当前位置: X-MOL 学术Astron. Astrophys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Small Solar System Bodies as granular media
The Astronomy and Astrophysics Review ( IF 25.8 ) Pub Date : 2019-06-25 , DOI: 10.1007/s00159-019-0117-5
D. Hestroffer , P. Sánchez , L. Staron , A. Campo Bagatin , S. Eggl , W. Losert , N. Murdoch , E. Opsomer , F. Radjai , D. C. Richardson , M. Salazar , D. J. Scheeres , S. Schwartz , N. Taberlet , H. Yano

Asteroids and other Small Solar System Bodies (SSSBs) are of high general and scientific interest in many aspects. The origin, formation, and evolution of our Solar System (and other planetary systems) can be better understood by analysing the constitution and physical properties of small bodies in the Solar System. Currently, two space missions (Hayabusa2, OSIRIS-REx) have recently arrived at their respective targets and will bring a sample of the asteroids back to Earth. Other small body missions have also been selected by, or proposed to, space agencies. The threat posed to our planet by near-Earth objects (NEOs) is also considered at the international level, and this has prompted dedicated research on possible mitigation techniques. The DART mission, for example, will test the kinetic impact technique. Even ideas for industrial exploitation have risen during the last years. Lastly, the origin of water and life on Earth appears to be connected to asteroids. Hence, future space mission projects will undoubtedly target some asteroids or other SSSBs. In all these cases and research topics, specific knowledge of the structure and mechanical behaviour of the surface as well as the bulk of those celestial bodies is crucial. In contrast to large telluric planets and dwarf planets, a large proportion of such small bodies is believed to consist of gravitational aggregates (‘rubble piles’) with no—or low—internal cohesion, with varying macro-porosity and surface properties (from smooth regolith covered terrain, to very rough collection of boulders), and varying topography (craters, depressions, ridges). Bodies with such structure can sustain some plastic deformation without being disrupted in contrast to the classical visco-elastic models that are generally valid for planets, dwarf planets, and large satellites. These SSSBs are hence better described through granular mechanics theories, which have been a subject of intense theoretical, experimental, and numerical research over the last four decades. This being the case, it has been necessary to use the theoretical, numerical and experimental tools developed within soil mechanics, granular dynamics, celestial mechanics, chemistry, condensed matter physics, planetary and computer sciences, to name the main ones, in order to understand the data collected and analysed by observational astronomy (visible, thermal, and radio), and different space missions. In this paper, we present a review of the multi-disciplinary research carried out by these different scientific communities in an effort to study SSSBs.



中文翻译:

作为颗粒介质的小型太阳系天体

小行星和其他小型太阳系天体(SSSB)在许多方面都具有很高的普遍性和科学意义。通过分析太阳系中小天体的构成和物理特性,可以更好地理解太阳系(以及其他行星系统)的起源、形成和演化。目前,两个太空任务(Hayabusa2、OSIRIS-REx)最近已抵达各自的目标,并将把小行星样本带回地球。其他小型天体任务也已由航天机构选择或提议。国际层面也考虑了近地天体(NEO)对地球造成的威胁,这促使人们对可能的缓解技术进行专门研究。例如,DART 任务将测试动能冲击技术。在过去的几年里,甚至工业开发的想法也有所兴起。最后,地球上水和生命的起源似乎与小行星有关。因此,未来的太空任务项目无疑将针对一些小行星或其他SSSB。在所有这些案例和研究主题中,对表面以及这些天体主体的结构和机械行为的具体了解至关重要。与大型大地行星和矮行星相比,此类小天体的很大一部分被认为是由引力聚集体(“碎石堆”)组成,内部凝聚力不强或较低,具有不同的宏观孔隙率和表面特性(从光滑的风化层覆盖的地形(到非常粗糙的巨石集合)和不同的地形(火山口、洼地、山脊)。与通常适用于行星、矮行星和大型卫星的经典粘弹性模型相比,具有这种结构的物体可以承受一定的塑性变形而不被破坏。因此,通过颗粒力学理论可以更好地描述这些SSSB,在过去的四十年里,颗粒力学理论一直是理论、实验和数值研究的主题。在这种情况下,有必要使用土壤力学、颗粒动力学、天体力学、化学、凝聚态物理、行星和计算机科学等领域开发的理论、数值和实验工具,以了解主要的工具。通过观测天文学(可见光、热和射电)以及不同的太空任务收集和分析的数据。在本文中,我们回顾了这些不同科学界为研究 SSSB 而进行的多学科研究。

更新日期:2019-06-25
down
wechat
bug