当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Relay-Type Catalysis by a Dual-Metal Single-Atom System in a Waste Biomass Derivative Host for High-Rate and Durable Li–S Batteries
ACS Nano ( IF 17.1 ) Pub Date : 2024-05-13 , DOI: 10.1021/acsnano.3c09919
Qingping Wu 1, 2, 3 , Keyi Chen 2, 4 , Zulipiya Shadike 5 , Chilin Li 2, 4, 6
Affiliation  

An environmental-friendly and sustainable carbon-based host is one of the most competitive strategies for achieving high loading and practicality of Li–S batteries. However, the polysulfide conversion reaction kinetics is still limited by the nonuniform or monofunctional catalyst configuration in the carbon host. In this work, we propose a catalysis mode based on “relay-type” co-operation by adjacent dual-metal single atoms for high-rate and durable Li–S batteries. A discarded sericin fabric-derived porous N-doped carbon with a stacked schistose structure is prepared as the high-loading sulfur (84 wt %) host by a facile ionothermal method, which further enables the uniform anchoring of Fe/Co dual-metal single atoms. This multifunctional host enables superior lithiophilic–sulfiphilic and electrocatalytic capabilities contributed by the “relay-type” single-atom modulation effects on different conversion stages of liquid polysulfides and solid Li2S2/Li2S, leading to the suppression of the “shuttle effect”, alleviation of nucleation and decomposition barriers of Li2Sx, and acceleration of polysulfide conversion kinetics. The corresponding Li–S batteries exhibit a high specific capacity of 1399.0 mA h g–1, high-rate performance up to 10 C, and excellent cycling stability over 1000 cycles. They can also endure the high sulfur loading of 8.5 mg cm–2 and the lean electrolyte condition and yield an areal capacity as high as 8.6 mA h cm–2. This work evidentially demonstrates the potential of waste biomass reutilization coupled with the design of a single-atom system for practical Li–S batteries with high energy density.

中文翻译:


废弃生物质衍生主体中双金属单原子系统的中继型催化用于高倍率和耐用的锂硫电池



环境友好且可持续的碳基主体是实现锂硫电池高负载和实用性的最具竞争力的策略之一。然而,多硫化物转化反应动力学仍然受到碳主体中不均匀或单功能催化剂构型的限制。在这项工作中,我们提出了一种基于相邻双金属单原子“接力式”合作的催化模式,用于高倍率和耐用的锂硫电池。通过简便的离子热方法制备了具有堆叠片状结构的废弃丝胶织物衍生的多孔氮掺杂碳作为高载量硫(84 wt%)主体,进一步实现了 Fe/Co 双金属单金属的均匀锚定原子。这种多功能主体通过对液态多硫化物和固态Li 2 S 2 /的不同转化阶段的“接力型”单原子调节效应,实现了优异的亲硫亲硫和电催化能力。 Li 2 S,抑制“穿梭效应”,减轻Li 2 S x 的成核和分解势垒,加速多硫化物转化动力学。相应的Li-S电池表现出1399.0 mAh g –1 的高比容量、高达10 C的高倍率性能以及超过1000次循环的优异循环稳定性。它们还可以承受 8.5 mg cm –2 的高硫负载和贫电解液条件,并产生高达 8.6 mA h cm –2 的面积容量。这项工作明显证明了废弃生物质再利用的潜力以及高能量密度实用锂硫电池单原子系统的设计。
更新日期:2024-05-13
down
wechat
bug