1932

Abstract

Polyelectrolyte complex coacervates represent a wide class of materials with applications ranging from coatings and adhesives to pharmaceutical technologies. They also underpin multiple biological processes, which are only now beginning to be deciphered. The means by which molecular-scale architecture propagates into macroscopic structure, thermodynamics, and dynamics in complex coacervates is of central concern in physics, chemistry, biology, and materials science. How does polyion charge sequence dictate thermodynamic behavior? How does one tailor rheology or interfacial tension using macromolecular architecture? What emergent functionality from polymer complex coacervates has biological consequences? Recent developments in coacervate science shed light on many of these issues and raise exciting new challenges for the close integration of theory, simulations, and experiment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-042020-113457
2021-03-10
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-042020-113457.html?itemId=/content/journals/10.1146/annurev-conmatphys-042020-113457&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brangwynne CP, Tompa P, Pappu RV 2015. Nat. Phys. 11:899–904
    [Google Scholar]
  2. 2. 
    Shin Y, Brangwynne CP. 2017. Science 357:1253
    [Google Scholar]
  3. 3. 
    Aumiller WM, Keating CD. 2016. Nat. Chem. 8:129–37
    [Google Scholar]
  4. 4. 
    Uversky VN. 2017. Adv. Colloid Interface Sci. 239:97–114
    [Google Scholar]
  5. 5. 
    Oparin AI. 1924. The Origin of Life Transl. S Morgulis, 1936 New York: Macmillan (From Russian)
    [Google Scholar]
  6. 6. 
    Koga S, Williams DS, Perriman AW, Mann S 2011. Nat. Chem. 3:720–24
    [Google Scholar]
  7. 7. 
    Keating CD. 2012. Acc. Chem. Res. 45:122114–24
    [Google Scholar]
  8. 8. 
    Tang TYD, Che Hak CR, Thompson AJ, Kuimova MK, Williams DS et al. 2014. Nat. Chem. 6:527–33
    [Google Scholar]
  9. 9. 
    Schmitt C, Turgeon SL. 2011. Adv. Colloid Interface Sci. 167:63–70
    [Google Scholar]
  10. 10. 
    Veis A. 1960. J. Phys. Chem. 64:1203–10
    [Google Scholar]
  11. 11. 
    Stewart RJ, Wang CS, Shao H 2011. Adv. Colloid Interface Sci. 167:85–93
    [Google Scholar]
  12. 12. 
    Kaur S, Weerasekare GM, Stewart RJ 2011. ACS Appl. Mater. Interfaces 3:941–44
    [Google Scholar]
  13. 13. 
    Zhao Q, Lee DW, Ahn BK, Seo S, Kaufman Y et al. 2016. Nat. Mater. 15:407–12
    [Google Scholar]
  14. 14. 
    Danielsen SPO, Nguyen TQ, Fredrickson GH, Segalman RA 2019. ACS Macro Lett 8:88–94
    [Google Scholar]
  15. 15. 
    Hollingsworth WR, Segura C, Balderrama J, Lopez N, Schleissner P, Ayzner AL 2016. J. Phys. Chem. B 120:7767–74
    [Google Scholar]
  16. 16. 
    Black KA, Priftis D, Perry SL, Yip J, Byun WY, Tirrell M 2014. ACS Macro Lett 3:1088–91
    [Google Scholar]
  17. 17. 
    Obermeyer AC, Mills CE, Dong X-H, Flores RJ, Olsen BD 2016. Soft Matter 12:3570–81
    [Google Scholar]
  18. 18. 
    van der Gucht J, Spruijt E, Lemmers M, Cohen Stuart MA 2011. J. Colloid Interface Sci. 361:407–22
    [Google Scholar]
  19. 19. 
    Sing CE. 2017. Adv. Colloid Interface Sci. 239:2–16
    [Google Scholar]
  20. 20. 
    Wang Q, Schlenoff JB. 2014. Macromolecules 47:3108–16 https://pubs.acs.org/doi/abs/10.1021/ma500500q
    [Google Scholar]
  21. 21. 
    Fares HM, Ghoussoub YE, Delgado JD, Fu J, Urban VS, Schlenoff JB 2018. Macromolecules 51:4945–55
    [Google Scholar]
  22. 22. 
    Fares HM, Wang Q, Yang M, Schlenoff JB 2019. Macromolecules 52:610–19
    [Google Scholar]
  23. 23. 
    Zhang Y, Li F, Valenzuela LD, Sammalkorpi M, Lutkenhaus JL 2016. Macromolecules 49:7563–70
    [Google Scholar]
  24. 24. 
    Zhang Y, Batys P, O'Neal JT, Li F, Sammalkorpi M, Lutkenhaus JL 2018. ACS Cent. Sci. 4:638–44
    [Google Scholar]
  25. 25. 
    Perry SL, Leon L, Hoffmann KQ, Kade MJ, Priftis D et al. 2015. Nat. Commun. 6:6052
    [Google Scholar]
  26. 26. 
    Schlenoff JB. 2018. J. Chem. Phys. 149:163314
    [Google Scholar]
  27. 27. 
    Fu J, Schlenoff JB. 2016. J. Am. Chem. Soc. 138:980–90
    [Google Scholar]
  28. 28. 
    Tirrell M. 2018. ACS Cent. Sci. 4:532–33
    [Google Scholar]
  29. 29. 
    Salehi A, Larson RG. 2016. Macromolecules 49:9706–19
    [Google Scholar]
  30. 30. 
    Fu J, Fares HM, Schlenoff JB 2017. Macromolecules 50:1066–74
    [Google Scholar]
  31. 31. 
    Spruijt E, Westphal AH, Borst JW, Cohen Stuart MA, van der Gucht J 2019. Macromolecules 43:6476–84
    [Google Scholar]
  32. 32. 
    Lou J, Friedowitz S, Qin J, Xia Y 2019. ACS Cent. Sci. 5:549–57
    [Google Scholar]
  33. 33. 
    Li L, Srivastava S, Andreev M, Marciel AB, de Pablo JJ, Tirrell MV 2018. Macromolecules 51:2988–95
    [Google Scholar]
  34. 34. 
    Ali S, Bleuel M, Prabhu VM 2019. ACS Macro Lett 8:289–93
    [Google Scholar]
  35. 35. 
    Adhikari S, Prabhu VM, Muthukumar M 2019. Macromolecules 52:6998–7004
    [Google Scholar]
  36. 36. 
    Li L, Rumyantsev AM, Srivastava S, Meng S, de Pablo JJ, Tirrell MV 2020. MacromoleculesIn press. https://doi.org/10.1021/acs.macromol.0c01000
    [Google Scholar]
  37. 37. 
    Rumyantsev AM, Zhulina EB, Borisov OV 2018. Macromolecules 51:3788–801
    [Google Scholar]
  38. 38. 
    Kudlay A, Olvera de la Cruz M 2004. J. Chem. Phys. 120:404–12
    [Google Scholar]
  39. 39. 
    Kudlay A, Ermoshkin AV, Olvera de la Cruz M 2004. Macromolecules 37:9231–41
    [Google Scholar]
  40. 40. 
    Zhang P, Shen K, Alsaifi NM, Wang ZG 2018. Macromolecules 51:5586–93
    [Google Scholar]
  41. 41. 
    Shen K, Wang ZG. 2018. Macromolecules 51:1706–17
    [Google Scholar]
  42. 42. 
    Perry SL, Sing CE. 2015. Macromolecules 48:5040–53
    [Google Scholar]
  43. 43. 
    Radhakrishna M, Basu K, Liu Y, Shamsi R, Perry SL, Sing CE 2017. Macromolecules 50:3030–37
    [Google Scholar]
  44. 44. 
    Borue VY, Erukhimovich IY. 1990. Macromolecules 23:3625–32
    [Google Scholar]
  45. 45. 
    Shusharina NP, Zhulina EB, Dobrynin AV, Rubinstein M 2005. Macromolecules 38:8870–81
    [Google Scholar]
  46. 46. 
    Wang Z, Rubinstein M. 2006. Macromolecules 39:5897–912
    [Google Scholar]
  47. 47. 
    de Gennes PG, Pincus P, Velasco RM, Brochard F 1976. J. Phys. (Paris) 37:1461–73
    [Google Scholar]
  48. 48. 
    Rubinstein M, Liao Q, Panyukov S 2018. Macromolecules 51:9572–88
    [Google Scholar]
  49. 49. 
    Oskolkov NN, Potemkin II 2006. Macromolecules 39:3648–54
    [Google Scholar]
  50. 50. 
    Castelnovo M, Joanny JF. 2000. Langmuir 16:7524–32
    [Google Scholar]
  51. 51. 
    Marciel AB, Srivastava S, Tirrell MV 2018. Soft Matter 14:2454–64
    [Google Scholar]
  52. 52. 
    Spruijt E, Leermakers FAM, Fokkink R, Schweins R, van Well AA et al. 2013. Macromolecules 46:4596–605
    [Google Scholar]
  53. 53. 
    Pergushov DV, Müller AHE, Schacher FH 2012. Chem. Soc. Rev. 41:6888–901
    [Google Scholar]
  54. 54. 
    Voets IK, de Keizer A, Cohen Stuart MA 2009. Adv. Colloid Interface Sci. 147–48:300–18
    [Google Scholar]
  55. 55. 
    Spruijt E, Sprakel J, Cohen Stuart MA, van der Gucht J 2010. Soft Matter 6:172–78
    [Google Scholar]
  56. 56. 
    Priftis D, Farina R, Tirrell M 2012. Langmuir 28:8721–29
    [Google Scholar]
  57. 57. 
    Ali S, Prabhu VM. 2019. Macromolecules 52:7495–502
    [Google Scholar]
  58. 58. 
    Demond AH, Lindner AS. 1993. Environ. Sci. Technol. 27:2318–31
    [Google Scholar]
  59. 59. 
    Oskolkov NN, Potemkin II 2007. Macromolecules 40:8423–29
    [Google Scholar]
  60. 60. 
    Riggleman RA, Kumar R, Fredrickson GH 2012. J. Chem. Phys. 136:024903
    [Google Scholar]
  61. 61. 
    Lytle TK, Salazar AJ, Sing CE 2018. J. Chem. Phys. 149:163315
    [Google Scholar]
  62. 62. 
    Qin J, Priftis D, Farina R, Perry SL, Leon L et al. 2014. ACS Macro Lett 3:565–68
    [Google Scholar]
  63. 63. 
    Overbeek JTG, Voorn MJ. 1957. J. Cell. Physiol. Suppl. 49:7–26
    [Google Scholar]
  64. 64. 
    Cahn JW, Hilliard JE. 1958. J. Chem. Phys. 28:258–67
    [Google Scholar]
  65. 65. 
    Widom B. 1965. J. Chem. Phys. 43:3892–97
    [Google Scholar]
  66. 66. 
    Landau LD, Lifshitz EM. 1970. Statistical Physics, Part 1 NY: Pergamon
    [Google Scholar]
  67. 67. 
    Pande VS, Grosberg AY, Tanaka T 2000. Rev. Mod. Phys. 72:259–314
    [Google Scholar]
  68. 68. 
    Quiroz FG, Chilkoti A. 2015. Nat. Mater. 14:1164–71
    [Google Scholar]
  69. 69. 
    Shakya A, King JT. 2018. Biophys. J. 115:1840–47 https://www.sciencedirect.com/science/article/pii/S0006349518311032
    [Google Scholar]
  70. 70. 
    Shakya A, Girard M, King JT, Olvera de la Cruz M 2020. Macromolecules 53:1258–69
    [Google Scholar]
  71. 71. 
    Qin J, de Pablo JJ 2016. Macromolecules 49:8789–800
    [Google Scholar]
  72. 72. 
    Rumyantsev AM, de Pablo JJ 2019. Macromolecules 52:5140–56
    [Google Scholar]
  73. 73. 
    Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A et al. 2016. Mol. Cell. 63:72–85
    [Google Scholar]
  74. 74. 
    Chang LW, Lytle TK, Radhakrishna M, Madinya JJ, Vélez J et al. 2018. Nat. Commun. 8:1273
    [Google Scholar]
  75. 75. 
    Lytle TK, Sing CE. 2017. Soft Matter 13:7001–12
    [Google Scholar]
  76. 76. 
    Lytle TK, Chang LW, Markiewicz N, Perry SL, Sing CE 2019. ACS Cent. Sci. 5:709–18
    [Google Scholar]
  77. 77. 
    Rumyantsev AM, Jackson NE, Yu B, Ting JM, Chen W et al. 2019. ACS Macro Lett 8:1296–302
    [Google Scholar]
  78. 78. 
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E et al. 2015. Mol. Cell. 57:936–47
    [Google Scholar]
  79. 79. 
    Lin YH, Forman-Kay JD, Chan HS 2016. Phys. Rev. Lett. 117:178101
    [Google Scholar]
  80. 80. 
    McCarty J, Delaney KT, Danielsen SPO, Fredrickson GH, Shea JE 2019. J. Phys. Chem. Lett. 10:1644–52
    [Google Scholar]
  81. 81. 
    Danielsen SPO, McCarty J, Shea JE, Delaney KT, Fredrickson GH 2019. PNAS 116:8224–32
    [Google Scholar]
  82. 82. 
    Madinya JJ, Chang LW, Perry SL, Sing CE 2020. Mol. Syst. Des. Eng. 5:632–44
    [Google Scholar]
  83. 83. 
    Wittmer J, Johner A, Joanny JF 1993. Eur. Phys. Lett. 24:263–68
    [Google Scholar]
  84. 84. 
    Moldakarimov S, Johner A, Joanny J-F 2003. Eur. Phys. J. E 10:303–18
    [Google Scholar]
  85. 85. 
    Lee J, Popov YO, Fredrickson GH 2008. J. Chem. Phys. 128:224908
    [Google Scholar]
  86. 86. 
    Rumyantsev AM, Potemkin II 2017. Phys. Chem. Chem. Phys. 19:27580–92
    [Google Scholar]
  87. 87. 
    Kapelner RA, Obermeyer AC. 2019. Chem. Sci. 10:2700–7
    [Google Scholar]
  88. 88. 
    Das RK, Pappu RV. 2013. PNAS 110:13392–97
    [Google Scholar]
  89. 89. 
    Sawle L, Ghosh K. 2015. J. Chem. Phys. 143:085101
    [Google Scholar]
  90. 90. 
    Lutz JF, Ouchi M, Liu DR, Sawamoto M 2013. Science 341:1238149
    [Google Scholar]
  91. 91. 
    Perry SL, Sing CE. 2020. ACS Macro Lett 9:216–25
    [Google Scholar]
  92. 92. 
    Hoffmann KQ, Perry SL, Leon L, Priftis D, Tirrell M, de Pablo JJ 2015. Soft Matter 11:1525–38
    [Google Scholar]
  93. 93. 
    Pacalin NM, Leon L, Tirrell M 2016. Eur. Phys. J. Spec. Top. 225:1805–15
    [Google Scholar]
  94. 94. 
    Vieregg JR, Lueckheide M, Marciel AB, Leon L, Bologna AJ et al. 2018. J. Am. Chem. Soc. 140:1632–38
    [Google Scholar]
  95. 95. 
    Lueckheide M, Vieregg JR, Bologna AJ, Leon L, Tirrell MV 2018. Nano Lett 18:7111–17
    [Google Scholar]
  96. 96. 
    Marras AE, Vieregg JR, Ting JM, Rubien JD, Tirrell JM 2019. Polymers 11:83
    [Google Scholar]
  97. 97. 
    Potemkin II, Limberger RE, Kudlay AN, Khokhlov AR 2002. Phys. Rev. E 66:011802
    [Google Scholar]
  98. 98. 
    Kumar R, Audus D, Fredrickson GH 2010. J. Phys. Chem. B 114:9956–76
    [Google Scholar]
  99. 99. 
    Rubinstein M, Colby RH. 2003. Polymer Physics Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  100. 100. 
    Aponte-Rivera C, Rubinstein M. 2019. Presented at 2019 AIChE Annual Meeting, Orlando, FL. https://aiche.confex.com/aiche/2019/meetingapp.cgi/Paper/574902
  101. 101. 
    Yang M, Shi J, Schlenoff JB 2019. Macromolecules 52:1930–41
    [Google Scholar]
  102. 102. 
    Yu B, Rauscher PM, Jackson NE, Rumyantsev AM, de Pablo JJ 2020. ACS Macro Lett 9:1318–24
    [Google Scholar]
  103. 103. 
    Diddens D, Baschnagel J, Johner A 2019. ACS Macro Lett 8:123–27
    [Google Scholar]
  104. 104. 
    Leibler L, Rubinstein M, Colby RH 1991. Macromolecules 24:4701–7
    [Google Scholar]
  105. 105. 
    Rubinstein M, Semenov AN. 1998. Macromolecules 31:1386–97
    [Google Scholar]
  106. 106. 
    Rubinstein M, Semenov AN. 2001. Macromolecules 34:1058–68
    [Google Scholar]
  107. 107. 
    Liu Y, Winter HH, Perry SL 2017. Adv. Colloid Interface Sci. 239:46–60
    [Google Scholar]
  108. 108. 
    Andreev M, Prabhu VM, Douglas JF, Tirrell M, de Pablo JJ 2018. Macromolecules 51:6717–23
    [Google Scholar]
  109. 109. 
    Spruijt E, Sprakel J, Lemmers M, Stuart MAC, van der Gucht J 2010. Phys. Rev. Lett. 105:208301
    [Google Scholar]
  110. 110. 
    Spruijt E, Cohen Stuart MA, van der Gucht J 2013. Macromolecules 46:1633–41
    [Google Scholar]
  111. 111. 
    Ali S, Prabhu VM. 2018. Gels 4:11
    [Google Scholar]
  112. 112. 
    Hamad FG, Chen Q, Colby RH 2018. Macromolecules 51:5547–55
    [Google Scholar]
  113. 113. 
    Leclerc M. 1999. Adv. Mater. 11:1491–98
    [Google Scholar]
  114. 114. 
    Ho HA, Boissinot M, Bergeron MG, Corbeil G, Doré K et al. 2002. Angew. Chem. Int. Ed. 41:1548–51
    [Google Scholar]
  115. 115. 
    Gaylord BS, Heeger AJ, Bazan GC 2003. J. Am. Chem. Soc. 125:896–900
    [Google Scholar]
  116. 116. 
    Ho HA, Najari A, Leclerc M 2008. Acc. Chem. Res. 41:168–78
    [Google Scholar]
  117. 117. 
    Bock LC, Griffin LG, Latham JA, Vermaas EH, Toole JJ 1992. Nature 355:564–66
    [Google Scholar]
  118. 118. 
    Delaney KT, Fredrickson GH. 2017. J. Chem. Phys. 146:224902
    [Google Scholar]
  119. 119. 
    Hollingsworth WR, Magnanelli TJ, Segura C, Young JD, Bragg AE, Ayzner AL 2018. J. Phys. Chem. C 122:22280–93
    [Google Scholar]
  120. 120. 
    Schleissner P, Ayzner AL. 2018. Polymer 136:114–20
    [Google Scholar]
  121. 121. 
    Segura C, Lucero M, Ayzner AL 2019. ACS Appl. Polym. Mater. 1:1034–44
    [Google Scholar]
  122. 122. 
    Horn J, Kapelner R, Obermeyer A 2019. Polymers 11:578
    [Google Scholar]
  123. 123. 
    Rumyantsev AM, Zhulina EB, Borisov OV 2018. ACS Macro Lett 7:811–16
    [Google Scholar]
  124. 124. 
    Kramarenko EYU, Khokhlov AR, Reineker P 2006. J. Chem. Phys. 125:194902
    [Google Scholar]
  125. 125. 
    Semenov AN. 1985. Sov. Phys. JETP 61:733–42
    [Google Scholar]
  126. 126. 
    Borisov OV, Zhulina EB, Leermakers FAM, Müller AHE 2011. Adv. Polym. Sci. 241:57–129
    [Google Scholar]
  127. 127. 
    van der Kooij HM, Spruijt E, Voets IK, Fokkink R, Cohen Stuart MA, van der Gucht J 2012. Langmuir 28:14180–91
    [Google Scholar]
  128. 128. 
    Nakata M, Zanchetta G, Chapman BD, Jones CD, Cross JO et al. 2007. Science 318:1276–79
    [Google Scholar]
  129. 129. 
    Aloi A, Guibert C, Olijve LLC, Voets IK 2016. Polymer 107:450–55
    [Google Scholar]
  130. 130. 
    Wu H, Ting JM, Werba O, Meng S, Tirrell MV 2018. J. Chem. Phys. 149:163330
    [Google Scholar]
  131. 131. 
    Bos I, Sprakel J. 2019. Macromolecules 52:8923–31
    [Google Scholar]
  132. 132. 
    Lemmers M, Sprakel J, Voets K, van der Gucht J, Cohen Stuart MA 2010. Angew. Chem. Int. Ed. 49:708–11
    [Google Scholar]
  133. 133. 
    Hunt JN, Feldman KE, Lynd NA, Deek J, Campos LM et al. 2011. Adv. Mater. 23:2327–31
    [Google Scholar]
  134. 134. 
    Audus DJ, Gopez JD, Krogstad DV, Lynd NA, Kramer EJ et al. 2015. Soft Matter 11:1214–25
    [Google Scholar]
  135. 135. 
    Srivastava S, Andreev M, Levi AE, Goldfeld DJ, Mao J et al. 2017. Nat. Commun. 8:14131
    [Google Scholar]
  136. 136. 
    Rahalkar A, Wei G, Nieuwendaal R, Prabhu VM, Srivastava S et al. 2018. J. Chem. Phys. 149:16163310
    [Google Scholar]
  137. 137. 
    Sing CE. 2020. J. Chem. Phys. 152:024902
    [Google Scholar]
  138. 138. 
    Rumyantsev AM, Gavrilov AA, Kramarenko EYU 2019. Macromolecules 52:7167–74
    [Google Scholar]
  139. 139. 
    Rumyantsev AM, Kramarenko EYU, Borisov OV 2018. Macromolecules 51:6587–601
    [Google Scholar]
  140. 140. 
    Rumyantsev AM, de Pablo JJ 2020. Macromolecules 53:1281–92
    [Google Scholar]
  141. 141. 
    Castelnovo M, Joanny J-F. 2001. Eur. Phys. J. E 6:377–86
    [Google Scholar]
  142. 142. 
    Mountain GA, Keating CD. 2020. Biomacromolecules 21:630–40
    [Google Scholar]
  143. 143. 
    Lu T, Spruijt E. 2020. J. Am. Chem. Soc. 142:2905–14
    [Google Scholar]
  144. 144. 
    Spoelstra WK, van der Sluis EO, Dogterom M, Reese L 2020. Langmuir 36:1956–64
    [Google Scholar]
  145. 145. 
    Nakashima KK, Baaij JF, Spruijt E 2018. Soft Matter 14:361–67
    [Google Scholar]
  146. 146. 
    Martin N. 2019. ChemBioChem 20:2553–68
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-042020-113457
Loading
/content/journals/10.1146/annurev-conmatphys-042020-113457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error