当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spin–Orbit Torque Vector Quantification in Nanoscale Magnetic Tunnel Junctions
ACS Nano ( IF 17.1 ) Pub Date : 2024-05-15 , DOI: 10.1021/acsnano.3c11289
Kiran Kumar Vudya Sethu 1, 2 , Farrukh Yasin 1 , Johan Swerts 1 , Bart Sorée 1, 2, 3 , Johan De Boeck 1, 2 , Gouri Sankar Kar 1 , Kevin Garello 4 , Sebastien Couet 1
Affiliation  

Spin–orbit torques (SOT) allow ultrafast, energy-efficient toggling of magnetization state by an in-plane charge current for applications such as magnetic random-access memory (SOT-MRAM). Tailoring the SOT vector comprising of antidamping (TAD) and fieldlike (TFL) torques could lead to faster, more reliable, and low-power SOT-MRAM. Here, we establish a method to quantify the longitudinal (TAD) and transverse (TFL) components of the SOT vector and its efficiency χAD and χFL, respectively, in nanoscale three-terminal SOT magnetic tunnel junctions (SOT-MTJ). Modulation of nucleation or switching field (BSF) for magnetization reversal by SOT effective fields (BSOT) leads to the modification of SOT-MTJ hysteresis loop behavior from which χAD and χFL are quantified. Surprisingly, in nanoscale W/CoFeB SOT-MTJ, we find χFL to be (i) twice as large as χAD and (ii) 6 times as large as χFL in micrometer-sized W/CoFeB Hall-bar devices. Our quantification is supported by micromagnetic and macrospin simulations which reproduce experimental SOT-MTJ Stoner–Wohlfarth astroid behavior only for χFL > χAD. Additionally, from the threshold current for current-induced magnetization switching with a transverse magnetic field, we show that in SOT-MTJ, TFL plays a more prominent role in magnetization dynamics than TAD. Due to SOT-MRAM geometry and nanodimensionality, the potential role of nonlocal spin Hall spin current accumulated adjacent to the SOT-MTJ in the mediation of TFL and χFL amplification merits to be explored.

中文翻译:


纳米级磁隧道结中的自旋轨道扭矩矢量量化



自旋轨道扭矩 (SOT) 允许通过面内充电电流超快、节能地切换磁化状态,适用于磁性随机存取存储器 (SOT-MRAM) 等应用。定制由抗阻尼 (T AD ) 和场状 (T FL ) 扭矩组成的 SOT 矢量可以带来更快、更可靠和低功耗的 SOT-MRAM。在这里,我们建立了一种量化 SOT 向量的纵向 (T AD ) 和横向 (T FL ) 分量及其效率 χ AD 和 χ 的方法 FL 分别在纳米级三端 SOT 磁隧道结 (SOT-MTJ) 中。通过 SOT 有效场 (B SOT ) 调制成核或切换场 (B SF ) 以实现磁化反转,从而改变 SOT-MTJ 磁滞回线行为,其中 χ AD 和 χ FL 被量化。令人惊讶的是,在纳米级 W/CoFeB SOT-MTJ 中,我们发现 χ FL (i) 是 χ AD 的两倍,(ii) 是 χ FL 微米级 W/CoFeB 霍尔棒器件。我们的量化得到了微磁和宏观自旋模拟的支持,这些模拟仅再现了 χ FL > χ AD 的实验性 SOT-MTJ Stoner–Wohlfarth 小行星行为。此外,从横向磁场下电流感应磁化开关的阈值电流来看,我们表明在 SOT-MTJ 中,T FL 在磁化动力学中比 T AD .由于 SOT-MRAM 的几何结构和纳米尺寸,SOT-MTJ 附近积累的非局域自旋霍尔自旋电流在 T FL 和 χ FL 放大调节中的潜在作用值得表示为探索过。
更新日期:2024-05-15
down
wechat
bug