence of metallic Ag0 nanoparticles in Ag@g-CN. The Ag@g-CN materials exhibited high antifungal activity against reference and oral clinical strains of C. albicans, with minimal inhibitory concentration (MIC) ranges between 16–256 μg/mL. The mechanism of Ag@g-CN on C. albicans was attributed to the disruption of the membrane integrity and disturbance of the biofilm. In addition, the Ag@g-CN material showed good biocompatibility in the fibroblastic cell line and in Galleria mellonella, with no apparent cytotoxicity observed at a concentration up to 1000 μg/mL. These findings demonstrate the potential of the Ag@g-CN material as an effective and safe antifungal agent for the treatment of oral fungal infections.

中文翻译:


银纳米颗粒嵌入氮化碳:对白色念珠菌的抗真菌活性和对动物细胞的毒性



工程纳米材料的开发被认为是控制口腔感染的有前途的策略。在这项研究中,合成了银嵌入的氮化碳(Ag@g-CN)并针对白色念珠菌进行了测试,研究了它们在动物细胞中的抗真菌作用和生物相容性。 Ag@g-CN是通过简单的一锅热聚合技术合成的,并通过各种分析技术进行表征。 X 射线衍射 (XRD) 分析表明,掺入 Ag 后 g-CN 的晶体结构发生了轻微变化。傅里叶变换红外 (FT-IR) 光谱证实了 Ag-N 键的存在,表明银的成功掺入以及与 g-CN 氨基的潜在相互作用。紫外可见光谱表明,与 g-CN 相比,Ag@g-CN 的吸收边发生红移,这归因于银纳米粒子的表面等离子体共振效应。场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)证实了两种材料的二维层状片状形态。 X 射线光电子能谱 (XPS) 中发现的 Ag 3d 峰证实了 Ag@g-CN 中存在金属 Ag 0 纳米颗粒。 Ag@g-CN材料对白色念珠菌的参考菌株和口腔临床菌株表现出高抗真菌活性,最小抑菌浓度(MIC)范围在16-256 μg/mL之间。 Ag@g-CN 对白色念珠菌的作用机制归因于膜完整性的破坏和生物膜的扰动。此外,Ag@g-CN材料在成纤维细胞系和大蜡螟中表现出良好的生物相容性,在浓度高达1000 μg/mL时没有观察到明显的细胞毒性。 这些发现证明了Ag@g-CN材料作为治疗口腔真菌感染的有效且安全的抗真菌剂的潜力。
更新日期:2024-05-14
down
wechat
bug