Skip to content
BY 4.0 license Open Access Published by De Gruyter August 23, 2021

Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation

  • Haitao Wan EMAIL logo , Yongxiu Shi and Wei Liu

Abstract

In this paper, we establish the second boundary behavior of the unique strictly convex solution to a singular Dirichlet problem for the Monge-Ampère equation

 det(D2u)=b(x)g(u),u<0 in Ω and u=0 on Ω,

where Ω is a bounded, smooth and strictly convex domain in ℝN (N ≥ 2), b ∈ C(Ω) is positive and may be singular (including critical singular) or vanish on the boundary, g ∈ C1((0, ∞), (0, ∞)) is decreasing on (0, ∞) with lim t 0 + g ( t ) = and g is normalized regularly varying at zero with index −γ(γ>1). Our results reveal the refined influence of the highest and the lowest values of the (N − 1)-th curvature on the second boundary behavior of the unique strictly convex solution to the problem.

MSC 2010: 35B40; 35J25; 35J60; 35J75; 35J96

1 Introduction and main results

This presentation is to establish the second boundary behavior of the unique strictly convex solution to a singular Dirichlet problem for the Monge–Ampère equation

(1.1)  det(D2u)=b(x)g(u),u<0 in Ω and u=0 on Ω,

where Ω is a bounded, smooth and strictly convex domain in ℝN (N ≥ 2), and

D2u(x)=(2u(x)xixj)N×N

denotes the Hessian of u and D2u is the so called Monge–Ampère operator. The nonlinearity g satisfies

(g1) g ∈ C1((0, ∞), (0, ∞)) is decreasing on (0, ∞) and lim t 0 + g ( t ) = ;

(g2) there exist a constant γ>1 and some function f ∈ C1(0, a1)∩ C[0, a1) for a sufficiently small constant a1 > 0 such that

tg(t)g(t):=γ+f(t) withlimt0+f(t)=0,

i.e.,

g(t)=c0tγexpta1f(s)sds,c0=g(a1)a1γ,

where the function f satisfies

(S1) f ≡ 0 on (0, a1] (or (S2) f(t)≠0, ∀ t ∈ (0, a] for some aa1).

If (S2) holds in (g2) , then we suppose

(g3) there exists θ ≥ 0 such that

lim t 0 + t f ( t ) f ( t ) = θ 0.

If θ=0 in (g3), then we further suppose

(g4) there exist β ∈ ℝ+ and σR such that

limt0+(lnt)βf(t)=σ.

The weight b satisfies

(b1) b ∈ C(Ω) is positive in Ω

and one of the following two conditions

(b2) there exist k ∈ Λ, B0R and μ ∈ ℝ+ such that

b(x)=kN+1(d(x))(1+B0(d(x))μ+o((d(x))μ)),d(x)0,

where d(x)≔ dist(x, ∂Ω), x ∈ Ω, Λ denotes the set of all of positive monotonic functions in C1(0, δ0) ∩ L (0, δ0) which satisfy

limt0+ddt(K(t)k(t))=Dk0,K(t)=0tk(s)ds

and

(b3) there exist L˜L , B0R and μ ∈ ℝ+ such that

b(x)=(d(x))(N+1)L˜N(d(x))(1+B0(d(x))μ+o((d(x))μ)),d(x)0,

where L denotes the set of all of positive functionsdefined on (0, t0] by

L ~ ( t ) := c exp ( t t 0 y ( s ) s d s ) , t ( 0 , t 0 ] ,

where c ∈ ℝ+, y ∈ C (0, t0] and limt0+y(t)=0 .

The set Λ in (b2) was first introduced by Cîrstea and Rădulescu [6]- [8] for non-decreasing functions and by Mohammed [33] for non-increasing functions to study the exact boundary behavior and uniqueness of boundary blow-up elliptic problems. When b satisfies (b2) with Dk > 0, we see by Lemma 3.1 (iii) -(iv) that b may be singular on the boundary with the index

(1Dk)(N+1)Dk>(N+1).

The condition (b3) implies that b is critical singular with the index −(N + 1).

problem (1.1) has a wide range of applications in Riemannian geometry and optical physics and one important geometric application is to structure a Riemannian metric in Ω that is invariant under projective transformations. When g(t)=t−(N+2), t > 0 and b ≡ 1 in Ω, Nirenberg [38], Loewner and Nirenberg [31] for N = 2, Cheng and Yau [5] for N ≥ 2 studied the existence and uniqueness of solutions to problem (1.1). In particular, Cheng and Yau [5] showed that if Ω is convex and bounded but not necessarily strictly convex then problem (1.1) possesses a unique solution uC(Ω)C(Ωˉ) which is negative in Ω. When g(t)=tγ (t > 0) with γ>1 and bC(Ωˉ) with b(x) > 0 for all x ∈ Ω, Lazer and McKenna [27] proved the existence and uniqueness of solutions to problem (1.1). Moreover, they also obtained the following global estimate

c1(d(x))N+1N+γu(x)c2(d(x))N+1N+γ,xΩ.

When b satisfies (b1) and g:(0, ∞) → (0, ∞) is a non-increasing, smooth function, Mohammed [34] showed that problem (1.1) has a strictly convex solution uC(Ω)C(Ωˉ) if and only if the problem

(1.2)  det(D2u)=b(x) in Ω and u=0 on Ω

has a strictly convex solution vC(Ω)C(Ωˉ) , where b may be singular or may vanish on ∂Ω. In particular, the author showed that

(i1) if bC(Ωˉ) is positive in Ωˉ , then problem (1.1) has a strictly convex solution uC(Ω)C(Ωˉ) ;

(i2) if limt0+g(t)= ,then problem (1.1) has a unique strictly convex solution uC(Ω)C(Ωˉ) and the solution usatisfies

c1ϕ(d(x))u(x)c2ϕ(d(x)) and |u(x)|c2ϕ(d(x))d(x) near Ω,

where c1, c2 are positive constants and ϕ is uniquely determined by

0 ϕ ( t ) ( G ( s ) ) ( N + 1 ) d s = t , G ( t ) = t t ^ g ( s ) d s , t ( 0 , t ^ ) , t ^ ( 0 , ] ;

(i3) if b(x) ⩽ C(d (x))δN−1 for somepositive constants δ and C, then problem (1.2) has a strictly convex solution;

(i4) if b(x)=C(d (x))−(N+1) for somepositive constant C, then problem (1.2) has no strictlyconvex solution.

Later, Yang and Chang [47] extended the above results (i3) -(i4) to the following cases:

(i5) if b(x) ⩽ C(d (x))−(N+1)(−ln d(x))qnear ∂Ω for some q > N and C > 0, then problem (1.2) has a strictly convex solution;

(i6) if b(x)=C(d (x))−(N+1)(−lnd(x))N near ∂Ω for some C > 0, then problem (1.2) has no strictly convex solution.

Let PC1(0,) satisfy P(t)<0 and limt0+P(t)= and define P(t)=t1P(s)ds . Recently, under the hypothesis of (b1), Zhang and Du [49] obtain the following results:

(i7) if b(x)P(d(x)) near∂Ω and 01(P(s))1/Nds< , then problem (1.2) has a strictly convex solution;

(i8) if b(x)P(d(x)) and 01(P(s))1/Nds= , then problem (1.2) has no strictly convex solution.

The above facts imply that problem (1.2) has a strictly convex solution if b satisfies (b1) and

b(x)CkN+1(d(x)) near Ω orb(x)C(d(x))(N+1)L˜N(d(x)) near Ω,

where C is a positive constant, k ∈ Λ in (b2) and L˜L in (b3) with

(1.3) 0 t L ~ ( s ) s d s < .

In [28], Li and Ma studied the existence and the firstboundary behavior of the strictly convex solutions to problem (1.1) by using regularity theory and sub-supersolution method.In particular, when b ∈ C3(Ω) is positive in Ω and satisfies

(b01) there exist k ∈ Λ and positiveconstants b1 and b2 such that

b1:=lim infd(x)0b(x)kN+1(d(x))lim supd(x)0b(x)kN+1(d(x))=:b2,

g satisfies (g1) and

(g01)

lim t 0 + ( G ( t ) ) 1 / ( N + 1 ) 0 t ( G ( s ) ) 1 / ( N + 1 ) d s = D g , G ( t ) = t a 1 g ( s ) d s  for some a 1 > 0 ,

they showed that the unique strictly convex solution u to problem (1.1) satisfies

1lim infd(x)0u(x)ψ(ϑ1K(d(x)))lim supd(x)0u(x)ψ(ϑ2K(d(x)))1,

where ψ is uniquely determined by

(1.4) 0 ψ ( t ) ( ( N + 1 ) G ( s ) ) 1 / ( N + 1 ) d s = t ,
ϑ1=(b1mˆ(1Dg1(1Dk)))1/(N+1) and ϑ2=(b2mˆ+(1Dg1(1Dk)))1/(N+1)

with

(1.5) mˆ:=maxxˉΩωN1(xˉ) and mˆ+:=minxˉΩωN1(xˉ),

where

ωN1(xˉ)=i=1N1κi(xˉ)

denotes the (N − 1)-th curvature at xˉ and κ1(xˉ),,κN1(xˉ) denote the principal curvatures of ∂Ω at xˉ . In [51], Zhang showed that if b satisfies (b1) and (b01), g satisfies (g1) and

(g02)

lim t 0 + ( ( g ( t ) ) 1 / N ) 0 t ( g ( s ) ) 1 / N d s = C g ,

and NDk + (1 + N)Cg > 1+N, then the unique strictly convex solution u to problem (1.1) satisfies

ϑ31Cg:=lim infd(x)0u(x)ϕg((K(d(x)))(N+1)/N)lim supd(x)0u(x)ϕg((K(d(x)))(N+1)/N)=:ϑ41Cg,

where ϕg is uniquely determined by

0 ϕ g ( t ) ( N g ( s ) ) 1 / N d s = t , t > 0 ,
ϑ3=((NN+1)Nb1mˆ((1+N)Cg+NDk1N))1/N

and

ϑ4=((NN+1)Nb2mˆ+((1+N)Cg+NDk1N))1/N.

Especially, if (b01) is replaced by the following condition

(b02) there exist L˜L with (1.3) and positive constants b1 and b2 such that

b1:=lim infd(x)0b(x)(d(x))(N+1)L˜N(d(x))lim supd(x)0b(x)(d(x))(N+1)L˜N(d(x))=:b2,

Zhang [51] showed that the unique strictly convex solution u to problem (1.1) satisfies

ϑ51Cglim infd(x)0u(x)ϕg(0d(x)L˜(s)sds)lim supd(x)0u(x)ϕg(0d(x)L˜(s)sds)ϑ61Cg,

where

ϑ5=(b1mˆN)1/N and ϑ6=(b2mˆ+N)1/N.

Then, Sun and Feng [43] and Li and Ma [29] generalized the above boundary behavior results to the case of the following Hessian equation for i=1, ···, N

Si(D2u)=b(x)g(u),u<0 in Ω and u=0 on Ω,

where

S i ( D 2 u ) = S i ( λ 1 , , λ N ) = 1 j 1 < < j i N λ j 1 λ j i

and λ1, ···, λN are the eigenvalues of D2 u. Furthermore S0(λ) ≡ 1 for λ ∈ ℝN. Espically, Li and Ma [29] also studied the existence and uniqueness of viscosity solution to the problem. For related insights on the existence, regularity and asymptotic behavior of solutions to the Monge-Ampère equations, please refer to [4], [11], [19], [21]- [25], [30], [35]- [37], [44]- [45] and the references therein. When the Monge-Ampère operator (det(D2u)) is replaced by the Laplace operator (Δ), many papers have been dedicated to resolving existence, uniqueness and asymptotic behavior issues for solutions, please refer to [1]- [2], [10], [12]- [17], [26], [39], [46], [48], [50] and the references therein.

In this paper, by making a complete and detailed analysis to some indexes in various cases, we establish the exact second boundary behavior of the unique strictly convex solution to problem (1.1), which is quite different from the first behavior of this solution. For all we know, in literature there aren't articles on the second boundary behavior of the strictly convex solution to problem (1.1).

To our aims, we define the following subclasses of Λ and L as follows:

Λ 1 := { k Λ : lim t 0 + t 1 [ d d t ( K ( t ) k ( t ) ) D k ] = E 1 , k } ; Λ 2 , β := { k Λ : lim t 0 + ( ln t ) β [ d d t ( K ( t ) k ( t ) ) D k ] = E 2 , k } ; L β := { L ~ L : lim t 0 + ( ln t ) β y ( t ) = E 3 } ,

where β is a positive constant and the relation between L˜ and y is given in (b3). Our results are summarized as follows and mˆ± (given in Theorems 1.1-1.3) are defined by (1.5).

Theorem 1.1

Let b satisfy (b1) -(b2) with (γ+N)Dk>N + 1, g satisfy (g1) -(g2).

(I) When (S1) holds (or (S2) and (g3) -(g4) hold with θ=0 in (g3)), we have

(i) If k ∈ Λ1, and then the unique strictly convex solution u to problem (1.1) satisfies

(1.6) ξψ(K(d(x)))(1+C(lnd(x))β+o((lnd(x))β))u(x)ξ+ψ(K(d(x)))(1+C+(lnd(x))β+o((lnd(x))β)),d(x)0,

where ψ is uniquely determined by (1.4) and

(1.7) ξ±=(((γ+N)Dk(N+1))mˆ±γ1)1/(γ+N),
C ± = ( ( γ + N ) D k N + 1 ) β C ± , i f ( S 2 ) a n d ( g 3 ) h o l d w i t h θ = 0 , 0 , i f ( S 1 ) h o l d s ,

where

C ± = A ± γ + N , i f A + 0 a n d A 0 , C + = A + γ + N m ^ m ^ + a n d C = A γ + N m ^ + m ^ , i f A + 0 a n d A 0 , C + = A + γ + N m ^ m ^ + a n d C = A γ + N , i f A + > 0 a n d A < 0 , C + = A + γ + N a n d C = A γ + N m ^ + m ^ , i f A + < 0 a n d A > 0

with

(1.8) A±=(C0+1γ+Nlnmˆ±1)σ,

and

(1.9) C0=(N+1)(1Dk)((γ+N)Dk(N+1))(γ1)(γ+N)1ln(γ+N)Dk(N+1)γ1.

(ii) If k ∈ Λ2,β (β is the same as the one in(g4)), then (1.6) still holds, where

C ± = C ^ ± , i f ( S 2 ) a n d ( g 3 ) h o l d w i t h θ = 0 , D ^ ± , i f ( S 1 ) h o l d s ,

and

C ^ ± = A ± + B γ + N , i f A + + B 0 a n d A + B 0 , C ^ + = A + + B γ + N m ^ m ^ + a n d C ^ = A + B γ + N m ^ + m ^ , i f A + + B 0 a n d A + B 0 , C ^ + = A + + B γ + N m ^ m ^ + a n d C ^ = A + B γ + N , i f A + + B > 0 a n d A + B < 0 , C ^ + = A + + B γ + N a n d C ^ = A + B γ + N m ^ + m ^ , i f A + + B < 0 a n d A + B > 0 ,
(1.10) D ^ + = B γ + N m ^ m ^ + a n d D ^ = B γ + N m ^ + m ^ , i f B 0 , D ^ + = D ^ = B γ + N , i f B < 0

with

(1.11) A ± = ( ( γ + N ) D k N + 1 ) β A ± a n d B = ( γ + N ) E 2 , k ( γ + N ) D k ( N + 1 ) ,

where A ±  are given by (1.8).

(II) When (S2) and (g3) hold with θ > 0 in (g3) and k ∈ Λ2,β, then the unique strictly convex solution u to problem (1.1) satisfies (1.6) with C±=Dˆ±, where Dˆ± are given by (1.10).

Corollary 1.1

In Theorem 1.1, if Ω is a ball with radius R and center x0, then

(I) When (S1) holds (or(S2) and (g3) -(g4) hold with θ = 0 in (g3)), we have

(i) If k ∈ Λ1, then the unique strictly convex solution u to problem (1.1) satisfies

(1.12) u(x)=ξR1ψ(K(Rr))(1+CR1(ln(Rr))β+o((ln(Rr))β)),rR,

where r=∣x − x0∣,

(1.13) ξR1=((γ+N)Dk(N+1)(γ1)RN1)1/(γ+N)

and

C R 1 = C ^ R 1 , i f ( S 2 ) a n d ( g 3 ) h o l d w i t h θ = 0 , 0 , i f ( S 1 ) h o l d s ,

where

(1.14) CˆR1=((γ+N)DkN+1)β(C0+N1γ+NlnR)σγ+N

and C0 is given by (1.9).

(ii) If k ∈ Λ2,β (β is the same as the one in (g4)), then (1.12) still holds, where

C R 1 = C ^ R 1 E 2 , k ( γ + N ) D k ( N + 1 ) , i f ( S 2 ) a n d ( g 3 ) h o l d w i t h θ = 0 , E 2 , k ( γ + N ) D k ( N + 1 ) , i f ( S 1 ) h o l d s ,

where CˆR1 is given by (1.14) and C0 isgiven by (1.9).

(II) When (S2) and (g3) hold with θ > 0 in (g3) and k ∈ Λ2,β, then the unique strictly convex solution u to problem (1.1) satisfies (1.12), where

CR1=E2,k(γ+N)Dk(N+1).

Theorem 1.2

Let b satisfy (b1) -(b2) with μ ∈ (0, 1), g satisfy (g1) -(g2) with (1−μ)(γ+N)Dk>N + 1, and if (S2) holds in (g2),we further suppose that (g3) with θ > 0 and the following hold

(1.15) θ ( N + 1 ) μ N > γ > N + 1 ( 1 μ ) D k N , i f D k ( 0 , 1 ) , θ ( N + 1 ) N > γ > max { N + 1 ( 1 μ ) D k N , 2 N + 1 N } a n d μ D k ( 0 , 1 ) , i f D k [ 1 , ) .

If k ∈ Λ1, then the unique strictly convex solution u to problem (1.1) satisfies

(1.16) ξψ(K(d(x)))(1+C˜(d(x))μ+o((d(x))μ))u(x)ξ+ψ(K(d(x)))(1+C˜+(d(x))μ+o((d(x))μ)),d(x)0,

where ψ is uniquely determined by (1.4), ξ ±  are given by (1.7) and

C ~ ± = B 0 ( N + 1 ) ( ( γ + N ) D k ( N + 1 ) ) H + γ ( N + 1 ) ( ( γ + N ) D k ( N + 1 ) ) , i f B 0 0 , C ~ + = B 0 ( N + 1 ) ( ( γ + N ) D k ( N + 1 ) ) H m ^ m ^ + + γ ( N + 1 ) ( ( γ + N ) D k ( N + 1 ) ) , i f B 0 < 0 , C ~ = B 0 ( N + 1 ) ( ( γ + N ) D k ( N + 1 ) ) H m ^ + m ^ + γ ( N + 1 ) ( ( γ + N ) D k ( N + 1 ) ) , i f B 0 < 0

with

H=((1μ)(γ+N)Dk(N+1))(N(N+1)+μ(N1)(γ+N)Dk)+μ(γ+N)Dk((N2)(N+1)+μ(N1)(γ+N)Dk)+μ(1μ)(γ+N)2Dk2.

Corollary 1.2

In Theorem 1.2, if Ω is a ball with radius R and center x0, then the unique strictly convex solution u to problem (1.1) satisfies

u(x)=ξR1ψ(K(Rr))(1+CR2(Rr)μ+o((Rr)μ)),rR,

where ξR1 is given by (1.13), r=∣x − x0∣ and

CR2=B0(N+1)((γ+N)Dk(N+1))H+γ(N+1)((γ+N)Dk(N+1)).

Remark 1.1

In Theorem 1.2, if we replace k ∈ Λ1 by

kΛ:={kΛ:limt0+tμ(ddt(K(t)k(t))Dk)=E1,k}

and other conditions still hold, then (1.16) holds, where

C ~ ± = ( N + 1 ) [ B 0 ( ( γ + N ) D k ( N + 1 ) ) ( γ + N ) E 1 , k ] H + γ ( N + 1 ) ( ( γ + N ) D k ( N + 1 ) ) , i f B 0 ( ( γ + N ) D k ( N + 1 ) ) ( γ + N ) E 1 , k , C ~ + = ( N + 1 ) [ B 0 ( ( γ + N ) D k ( N + 1 ) ) ( γ + N ) E 1 , k ] H m ^ m ^ + + γ ( N + 1 ) ( ( γ + N ) D k ( N + 1 ) ) , i f B 0 ( ( γ + N ) D k ( N + 1 ) ) < ( γ + N ) E 1 , k , C ~ = ( N + 1 ) [ B 0 ( ( γ + N ) D k ( N + 1 ) ) ( γ + N ) E 1 , k ] H m ^ + m ^ + γ ( N + 1 ) ( ( γ + N ) D k ( N + 1 ) ) , i f B 0 ( ( γ + N ) D k ( N + 1 ) ) < ( γ + N ) E 1 , k .

When b is critical singular on ∂Ω, we have the following second boundary behavior.

Theorem 1.3

Let b satisfy (b1) and (b3), g satisfy (g1) -(g2), and if (S2) holds in (g2), we further suppose that (g3) -(g4) hold with θ = 0 in (g3) and with β ∈ (0, 1] in (g4). If L˜Lβ with

(1.17) E3<0,β(0,1),1,β=1,

then the unique strictly convex solution u to problem (1.1) satisfies

η ψ ( ( 0 d ( x ) L ~ ( s ) s d s ) N N + 1 ) ( 1 + C M ( d ( x ) ) + o ( M ( d ( x ) ) ) ) u ( x ) η + ψ ( ( 0 d ( x ) L ~ ( s ) s d s ) N N + 1 ) ( 1 + C + M ( d ( x ) ) + o ( M ( d ( x ) ) ) ) , d ( x ) 0 ,

where ψ is uniquely determined by (1.4),

η±=((NN+1)Nγ+Nγ1mˆ±)1/(γ+N),
M ( d ( x ) ) = ( ln ψ ( ( 0 d ( x ) L ~ ( s ) s d s ) N N + 1 ) ) β ,

and

C ± = D ± , i f ( S 2 ) a n d ( g 3 ) h o l d w i t h θ = 0 , 0 , i f ( S 1 ) h o l d s ,

where

D ± = X ± γ + N , i f X + 0 a n d X 0 , D + = X + γ + N m ^ m ^ + a n d D = X γ + N m ^ + m ^ , i f X + 0 a n d X 0 , D + = X + γ + N a n d D = X γ + N m ^ + m ^ , i f X + > 0 a n d X < 0 , D + = X + γ + N m ^ m ^ + a n d D = X γ + N , i f X + < 0 a n d X > 0

with

X±=(γ+N)1(N+1γ1+ln((NN+1)Nγ+Nγ1)+lnmˆ±)σ.

Corollary 1.3

In Theorem 1.3, if Ω is a ball with radius R and center x0, then the unique strictly convex solution u to problem (1.1) satisfies

u ( x ) = η R 1 ψ ( ( 0 R r L ( s ) s d s ) N N + 1 ) ( 1 + C R 3 M ( R r ) + o ( M ( R r ) ) ) , r R ,

where

ηR1=((NN+1)Nγ+N(γ1)RN1)1/(γ+N),r=|xx0|

and

CR3=(N+1γ1+ln((NN+1)Nγ+Nγ1)(N1)lnR)σ(γ+N)2.

Remark 1.2

In Theorem 1.3, we obtain by Lemma 3.2 (i) that if L˜Lβ with (1.17), then (1.3) holds. But, when L˜Lβ with β > 1, by a direct calculation we see that

(1.18) 0 t 0 L ~ ( s ) s d s = .

Since limt0+(lnt)βy(t)=E3 , for any ε > 0 we can choose a small enough constant t˜<min{t0,1} such that

E3ε(lnt)βy(t),t(0,t˜].

A simple calculation shows that

exp ( t t ~ y ( s ) s d s ) exp ( t t ~ E 3 ε s ( ln s ) β d s ) = exp ( E 3 ε β 1 ( ( ln t ~ ) 1 β ( ln t ) 1 β ) ) .

Moreover, we have

(1.19) lim t 0 + exp ( t t ~ E 3 ε s ( ln s ) β d s ) = lim t 0 + exp ( E 3 ε β 1 ( ( ln t ~ ) 1 β ( ln t ) 1 β ) ) = exp ( E 3 ε β 1 ( ln t ~ ) 1 β ) > 0.

It follows by the definition of L˜ in (b3) that there exists a positive constant C˜ such that

(1.20) C ~ exp ( t t 0 E 3 ε s ( ln s ) β d s ) L ~ ( t ) , t ( 0 , t 0 ] .

Combining (1.19) with (1.20), we obtain (1.18) holds.

Remark 1.3

If y ( t ) = ± ( ln t ) 1 , 0 < t t ~ < min { t 0 , 1 } in (b3), then we have

L ~ ( t ) = exp ( t t 0 y ( s ) s d s ) = exp ( t ~ t 0 y ( s ) s d s ) exp ( ± t t ~ d s s ( ln s ) ) = exp ( t ~ t 0 y ( s ) s d s ) ( ln t ln t ~ ) ± 1 L β ,

where β ∈ (0, 1) with E3=0 or β=1 with E3=± 1. It’s clear that (1.8) holds here. This implies that when L˜Lβ with β ≤ 1, (1.3) is not always true if (1.17) fails.

Remark 1.4

In Theorem 1.3, if we substitute L˜Lβ0 0>β) and

E3<0,β0(0,1),1,β0=1,

for L˜Lβ with (1.17), then the conclusion of Theorem 1.3 still holds.

Remark 1.5

L˜L is normalized slowly varying at zero and limt0+tL˜(t)L˜(t)=0 .

The rest of the paper is organized as follows. In Section 2, we give some bases of Karamata regular variation theory. In Section 3, we show some auxiliary lemmas. The proofs of Theorems 1.1-1.3 are given in Section 4.

2 Some basic facts from Karamata regular variation theory

In this section, we introduce some preliminaries of Karamata regular variation theory which come from [3], [32], [40]- [41].

Definition 2.1

A positive continuous function g defined on (0, a0], for some a0 > 0, is called regularly varying at zero with index p, denoted by g ∈ RVZp, if for each ξ>0 and some pR ,

(2.1) limt0+g(ξt)g(t)=ξp.

In particular, when p=0, g is called slowly varying at zero.

Clearly, if g ∈ RVZp, then L(t)≔ g(t)/tp is slowly varying at zero.

Proposition 2.2

(Uniform Convergence Theorem). If g ε RVZp, then (2.1) holds uniformly for ξ ε [c1, c2], where 0< c1 < c2 < a0.

Proposition 2.3

(Representation Theorem). A function L is slowly varying at zero if and only if it may be written in the form

L ( t ) = l ( t ) e x p t a 0 y ( s ) s d s , t a 0 ,

where the functions l and y are continuous and for t → 0+, y(t) → 0 and l(t) → c0 with c0 > 0.

Definition 2.4

The function

L ( t ) = c 0 e x p t a 0 y ( s ) s d s , t a 0 ,

is called normalized slowly varying at zero and

h(t)=tpL(t),ta0

is called normalized regularly varying at zero with index ρ (written as f ∈ NRVZp).

A function h ε C1(0, a0] for some a0 > 0 belongs to NRVZp if and only if

limt0+th(t)h(t)=p.

Proposition 2.5

Let functions L, L1 be slowly varying at zero, then

(i) Lp, pR , L1· L and L1 ∘ L satisfying limt0+L(t)=0 , are also slowly varying at zero;

(ii) for any p > 0,

tpL(t)0 and tpL(t) ast0+;

(iii) for any p ∈ ℝ,

ln L ( t ) / ln t 0  and  ln ( t p L ( t ) ) / ln t = p  as t 0 + .

Proposition 2.6

Let g1(N)RVZp1 and g2(N)RVZp2, then g1g2(N)RVZp1+p2.

Proposition 2.7

Let g1(N)RVZp1,g2(N)RVZp2 and limt0+g2(t)=0, then g1g2(N)RVZp1p2.

Proposition 2.8

(Asymptotic Behavior). Let L is a slowly varying function at zero, then for a1 > 0,

(i) ta1spL(s)ds(1+p)1t1+pL(t), forp<1,t0+;

(ii) 0tspL(s)ds(1+p)1t1+pL(t), forp>1,t0+.

3 Auxiliary results

In this section, we show some useful results, which are necessary in the proofs of our results.

Lemma 3.1

(Lemma 2.9 in [51]). Let k ∈ Λ, then

  1. when k is non-decreasing, Dk ∈ [0, 1]; and when k is non-increasing, Dk ∈ [1, ∞);

  2. limt0+K(t)k(t)=0 , limt0+K(t)tk(t)=Dk and limt0+K(t)k(t)k2(t)=1Dk;

  3. when Dk > 0 and Dk≠1, kNRVZ(1Dk)/Dk;

  4. when Dk=1, k is normalized slowly varying at zero.

Lemma 3.2

Let L˜Lβ and (1.17) hold, then

  1. 0tL˜(s)sds<;

  2. limt0+(lnt)βL˜(s)0tL˜(s)sds=E3,β(0,1),(E3+1),β=1;

  3. limt0+(lnt)βL˜(t)tL˜(t)=E3.

Proof. (i) By

limt0+(lnt)βy(t)=E3<0,β(0,1),1,β=1,

we see that for any 0<ε<E3+τ2 with

τ=0,β(0,1),1,β=1,

there exists a small enough positive constant t* ∈ (0, 1) such that

y(t)E3+ε(lnt)β,t(0,t] with E3+ε<0,β(0,1),1,β=1.

A straightforward calculation shows that for any t0,t,

exp(tty(s)sds)exp(ttE3+εs(lns)βds)=exp(E3+ε1β((lnt)1β(lnt)1β)),β(0,1),(lntlnt)E3+ε,β=1.

So, we see that there exists a large constant C > 0 such that for any t(0,t],

(3.1) L˜(t)Cexp(E3+ε1β(lnt)1β),β(0,1),C(lnt)E3+ε,β=1.

Case 1. If β∈(0, 1), it is clear that that

exp(E3+ε1β(lnt)1β)=n=0(E3+ε1β)n(lnt)n(1β)n!.

This together with (3.1) implies that we can choose a positive integer n* >(1-β)-1 such that

(3.2) Cexp(E3+ε1β(lnt)1β)=C(exp(E3+ε1β(lnt)1β))1=C(n=0(E3+ε1β)n(lnt)n(1β)n!)1C((E3+ε1β)n(lnt)n(1β))1=C1(lnt)n(1β),t(0,t],

where C1=C(E3+ε1β)n . So, we have

0tL˜(s)sdsC0texp(E3+ε1β(lns)1β)sdsC10tdss(lns)n(1β)=C1(lnt)1n(1β)n(1β)1<.

Case 2. If β=1, then by (3.1) we obtain

0tL˜(s)sds0tC(lns)E3+εsds=C(lnt)1+E3+ε1+E3+ε<.

Combining Cases 1-2, we obtain (i) holds.

(ii) It follows by (3.1)-(3.2) that limt0+(lnt)βL˜(t)=0. By the l'Hospital’s rule, we obtain

limt0+(lnt)βL˜(s)0tL˜(s)sds=limt0+((lnt)βy(t)β(lnt)β1)=E3,β(0,1),(E3+1),β=1.

(iii) A direct calculation shows that

limt0+(lnt)βL˜(t)tL˜(t)=limt0+(lnt)βy(t)=E3.

Define

(3.3) φ(t):=0t((N+1)G(s))1/(N+1)ds,t>0,

where φ is the inverse of solution ψ to (1.4).

Lemma 3.3

Let g satisfy (g1)-(g2), then

  1. limt0+tg(t)g(t)=γ;

  2. G(t)t1γγ1Lˆ0(t),t0+;

  3. φ(t)(γ1N+1)1/(N+1)N+1γ+Ntγ+NN+1(Lˆ0(t))1/(N+1),t0+, where

    Lˆ0(t)=c0exp(ta1f(s)sds),c0=g(a1)a1γ;
  4. limt0+φ(t)tφ(t)=limt0+φ(t)((N+1)G(t))1/(N+1)t=N+1γ+N,i.e., φNRVZγ+NN+1;

  5. limt0+((N+1)G(t))N/(N+1)g(t)φ(t)=γ+Nγ1.

proof. (i) It follows by (g2) that (i) holds.

(ii)-(iii) By (g2) we see that

(3.4) g(t)=tγLˆ0(t),t(0,a1].

It follows by Proposition 2.8 (i) that (ii) holds. Furthermore, we have

((N+1)G(t))1/(N+1)(γ1N+1)1/(N+1)t(γ1)/(N+1)(Lˆ0(t))1/(N+1),t0+.

It follows by Proposition 2.8 (ii) that (iii) holds.

(iv)-(v) (3.3) implies that

(3.5) φ(t)=((N+1)G(t))1/(N+1),t>0.

By (3.4)-(3.5) and (i)-(ii), we obtain (iv)-(v) hold.

Lemma 3.4

Suppose that g satisfies (g1)-(g2). In particular, if (S2) holds in (g2), we suppose that (g3) holds. And if θ = 0 in (g3), we further suppose that (g4) holds. Then,

  1. limt0+υ(t)(tg(t)g(t)+γ)=χ1,

    where

    χ1=σ,if(S2)and(g3)(g4)holdwithθ=0in(g3),υ(t)=(lnt)β,0,if(S1)holds(or(S2)and(g3)holdwithθ>0),υ(t)=(lnt)β,0,if(S1)holds(or(S2)and(g3)holdwithθ(N+1)>(γ+N)ρ),υ(t)=(φ(t))ρwithρ(0,1];
  2. limt0+υ(t)(G(t)tg(t)1γ1)=χ2,

    where

    χ2=σ(γ1)2,if(S2)and(g3)(g4)holdwithθ=0in(g3),υ(t)=(lnt)β,0,if(S1)holds(or(S2)and(g3)holdwithθ>0),υ(t)=(lnt)β,0,if(S1)holdsandγ>(1+ρ)N+1N+1ρin(g2),υ(t)=(φ(t))ρ,ρ(0,1],0,if(S2)and(g3)holdwithθ(N+1)ρN>γ>(1+ρ)N+1N+1ρ,υ(t)=(φ(t))ρwithρ(0,1];
  3. limt0+υ(t)(((N+1)G(t))N/(N+1)g(t)φ(t)γ+Nγ1)=χ3,

    where

    χ3=(N+1)σ(γ1)2,if(S2)and(g3)(g4)holdwithθ=0in(g3),υ(t)=(lnt)β,0,if(S1)holds(or(S2)and(g3)holdwithθ>0),υ(t)=(lnt)β,0,if(S1)holdsandγ>(1+ρ)N+1N+1ρin(g2),υ(t)=(φ(t))ρ,ρ(0,1],0,if(S2)and(g3)holdwithθ(N+1)ρN>γ>(1+ρ)N+1N+1ρ,υ(t)=(φ(t))ρwithρ(0,1];
  4. let ξ be a positive constant, then

    limt0+υ(t)g(ξt)ξNg(t)ξ(γ+N)=χ4,

where

χ4=σlnξξγ+N,ifS2andg3g4holdwithθ=0ing3,v(t)=(lnt)β,0,ifS1holdsorS2andg3holdwithθ>0,v(t)=(lnt)β,0,ifS1holdsorS2andg3holdwithθ(N+1)>(γ+N)ρ,v(t)=(φ(t))ρwithρ(0,1].

Proof. (i) When (S2) and (g3)-(g4) hold with θ = 0 in (g3), we have

(3.6) limt0+(lnt)β(tg(t)g(t)+γ)=limt0+(lnt)βf(t)=σ.

When (S1) holds, we have

tg(t)g(t)=γ,t(0,a1].

This implies that for υ (t)=(-ln t)β or υ (t)=(φ (t))-ρ, we obtain

(3.7) limt0+υ(t)(tg(t)g(t)+γ)=0.

When (S2) and (g3)-(g4) hold with θ > 0, we conclude by Proposition 2.5 (ii) that

(3.8) limt0+(lnt)β(tg(t)g(t)+γ)=limt0+(lnt)βf(t)=limt0+tθ(lnt)βL(t)=0,

where LNRVZ0. Moreover, it follows by Lemma (3.3) (iv) and Proposition (2.7) that

(3.9) 1/φρNRVZ(γ+N)ρN+1.

When (g3) holds with θ (N + 1) > (γ + N)ρ, we conclude by Proposition 2.6 and Proposition 2.5 (ii) that

(3.10) limt0+(φ(t))ρ(tg(t)g(t)+γ)=limt0+(φ(t))ρf(t)=limt0+tθ(γ+N)ρN+1L(t)=0,

where LNRVZ0. So, (i) follows by (3.6)-(3.10).

(ii) By (g2), we have

tg(t)=γg(t)+g(t)f(t),t(0,a1].

Integrating it from t to a1 and integration by parts, we obtain

tg(t)=(γ1)G(t)+ta1g(s)f(s)ds+c,t(0,a1],

i.e.,

(3.11) G(t)tg(t)1γ1=1γ1ta1g(s)f(s)dstg(t)c(γ1)g(t)t,t(0,a1],

where c is a constant. The condition (g2) implies that g ∈ NRVZ with γ > 1. Moreover, by t ↦ (-ln t)βNRVZ0 and (3.9), we see that

υNRVZ0, if υ(t)=(lnt)β,NRVZ(γ+N)ρN+1, if υ(t)=(φ(t))ρ.

We conclude by Proposition 2.7 and Proposition 2.6 that

ttg(t)(υ(t))1NRVZ1γ, if υ(t)=(lnt)β,NRVZ(1γ)(N+1)+(γ+N)ρN+1, if υ(t)=(φ(t))ρ.

So, we can take LNRVZ0 such that

tg(t)(υ(t))1=tςL(t)

with

ς=1γ, if υ(t)=(lnt)β,(1γ)(N+1)+(γ+N)ρN+1, if υ(t)=(φ(t))ρ.

It’s clear that

ς<0, if γ>1 in (g2) and υ(t)=(lnt)β,ς<0, if γ>(1+ρ)N+1N+1ρ in (g2) and υ(t)=(φ(t))ρ.

By Proposition 2.5 (ii), we have

limt0+tg(t)(υ(t))1=,

i.e.,

(3.12) limt0+c(γ1)tg(t)(υ(t))1=0.

Combining with (3.6)-(3.10), by the l'Hospital’s rule, we can obtain

(3.13) limt0+υ(t)ta1g(s)f(s)ds(γ1)tg(t)=limt0+a1tg(s)f(s)ds(γ1)tg(t)(υ(t))1=limt0+1γ1g(t)f(t)g(t)(υ(t))1+tg(t)(υ(t))1+tg(t)[(υ(t))1]=limt0+1γ1υ(t)f(t)1+tg(t)g(t)+t[(υ(t))1](υ(t))1=limt0+(lns)βf(s)(γ1)2, if γ>1 in (g2) and υ(t)=(lnt)βlimt0+(N+1)(φ(t))ρf(t)(γ1)((1γ)(N+1)+(γ+N)ρ), if γ>(1+ρ)N+1N+1ρ in (g2) and υ(t)=(φ(t))ρ=χ2.

(3.11)-(3.13) imply that

limt0+υ(t)G(t)tg(t)1γ1=limt0+ta1g(s)f(s)ds(γ1)tg(t)(υ(t))1limt0+c(γ1)tg(t)(υ(t))1=χ2.

(iii) By Lemma 3.3 (iv), Proposition 2.7 and Proposition 2.6, we have

t(υ(t))1φ(t)NRVZ(γ+N)ρN+1, if υ(t)=(lnt)β,NRVZ(γ+N)(ρ+1)N+1, if υ(t)=(φ(t))ρ.

This implies that

(υ(t))1φ(t)0 as t0+.

Moreover, it follows by Lemma 3.3 (v) that

((N+1)G(t))1/(N+1)g(t)γ+Nγ1φ(t)0 as t0+.

If ν(t) = (− ln t)β, then we have by the l’Hospital’s rule, (3.5) and (i)-(ii) that

(3.14) limt0+υ(t)(((N+1)G(t))N/(N+1)g(t)φ(t)γ+Nγ1)=limt0+((N+1)G(t))N/(N+1)g(t)γ+Nγ1φ(t)(lnt)βφ(t)=limt0+N((N+1)G(t))1/(N+1)g2(t)((N+1)G(t))N/(N+1)g(t)g2(t)γ+Nγ1φ(t)(lnt)βφ(t)+β(lnt)β1φ(t)t1=limt0+(N+1)(lnt)β(G(t)tg(t)tg(t)g(t)+γγ1)=limt0+(N+1)(lnt)β[(G(t)tg(t)1γ1)(tg(t)g(t)+γ)γ(G(t)tg(t)1γ1)+1γ1(tg(t)g(t)+γ)]=(N+1)σ(γ1)2, if (S2) and (g3)-(g4) hold with θ=0 in (g3),0, if (S1) holds (or (S2) and (g3) hold with θ>0).

If ν(t) = (φ(t))ρ, then we have by the l'Hospital’s rule, (3.5) and (i)-(ii) that

(3.15) limt0+υ(t)(((N+1)G(t))N/(N+1)g(t)φ(t)γ+Nγ1)=limt0+((N+1)G(t))N/(N+1)g(t)γ+Nγ1φ(t)(φ(t))ρ+1=limt0+N((N+1)G(t))1/(N+1)g2(t)((N+1)G(t))N/(N+1)g(t)g2(t)γ+Nγ1φ(t)(ρ+1)(φ(t))ρφ(t)=limt0+N+1ρ+1(φ(t))ρ(G(t)tg(t)tg(t)g(t)+γγ1)=limt0+N+1ρ+1(φ(t))ρ[(G(t)tg(t)1γ1)(tg(t)g(t)+γ)+γ(G(t)tg(t)1γ1)1γ1(tg(t)g(t)+γ)]=0, if (S1) holds and γ>(1+ρ)N+1N+1ρ in (g2),0, if (S2) and (g3) hold with θ(N+1)ρN>γ>(1+ρ)N+1N+1ρ.

(3.14)-(3.15) imply that (iii) holds.

(iv) When (S1) holds in (g2), we have

g(ξt)ξNg(t)=ξ(γ+N),t(0,a1].

In this case, for υ(t) = (−ln t)β or υ(t) = (φ(t))ρ, we obtain

(3.16) limt0+υ(t)(g(ξt)ξNg(t)ξ(γ+N))=0.

Now, we investigate the case that (S2) holds in (g2). If ξ = 1, then the result is obvious. If ξ ≠ 1, then we have

g(ξt)ξNg(t)ξ(γ+N)=ξ(γ+N)(exp(ξttf(s)sds)1).

It follows by Proposition 2.2 that

limt0+f(st)s=0andlimt0+f(st)sf(t)=sθ1

uniformly with respect to s ∈ [1, ξ] or s ∈ [ξ, 1]. So, we have

lim t 0 + ξ t t f ( τ ) τ d τ τ := t s _ _ lim t 0 + ξ 1 f ( t s ) s d s = 0

and

limt0+ξ1f(st)sf(t)ds=ξ1sθ1ds=lnξ, if g3 holds with θ=0,1ξθθ, if g3 holds with θ>0.

Since er−1 ∼ r as r → 0+, we conclude by (3.6), (3.8)-(3.10) that

limt0+υ(t)(g(ξt)ξNg(t)ξ(γ+N))=limt0+ξ(γ+N)υ(t)f(t)ξ1f(st)sf(t)ds=σlnξξγ+N, if (g3)-(g4) hold with θ=0 in (g3),υ(t)=(lnt)β,0, if (g3) hold with θ>0,υ(t)=(lnt)β,0, if (g3) hold with θ(N+1)>(γ+N)ρ,υ(t)=(φ(t))ρ.

This, combined with (3.16), shows that (iv) holds. □

Lemma 3.5

(Lemma 2.3 in [48]) Let L˜L , then

limt0+L˜(t)tt0L˜(s)sds=0.

If further 0t0L˜(s)sds< , then

limt0+L˜(t)0tL˜(s)sds=0.

Lemma 3.6

Suppose that g satisfies (g1)-(g2). In particular, if (S2) holds in (g2), we suppose that (g3) holds, and if θ = 0 in (g3), we further suppose that (g4) holds. ψ is uniquely determined by (1.4). Then,

  1. ψ(s)=((N+1)G(ψ(t)))1N+1,ψ(t)>0,ψ(0)=0 and

    ψ′′(t)=((N+1)G(ψ(t)))1NN+1g(ψ(t)),t(0,a1);
  2. (ψ(t))N1ψ′′(t)=g(ψ(t));

  3. limt0+tψ(t)ψ(t)=N+1γ+N,i.e.,ψNRVZN+1γ+N;

  4. limt0+ψ(t)tψ′′(t)=γ+Nγ1,i.e.,ψNRVZγ1γ+N;

  5. if kΛ,thenlimt0+lntlnψ(K(t))=(γ+N)DkN+1;

  6. if L˜Land(1.3)holds,thenlimt0+lnψ((0tL˜(s)sds)NN+1)lnt=0 ;

  7. limt0+(lnψ(t))β(ψ(t)tψ′′(t)+γ+Nγ1)=(N+1)σ(γ1)2,if(S2)and(g3)(g4)holdwithθ=0in(g3),0,if(S1)holds(or(S2)and(g3)holdwithθ>0);
  8. let ρ ∈ (0, 1], then

    lim t 0 + t ρ ( ψ ( t ) t ψ ( t ) + γ + N γ 1 ) = 0 , i f ( S 1 ) h o l d s a n d γ > ( 1 + ρ ) N + 1 N + 1 ρ i n ( g 2 ) , 0 , i f ( S 2 ) a n d ( g 3 ) h o l d w i t h θ ( N + 1 ) ρ N > γ > ( 1 + ρ ) N + 1 N + 1 ρ ;
  9. let ξ be a positive constant, then

    limt0+(lnψ(t))β(g(ξψ(t))ξNg(ψ(t))ξ(γ+N))=σξ(γ+N)lnξ,if(S2)and(g3)(g4)holdwithθ=0in(g3),0,if(S1)holds(or(S2)and(g3)holdwithθ>0);
  10. let (S1) hold (or (S2) and (g3) hold with θ(N + 1)>(γ+N)ρ), ξ be a positive constant and ρ ∈ (0, 1], then limt0+tρ(g(ξψ(t))ξNg(ψ(t))ξ(γ+N))=0.

Proof. (i)-(ii) By the definition of ψ, we obtain that (i)-(ii) hold.

(iii)-(iv) It follows by (i) and Lemma 3.3 (iv)-(v) that

lim t 0 + t ψ ( t ) ψ ( t ) = lim t 0 + t ( ( N + 1 ) G ( ψ ( t ) ) ) 1 N + 1 ψ ( t ) z := ψ ( t ) _ _ lim z 0 + φ ( z ) ( ( N + 1 ) G ( z ) ) 1 N + 1 z = N + 1 γ + N

and

limt0+ψ(t)tψ′′(t)=limz0+((N+1)G(z))NN+1g(z)φ(z)=γ+Nγ1.

(v) We conclude by (iii), Lemma 3.1 (ii) and Lemma 2.5 (iii) that (v) holds.

(vi) By using Lemma 3.5, we have

limt0+t((0tL˜(s)sds)NN+1)(0tL˜(s)sds)NN+1=NN+1limt0+L˜(t)0tL˜(s)sds=0.

This implies that

(3.17) t(0tL˜(s)sds)NN+1NRVZ0.

So, by (3.17), (iii) and Proposition 2.7 we further obtain

(3.18) tψ((0tL˜(s)sds)NN+1)NRVZ0.

We have by Proposition 2.5 (iii) that (vi) holds.

(vii)-(viii) It follows by (i) and Lemma 3.4 (iii) that

lim t 0 + ( ln ψ ( t ) ) β ( ψ ( t ) t ψ ( t ) + γ + N γ 1 ) = lim t 0 + ( ln ψ ( t ) ) β ( ( ( N + 1 ) G ( ψ ( t ) ) ) N N + 1 g ( ψ ( t ) ) t + γ + N γ 1 ) z := ψ ( t ) _ _ lim z 0 + ( ln z ) β ( ( ( N + 1 ) G ( z ) ) N N + 1 g ( z ) φ ( z ) + γ + N γ 1 ) = ( N + 1 ) σ ( γ 1 ) 2 ,  if  ( S 2 )  and  ( g 3 ) - ( g 4 )  hold with  θ = 0  in  ( g 3 ) , 0 ,  if  ( S 1 )  holds (or  ( S 2 )  and  ( g 3 )  hold with  θ > 0 ) ,

and

lim t 0 + t ρ ( ψ ( t ) t ψ ( t ) + γ + N γ 1 ) = lim t 0 + t ρ ( ( ( N + 1 ) G ( ψ ( t ) ) ) N N + 1 g ( ψ ( t ) ) t + γ + N γ 1 ) z := ψ ( t ) _ _ lim z 0 + ( φ ( z ) ) ρ ( ( ( N + 1 ) G ( z ) ) N N + 1 g ( z ) φ ( z ) + γ + N γ 1 ) = 0 ,  if  ( S 1 )  holds and  γ > ( 1 + ρ ) N + 1 N + 1 ρ  in  ( g 2 ) , 0 ,  if  ( S 2 )  and  ( g 3 )  hold with  θ ( N + 1 ) ρ N > γ > ( 1 + ρ ) N + 1 N + 1 ρ .

(ix)-(x) It follows by Lemma 3.4 (iv) that

lim t 0 + ( ln ψ ( t ) ) β ( g ( ξ ψ ( t ) ) ξ N g ( ψ ( t ) ) ξ ( γ + N ) ) z := ψ ( t ) _ _ lim z 0 + ( ln z ) β ( g ( ξ z ) ξ N g ( z ) ξ ( γ + N ) ) = σ ξ ( γ + N ) ln ξ ,  if  ( S 2 )  and  ( g 3 ) - ( g 4 )  hold with  θ = 0  in  ( g 3 ) , 0 ,  if  ( S 1 )  holds (or  ( S 2 )  and  ( g 3 )  hold with  θ > 0 ) .

Moreover, if (S1) holds or (S2) and (g3) hold with θ(N + 1)>(γ+N)ρ, then by Lemma 3.4 (iv), we have

limt0+tρg(ξψ(t))ξNg(ψ(t))ξ(γ+N)=z:=ψ(t)limz0+(φ(z))ρg(ξz)ξNg(z)ξ(γ+N)=0.

4 The Second Boundary Behavior

In this section, we prove Theorems 1.1-1.3. We first introduce some lemmas as follows.

Lemma 4.1

(Lemma 2.1 in [27]) Let Ω be a bounded domain inN with N ≥ 2, and let u,vC(Ωˉ)C2(Ω) . Suppose h(x, t) is defined for x ∈ Ω and t in some interval containing the ranges of u and v. If the following hold:

(i) h is strictly increasing in t for all x ∈ Ω,

(ii) the matrix D2v is positive definite in Ω,

(iii) det(D2v)=h(x, v) and det (D2u) ⩽ h(x, u), x ∈ Ω,

(iv) u=v on ∂Ω,

then, we have uv in Ω.

For any δ>0, let

Ωδ={xΩ:0<d(x)<δ}.

Since Ω is Cm-smooth for m≥2, we can always take δ1 > 0 such that (see Lemmas 14.16 and 14.17 in [18])

dCm(Ωδ1)and|d(x)|=1,xΩδ1.

Let xˉΩ be the projection of the point xΩδ1 to ∂Ω, and κi(xˉ) (i=1, ···, N − 1) be the principal curvatures of ∂Ω at xˉ , then

D2(d(x))=diag(κ1(xˉ)1d(x)κ1(xˉ),,κN1(xˉ)1d(x)κN1(xˉ),0).

Lemma 4.2

(See the proof of Proposition 2.4 in [27], Proposition 2.1 and Corollary 2.3 in [9]) Let h be a C2-function on (0, δ1), then

det(D2h(d(x)))=(h(d(x)))N1h′′(d(x))i=1N1κi(xˉ)1d(x)κi(xˉ),xΩδ1.

Lemma 4.3

(Corollary 2.3 in [20]) Let h be a C2-function on (0, δ1) and Ω be a bounded domain with ∂Ω ∈ Cm for m=2, then, for i=1, ···, N,

Si(D2(h(d(x))))=(h(d(x)))iSi(ϵ1,,ϵN1)+(h(d(x)))i1h′′(d(x))Si1(ϵ1,,ϵN1),xΩδ1

where

ϵj=κj(xˉ)1κj(xˉ)d(x),j=1,,N1.

Definition 4.4

(Definition 1.1 in [42]) Let i ∈ {1, ···, N} and Ω be an open bounded subset ofN; a function u ∈ C2(Ω) is (strictly) i-convex if Sl(D2u)(>)⩾0 in Ω for l=1, ···, i. In particular, if i=N, then we say that u is (strictly) convex in Ω.

4.1 Proof of Theorem 1.1

Next, we prove Theorem 1.1 and we first show some preliminaries as follows.

Fix ε>0 and let

w±(d(x))=ξ±ψ(K(d(x)))(1+(C±±ε)(lnd(x))β),xΩδ1,

where ξ ±  and C ±  are in Theorem 1.1. By the Lagrange’s mean value theorem, we obtain that there exist λ ±  ∈ (0, 1) and

(4.1) Θ±(d(x))=ξ±ψ(K(d(x)))(1+λ±(C±±ε)(lnd(x))β)

such that for any xΩδ1

g(w±(d(x)))=g(ξ±ψ(K(d(x))))+ξ±ψ(K(d(x)))g(Θ±(d(x)))(C±±ε)(lnd(x))β.

Since g ∈ NRVZγ, we have by Proposition 2.2 that

(4.2) limd(x)0g(ξ±ψ(K(d(x))))g(Θ±(d(x)))=limd(x)0g(ξ±ψ(K(d(x))))g(Θ±(d(x)))=1.

Moreover, by the definitions of ξ ±  and C ± , we can take a sufficiently small positive constant still denoted by δ1 such that

(4.3) w+(d(x))w(d(x)),xΩδ1.

Proof. Our proof is divided into two steps and the outline of the proof is given as below.

• In Step 1, for fixed ε>0 and xΩδ1 , we first give some functions I1 ± (d(x)), I2 ± (d(x)) and I3 ± (d(x)) (which are corresponding to ε>0), and then by detailed calculation we will show that there exists a sufficiently small positive constant δε<δ1 such that

(4.4) I1+(d(x))+I2+(d(x))+I3+(d(x))>0,xΩδε

and

(4.5) I1(d(x))+I2(d(x))+I3(d(x))<0,xΩδε.

• In Step 2, we will define two functions u_ε,uε in Ωδε and show they are sub-and super-solutions of Eq. (1.1) in Ωδε by (4.4) and (4.5), respectively. In particular, we will show u_ε is strictly convex in Ωδε . Finally, we will establish the second boundary behavior of the unique strictly convex solution to problem (1.1) by using Lemma 4.1.

By the above analysis, we see that how to get (4.4)-(4.5) is the key of the research.

Step 1.We first define functions I1 ± (d(x)), I2 ± (d(x)) and I3 ± (d(x)) as follows.

For fixed ε>0 and xΩδ1 , we define

I1±(d(x))=(lnd(x))β[(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)mˆ±g(ξ±ψ(K(d(x))))ξ±Ng(ψ(K(d(x))))];I2±(d(x))=C±[N(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)A±i=1N1(1d(x)κi(xˉ))1ξ±ψ(K(d(x)))g(ξ±ψ(K(d(x))))g(ξ±ψ(K(d(x))))g(Θ±(d(x)))g(ξ±ψ(K(d(x))))g(ξ±ψ(K(d(x))))ξ±Ng(ψ(K(d(x))))]±ε[N(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)mˆ+i=1N1(1d(x)κi(xˉ))1ξ±ψ(K(d(x)))g(ξ±ψ(K(d(x))))g(ξ±ψ(K(d(x))))g(Θ±(d(x)))g(ξ±ψ(K(d(x))))g(ξ±ψ(K(d(x))))ξ±Ng(ψ(K(d(x))))];I3±(d(x))=(lnd(x))β(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)×mˆ±i=1N1CN1i(1)i+1(m±d(x))i(1d(x)m±)N1+ζ±(d(x))(lnd(x))βi=1N1κi(xˉ)1d(x)κi(xˉ)(B0±ε)g(ξ±ψ(K(d(x))))ξ±Ng(ψ(K(d(x))))(d(x))μ(lnd(x))β(B0±ε)(C±±ε)ξ±ψ(K(d(x)))g(ξ±ψ(K(d(x))))g(ξ±ψ(K(d(x))))g(Θ±(d(x)))g(ξ±ψ(K(d(x))))g(ξ±ψ(K(d(x))))ξ±Ng(ψ(K(d(x))))(d(x))μ,

where

(S2) holds and θ=0kΛ1A±=mˆ±, if A+0 and A0,A±=mˆ, if A+0 and A0,A+=A=mˆ, if A+>0 and A<0,A+=A=mˆ+, if A+<0 and A>0;kΛ2,βA±=mˆ±, if A++B0 and A++B0,A±=mˆ, if A++B0 and A++B0,A+=A=mˆ, if A++B>0 and A++B<0,A+=A=mˆ+, if A++B<0 and A++B>0;(S1) holdskΛ1,A±=mˆ±;kΛ2,β,A+=mˆ, if B0,A=mˆ+, if B<0;(S2) holds and θ>0kΛ2,β,A+=mˆ, if B0,A=mˆ+, if B<0,
(4.6) m+:=min{minxˉΩκi(xˉ):i=1,,N1} and m:=max{maxxˉΩκi(xˉ):i=1,,N1}

and

ζ±(d(x))=(C±±ε)2(N1)(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)(lnd(x))2β+2β(C±±ε)ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))d(x)(lnd(x))β1×(1+(C±±ε)(N1)(lnd(x))β+ν±(d(x)))β(C±±ε)ψ(K(d(x)))ψ(K(d(x)))K(d(x))ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))(K(d(x))d(x)k(d(x)))2(lnd(x))β1×(1(β+1)(lnd(x))1)(1+(C±±ε)(N1)(lnd(x))β+ν±(d(x)))+ν±(d(x))(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)(1+(C±±ε)(lnd(x))β),

where A ±  are given by (1.8), A± and B are given by (1.11) and

ν±(d(x))=R2±(d(x))+i=2N1CN1i(R1±(d(x))+R2±(d(x)))i,

where

(4.7) CN1i=(N1)!i!(N1i)!,R1±(d(x))=(C±±ε)(lnd(x))β,

and

R2±(d(x))=(N1)β(C±±ε)ψ(K(d(x)))ψ(K(d(x)))K(d(x))K(d(x))k(d(x))d(x)(lnd(x))β1.

Next, we prove

(4.8) limd(x)0(I1±(d(x))+I2±(d(x))+I3±(d(x)))=±ε(γ+Nmˆ+mˆ±)ξ±(γ+N).

To prove (4.8), we calculate the limits of I1 ± (d(x)), I2 ± (d(x)) and I3 ± (d(x)) as d(x) → 0.

• First, by Lemma 3.1 (ii), Lemma 3.6 (v), (vii) and (ix), we obtain that

(4.9) limd(x)0I1±(d(x))=ϖ1±+ϖ2±, if (S2) and (g3) hold with θ=0,kΛ1,ϖ1±+ϖ2±+(γ+N)E2,kmˆ±γ1, if (S2) and (g3) hold with θ=0,kΛ2,β,γ+Nγ1E2,kmˆ±, if (S2) and (g3) hold with θ>0,kΛ2,β,γ+Nγ1E2,kmˆ±, if (S1) holds,kΛ2,β,0, if (S1) holds,kΛ1,

where

ϖ1±=((γ+N)DkN+1)β(N+1)(1Dk)σmˆ±(γ1)2andϖ2±=((γ+N)DkN+1)βσlnξ±ξ±γ+N.

• Second, by (4.2), Lemma 3.1 (ii), Lemma 3.6 (iv) and the choices of ξ ± , C ±  in Theorem 1.1, we obtain

(4.10) limd(x)0I2±(d(x))=C±[(γ+N)Dk(N+1)]Nγ1A±+γξ±(γ+N)±ε(γ+Nmˆ+mˆ±)ξ±(γ+N).

• Third, by Lemma 3.1 (ii), Lemma 3.6 (iii)-(iv) and a straightforward calculation, we obtain

(4.11) limd(x)0I3±(d(x))=0.

Combining (4.9) and (4.10)-(4.11), we obtain (4.8) holds. By (b1)-(b2) and (4.8), we see that there exists a sufficiently small constant δε<δ1 such that

(4.12) kN+1(d(x))1+B0ε(d(x))μb(x)kN+1(d(x))1+B0+ε(d(x))μ,xΩδε

and (4.4)-(4.5) hold.

Step 2. Let

u_ε(x)=ξ+ψ(K(d(x)))(1+(C++ε)(lnd(x))β),xΩδε.

Then

g(u_ε(x))=g(ξ+ψ(K(d(x))))+ξ+ψ(K(d(x)))g(Θ+(d(x)))(C++ε)(lnd(x))β,xΩδε,

where Θ+(d(x)) is given by (4.1). By Lemma 4.2, we have for any xΩδε

(4.13) det D 2 u _ ε ( x ) b ( x ) g u _ ε ( x ) ξ + N ψ ( K ( d ( x ) ) ) N 1 ψ ( K ( d ( x ) ) ) k N + 1 ( d ( x ) ) × 1 + C + + ε ( N 1 ) ( ln d ( x ) ) β + v + ( d ( x ) ) × ψ ( K ( x ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) k ( d ( x ) ) k 2 ( d ( x ) ) + 1 1 + C + + ε ( ln d ( x ) ) β + 2 β C + + ε × ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) k ( d ( x ) ) d ( x ) ( ln d ( x ) ) β 1 β C + + ε ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) 2 ( ln d ( x ) ) β 1 × 1 ( β + 1 ) ( ln d ( x ) ) 1 i = 1 N 1 κ i ( x ¯ ) 1 d ( x ) κ i ( x ¯ ) k N + 1 ( d ( x ) ) 1 + B 0 + ε ( d ( x ) ) μ × g ξ + ψ ( K ( d ( x ) ) ) + ξ + ψ ( K ( d ( x ) ) ) g Θ + ( d ( x ) ) C + + ε ( ln d ( x ) ) β ξ + N ψ ( K ( d ( x ) ) ) N 1 ψ ( K ( d ( x ) ) ) k N + 1 ( d ( x ) ) ( ln d ( x ) ) β ( ln d ( x ) ) β l × ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) k ( d ( x ) ) k 2 ( d ( x ) ) + 1 i = 1 N 1 m ^ + 1 d ( x ) m + N 1 m ^ + + m ^ + g ( ξ + ψ ( K ( d ( x ) ) ) ) ξ + N g ( ψ ( K ( d ( x ) ) ) ) + C + + ε N ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) k ( d ( x ) ) k 2 ( d ( x ) ) + 1 × i = 1 N 1 κ i ( x ¯ ) 1 d ( x ) κ i ( x ¯ ) ξ + ψ ( K ( d ( x ) ) ) g ξ + ψ ( K ( d ( x ) ) ) g ξ + ψ ( K ( d ( x ) ) ) × g Θ + ( d ( x ) ) g ξ + ψ ( K ( d ( x ) ) ) g ξ + ψ ( K ( d ( x ) ) ) ξ + N g ( ψ ( K ( d ( x ) ) ) ) + ζ + ( d ( x ) ) ( ln d ( x ) ) β i = 1 N 1 κ i ( x ¯ ) 1 d ( x ) κ i ( x ¯ ) B 0 + ε g ξ + ψ ( K ( d ( x ) ) ) ξ + N g ( ψ ( K ( d ( x ) ) ) ) ( d ( x ) ) μ ( ln d ( x ) ) β B 0 + ε C + + ε × ξ + ψ ( K ( d ( x ) ) ) g ξ + ψ ( K ( d ( x ) ) ) g ( ξ + ψ ( K ( d ( x ) ) ) ) g Θ + ( d ( x ) ) g ξ + ψ ( K ( d ( x ) ) ) g ξ + ψ ( K ( d ( x ) ) ) ξ + N g ( ψ ( K ( d ( x ) ) ) ) ( d ( x ) ) μ ξ + N ψ ( K ( d ( x ) ) ) N 1 ψ ( K ( d ( x ) ) ) k N + 1 ( d ( x ) ) ( ln d ( x ) ) β i = 1 3 I i + ( d ( x ) ) > 0 ,

i.e., u_ε is a subsolution of Eq. (1.1) in Ωδε . Moreover, it follows by Lemma 4.3 that for i = 1, ..., N

SiD2u_ε(x)=ξ+iψ(K(d(x)))i1+C++ε(lnd(x))β+βC++εψ(K(d(x)))ψ(K(d(x)))K(d(x))×K(d(x))k(d(x))d(x)(lnd(x))β1iki(d(x))Siϵ1,,ϵN1ξ+iψ(K(d(x)))i1ψ(K(d(x)))×ki+1(d(x))1+C++ε(lnd(x))β+βC++εψ(K(d(x)))ψ(K(d(x)))K(d(x))K(d(x))k(d(x))d(x)×(lnd(x))β1i1ψ(K(d(x)))ψ(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1×1+C++ε(lnd(x))β+2βC++εψ(K(d(x)))ψ(K(d(x)))K(d(x))K(d(x))k(d(x))d(x)(lnd(x))β1βC++εψ(K(d(x)))ψ(K(d(x)))K(d(x))ψ(K(d(x)))ψ(K(d(x)))K(d(x))K(d(x))d(x)k(d(x))2(lnd(x))β1×1(β+1)(lnd(x))1Si1ϵ1,,ϵN1

This implies that we can adjust the above positive constant δε such that for any xΩδε

S i ( D 2 u _ ε ( x ) ) > 0 for i = 1 , , N .

We obtain by Definition 4.4 that D2u_ε is positive definite in Ωδε.

Let

uε(x)=ξψ(K(d(x)))(1+(Cε)(lnd(x))β),xΩδε.

By the same calculation as (4.13), we obtain

detD2uˉε(x)b(x)guˉε(x)ξNψ(K(d(x)))N1ψ(K(d(x)))kN+1(d(x))(lnd(x))βi=13Ii(d(x))<0,

i.e. uˉε is a supersolution of Eq. (1.1) in Ωδε.

Let u be the unique strictly convex solution to problem (1.1). Then, there exists a large constant M > 0 such that

u_ε(x)Md(x)u(x)uε(x)+Md(x),x{xΩ:d(x)=δε}.

We assert that

(4.14) u(x)u_ε(x)Md(x),xΩδε

and

(4.15) u(x)uε(x)+Md(x),xΩδε.

Since D2u_ε is positive definite in Ωδε and D2(−Md (x)) is positive semidefinite in Ωδε , we have by the Minkowski inequality that D2(u_ε(x)Md(x)) is positive definite in Ωδε and

det(D2(u_ε(x)Md(x)))det(D2u_ε(x))b(x)g(u_ε(x))b(x)g(u_ε(x)+Md(x)),xΩδε.

Similarly, we have D2(u(x)−Md (x)) is positive definite in Ωδε and

det(D2u(x)Md(x))det(D2u(x))=b(x)g(u(x))b(x)g(u(x)+Md(x)).

By Lemma 4.1, we see that (4.14)-(4.15) hold. Hence, for any xΩδε

C++ε+Md(x)(lnd(x))βξ+ψ(K(d(x)))u(x)ξ+ψ(K(d(x)))1(lnd(x))β;CεMd(x)(lnd(x))βξψ(K(d(x)))u(x)ξψ(K(d(x)))1(lnd(x))β.

Since (γ+N)Dk−(N + 1)>0, we conclude from Lemma 3.1 (ii), Lemma 3.6 (iii), Proposition 2.7 and Proposition 2.5 (ii) that

C++εlim supd(x)0u(x)ξ+ψ(K(d(x)))1(lnd(x))β;Cεlim infd(x)0u(x)ξψ(K(d(x)))1(lnd(x))β.

Letting ε → 0, the proof is finished. □

4.2 Proof of Theorem 1.2

Now, we prove Theorem 1.2. For fixed ε>0, we define

w±(d(x))=ξ±ψ(K(d(x)))(1+(C˜±±ε)(d(x))μ),xΩδ1,

where ξ ±  and C˜± are given in Theorem 1.2. By the Lagrange’s mean value theorem, we see that there exist λ ±  ∈ (0, 1) and

(4.16) Θ±(d(x))=ξ±ψ(K(d(x)))(1+λ±(C˜±±ε)(d(x))μ)

such that for any xΩδ1

g(w±(d(x)))=g(ξ±ψ(K(d(x))))+ξ±ψ(K(d(x)))g(Θ±(d(x)))(C±±ε)(d(x))μ.

By Proposition 2.2, we see that (4.2) still holds. Moreover, we can adjust δ1 > 0 such that (4.3) holds here.

Proof. Similar to the proof of Theorem 1.1, the proof is divided into the following two steps.

Step 1. We first define functions I1 ± (d(x)), I2 ± (d(x)) and I3 ± (d(x)) as follows.

For fixed ε > 0 and xΩδ1 , we define

I 1 ± ( d ( x ) ) = 1 ( d ( x ) ) μ ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) k ( d ( x ) ) k 2 ( d ( x ) ) + 1 m ^ ± g ξ ± ψ ( K ( d ( x ) ) ) ξ ± N g ( ψ ( K ( d ( x ) ) ) ) ; I 2 ± ( d ( x ) ) = C ~ ± ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) k ( d ( x ) ) k 2 ( d ( x ) ) + 1 × N + μ ( N 1 ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) + 2 μ ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) + μ × ( μ 1 ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) 2 B ± i = 1 N 1 1 d ( x ) κ i ( x ¯ ) 1 ξ ± ψ ( K ( d ( x ) ) ) g ξ ± ψ ( K ( d ( x ) ) ) g ξ ± ψ ( K ( d ( x ) ) ) g Θ ± ( d ( x ) ) g ξ ± ψ ( K ( d ( x ) ) ) g ξ ± ψ ( K ( d ( x ) ) ) ξ ± N g ( ψ ( K ( d ( x ) ) ) ) ± ε ψ ( x ) ( x ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) k ( d ( x ) ) k 2 ( d ( x ) ) + 1 × N + μ ( N 1 ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) + 2 μ ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) + μ × ( μ 1 ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) 2 × m ^ + i = 1 N 1 1 d ( x ) κ i ( x ¯ ) 1 ξ ± ψ ( K ( d ( x ) ) ) g ξ ± ψ ( K ( d ( x ) ) ) g ξ ± ψ ( K ( d ( x ) ) ) g Θ ± ( d ( x ) ) g ξ ± ψ ( K ( d ( x ) ) ) × g ξ ± ψ ( K ( d ( x ) ) ) ξ ± N g ( ψ ( K ( d ( x ) ) ) ) B 0 ± ε g ξ ± ψ ( K ( d ( x ) ) ) ξ ± N g ( ψ ( K ( d ( x ) ) ) ) ; I 3 ± ( d ( x ) ) = ( d ( x ) ) μ ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) k ( d ( x ) ) k 2 ( d ( x ) ) + 1 × m ^ ± i = 1 N 1 C N 1 i ( 1 ) i + 1 m ± d ( x ) i 1 d ( x ) m ± N 1 B 0 ± ε C ~ ± ± ε ξ ± ψ ( K ( d ( x ) ) ) g ξ ± ψ ( K ( d ( x ) ) ) g ξ ± ψ ( K ( d ( x ) ) ) × g Θ ± ( d ( x ) ) g ξ ± ψ ( K ( d ( x ) ) ) g ξ ± ψ ( K ( d ( x ) ) ) ξ ± N g ( ψ ( K ( d ( x ) ) ) ) ( d ( x ) ) μ + ζ ~ ± ( d ( x ) ) ( d ( x ) ) μ i = 1 N 1 κ i ( x ¯ ) 1 d ( x ) k ( x ¯ ) ,

where

B±=mˆ±,if B00,B±=mˆ, if B0<0,

m ±  are defined by (4.6) and

ζ ~ ± ( d ( x ) ) = C ~ ± ± ε 2 ( N 1 ) 1 + ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) k ( d ( x ) ) k 2 ( d ( x ) ) × 1 + μ ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) ( d ( x ) ) 2 μ + 2 μ C ~ ± ± ε 2 ( N 1 ) 1 + μ ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) × K ( d ( x ) ) k ( d ( x ) ) k 2 ( d ( x ) ) ( d ( x ) ) 2 μ + μ ( μ 1 ) C ~ ± ± ε 2 ( N 1 ) 1 + μ ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) × K ( d ( x ) ) d ( x ) k ( d ( x ) ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) 2 ( d ( x ) ) 2 μ + v ~ ± ( d ( x ) ) × 1 + ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) k ( d ( x ) ) k 2 ( d ( x ) ) 1 + C ~ ± ± ε ( d ( x ) ) μ + 2 μ C ~ ± ± ε ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) ( d ( x ) ) μ + μ ( μ 1 ) C ~ ± ± ε ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) ψ ( K ( d ( x ) ) ) ψ ( K ( d ( x ) ) ) K ( d ( x ) ) K ( d ( x ) ) d ( x ) k ( d ( x ) ) 2 ( d ( x ) ) μ

with

ν˜±(d(x))=i=2N1CN1i(R˜±(d(x)))i,

where CN1i is given in (4.7) and

R˜±(d(x))=(C˜±±ε)(1+μψ(K(d(x)))ψ(K(d(x)))K(d(x))K(d(x))d(x)k(d(x)))(d(x))μ.

Next, we prove

(4.17) limd(x)0(I1±(d(x))+I2±(d(x))+I3±(d(x)))=±εϱ±mˆ±,

where

(4.18) ϱ±=(1μ)(γ+N)Dk(N+1)γ1N+μ(N1)γ+NN+1Dk+μγ+Nγ1DkN+μ(N1)γ+NN+1Dk2+μ(1μ)(γ+N)2(γ1)(N+1)Dk2mˆ+mˆ±+(γ+N)Dk(N+1).

To prove (4.17), we calculate the limits of I1 ± (d(x)), I2 ± (d(x)) and I3 ± (d(x)) as d(x)0.

• First, we investigate the limits of I1±(d(x)) as d(x)0. As the preliminaries, we prove some limits as below.

Case 1. When Dk ∈ (0, 1), by a direct calculation, we have

N+1(1μ)DkN>N+1(1μ)N>(1+μ)N+1N+1μ.

So, by (1.15), Lemma 3.1 (ii) and Lemma 3.6 (viii) and (x) with ρ=μ ∈ (0, 1), we obtain

(4.19) limd(x)0+(d(x))μψ(K(d(x)))ψ(K(d(x)))K(d(x))+γ+Nγ1K(d(x))k(d(x))k2(d(x))mˆ±=limd(x)0+K(d(x))d(x)μ(K(d(x)))μψ(K(d(x)))ψ(K(d(x)))K(d(x))+γ+Nγ1K(d(x))k(d(x))k2(d(x))mˆ±=0, if S2 and g3 hold with θ(N+1)μN>γ>N+1(1μ)DkN,0, if s1 holds with γ>N+1(1μ)DkN in g2

and

(4.20) limd(x)0(d(x))μ(ξ±(γ+N)g(ξ±ψ(K(d(x))))ξ±Ng(ψ(K(d(x)))))=limd(x)0(K(d(x))d(x))μ(K(d(x)))μ(ξ±(γ+N)g(ξ±ψ(K(d(x))))ξ±Ng(ψ(K(d(x)))))=0, if (S2) and (g3) hold with θ(N+1)μN>γ,0, if (S1) holds in (g2).

Case 2. When Dk ∈ [1, ∞), by (1.15), Lemma 3.1 (ii) and Lemma 3.6 (viii) and (x) with ρ=1, we obtain

(4.21) limd(x)0(d(x))μ(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))+γ+Nγ1)K(d(x))k(d(x))k2(d(x))mˆ±=limd(x)0K(d(x))(d(x))μ(K(d(x)))1(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))+γ+Nγ1)K(d(x))k(d(x))k2(d(x))mˆ±=0, if (S2) and (g3) hold with θ(N+1)N>γ>2N+1N,0, if (S1) holds with γ>2N+1N in (g2)

and

(4.22) limd(x)0(d(x))μ(ξ±(γ+N)g(ξ±ψ(K(d(x))))ξ±Ng(ψ(K(d(x)))))=limd(x)0K(d(x))(d(x))μ(K(d(x)))1(ξ±(γ+N)g(ξ±ψ(K(d(x))))ξ±Ng(ψ(K(d(x)))))=0, if (S2) and (g3) hold with θ(N+1)N>γ,0, if (S1) holds in (g2).

On the other hand, a simple calculation shows that

(4.23) limd(x)0γ+Nγ1(d(x))μ(K(d(x))k(d(x))k2(d(x))(1Dk))mˆ±=limd(x)0γ+Nγ1(d(x))1μ(d(x))1(K(d(x))k(d(x))k2(d(x))(1Dk))mˆ±=0

We obtain by combining (4.19)-(4.20) (or (4.21)-(4.22)) and (4.23) that

(4.24) limd(x)0I1±(d(x))=0.

• Second, by (4.2), Lemma 3.1 (ii), Lemma 3.6 (iii)-(iv) and the choices of ξ ± , C˜± in Theorem 1.2, we obtain

(4.25) limd(x)0I2±(d(x))=C˜±[((1μ)(γ+N)Dk(N+1)γ1(N+μ(N1)γ+NN+1Dk)+μγ+Nγ1Dk(N+μ(N1)γ+NN+1Dk2)+μ(1μ)(γ+N)2(γ1)(N+1)Dk2)B±+γ((γ+N)Dk(N+1))mˆ±γ1]B0((γ+N)Dk(N+1))mˆ±γ1±εϱ±mˆ±=±εϱ±mˆ±, where ϱ± are given by (4.18).

• Third, we conclude by Lemma 3.1 (ii) Lemma 3.6 (iii)-(iv) and a straightforward calculation that

(4.26) limd(x)0I3±(d(x))=0.

Combining (4.24) and (4.25)-(4.26), we obtain (4.17) holds. Moreover, it follows by (1.15) that thatϱ ± >(γ+N)Dk−(N + 1)>0. By (b1)-(b2) and (4.17), we see that there exists a sufficiently small constant δε > 0 such that (4.12) and (4.4)-(4.5) hold here.

Step 2. Let

u_ε(x)=ξ+ψ(K(d(x)))(1+(C˜++ε)(d(x))μ),xΩδε.

Then

g(u_ε(x))=g(ξ+ψ(K(d(x))))+ξ+ψ(K(d(x)))g(Θ+(d(x)))(C˜++ε)(d(x))μ,xΩδε,

where Θ+(d(x)) is given by (4.16). By Lemma 4.2, we have for any x∈Ωδε

(4.27) det(D2u_ε(x))b(x)g(u_ε(x))ξ+N(ψ(K(d(x))))N1ψ′′(K(d(x)))kN+1(d(x))×(1+(C˜++ε)(N1)(d(x))μ+μ(C˜++ε)(N1)ψ(K(d(x)))ψ(K(d(x)))K(d(x))K(d(x))d(x)k(d(x))(d(x))μ+ν˜+(d(x)))[(1+ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x)))(1+(C˜++ε)(d(x))μ)+2μ(C++ε)ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))d(x)k(d(x))(d(x))μ+μ(μ1)(C˜++ε)ψ(K(d(x)))ψ(K(d(x)))K(d(x))ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))(K(d(x))d(x)k(d(x)))2(d(x))μ]×i=1N1κi(xˉ)1d(x)κi(xˉ)kN+1(d(x))(1+(B0+ε)(d(x))μ)[g(ξ+ψ(K(d(x))))+ξ+ψ(K(d(x)))g(Θ+(d(x)))(C˜++ε)(d(x))μ]=ξ+N(ψ(K(d(x))))N1ψ′′(K(d(x)))kN+1(d(x))(d(x))μ×{(d(x))μ(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)i=1N1κi(xˉ)1d(x)κi(xˉ)+(C˜++ε)[(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)(N+μ(N1)ψ(K(d(x)))ψ(K(d(x)))K(d(x))×K(d(x))d(x)k(d(x)))+2μψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))d(x)k(d(x))+μ(μ1)ψ(K(d(x)))ψ(K(d(x)))K(d(x))×ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))(K(d(x))d(x)k(d(x)))2]i=1N1κi(xˉ)1d(x)κi(xˉ)+ζ˜+(d(x))(d(x))μi=1N1κi(xˉ)1d(x)κi(xˉ)}kN+1(d(x))g(ξ+ψ(K(d(x))))(B0+ε)kN+1(d(x))g(ξ+ψ(K(d(x))))(d(x))μ(C˜++ε)kN+1(d(x))ξ+ψ(K(d(x)))g(Θ+(d(x)))(d(x))μ(B0+ε)(C˜++ε)kN+1(d(x))×ξ+ψ(K(d(x)))g(Θ+(d(x)))(d(x))2μ=ξ+N(ψ(K(d(x))))N1ψ′′(K(d(x)))kN+1(d(x))(d(x))μ×{(d(x))μ[(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)mˆ+g(ξ+ψ(K(d(x))))ξ+Ng(ψ(K(d(x))))]+(C˜++ε)[((ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)(N+μ(N1)×ψ(K(d(x)))ψ(K(d(x)))K(d(x))K(d(x))d(x)k(d(x)))+2μψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))d(x)k(d(x))+μ(μ1)ψ(K(d(x)))ψ(K(d(x)))K(d(x))ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))(K(d(x))d(x)k(d(x)))2)i=1N1κi(xˉ)1d(x)κi(xˉ)ξ+ψ(K(d(x)))g(ξ+ψ(K(d(x))))g(ξ+ψ(K(d(x))))g(Θ+(d(x)))g(ξ+ψ(K(d(x))))g(ξ+ψ(K(d(x))))ξ+Ng(ψ(K(d(x))))](B0+ε)g(ξ+ψ(K(d(x))))ξ+Ng(ψ(K(d(x))))(B0+ε)(C˜++ε)ξ+ψ(K(d(x)))g(ξ+ψ(K(d(x))))g(ξ+ψ(K(d(x))))×g(Θ+(d(x)))g(ξ+ψ(K(d(x))))g(ξ+ψ(K(d(x))))ξ+Ng(ψ(K(d(x))))(d(x))μ+(d(x))μ(ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x))+1)mˆ+i=1N1CN1i(1)i+1(m+d(x))i(1d(x)m+)N1+ζ˜+(d(x))(d(x))μi=1N1κi(xˉ)1d(x)κi(xˉ)}ξ+N(ψ(K(d(x))))N1ψ′′(K(d(x)))kN+1(d(x))(d(x))μi=13Ii+(d(x))>0,

i.e., uε is a subsolution of Eq. (1.1) in Ωδε. Moreover, it follows by Lemma 4.3 that for i=1, ... ,N

Si(D2u_ε(x))=ξ+i(ψ(K(d(x))))iki(d(x))(1+(C˜++ε)(d(x))μ+μ(C˜++ε)K(d(x))d(x)k(d(x))×ψ(K(d(x)))ψ(K(d(x)))K(d(x))(d(x))μ)iSi(ϵ1,,ϵN1)ξ+i(ψ(K(d(x))))i1ψ′′(K(d(x)))ki+1(d(x))(1+(C˜++ε)(d(x))μ+μ(C˜++ε)×ψ(K(d(x)))ψ(K(d(x)))K(d(x))K(d(x))d(x)k(d(x))(d(x))μ)i1[(1+ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))k(d(x))k2(d(x)))×(1+(C˜++ε)(d(x))μ)+2μ(C++ε)ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))K(d(x))d(x)k(d(x))(d(x))μ+μ(μ1)(C˜++ε)ψ(K(d(x)))ψ(K(d(x)))K(d(x))ψ(K(d(x)))ψ′′(K(d(x)))K(d(x))(K(d(x))d(x)k(d(x)))2(d(x))μ]×Si1(ϵ1,,ϵN1).

This implies that we can adjust the above positive constant δε such that for any xΩδε

S i ( D 2 u _ ε ( x ) ) > 0 for i = 1 , , N .

We obtain by Lemma 4.4 that D2uε is positive definite in Ωδε.

Let

uε(x)=ξψ(K(d(x)))(1+(C˜ε)(d(x))μ),xΩδε

By the same calculation as (4.27), we obtain

det(D2uε(x))b(x)g(uε(x))ξN(ψ(K(d(x))))N1ψ′′(K(d(x)))kN+1(d(x))(d(x))μi=13Ii(d(x))<0,

i.e. uε is a supersolution of Eq. (1.1) in Ωδε.

Let u be the unique strictly convex solution to problem (1.1). Through the same argument as Theorem 1.1, we see that there exists a large constant M > 0 such that

u_ε(x)Md(x)u(x)uε(x)+Md(x),xΩδε.

Hence, for any xΩδε

C˜++ε+M(d(x))1μξ+ψ(K(d(x)))(u(x)ξ+ψ(K(d(x)))1)(d(x))μ;C˜εM(d(x))1μξψ(K(d(x)))(u(x)ξψ(K(d(x)))1)(d(x))μ.

Since (1-μ)(γ+N)Dk-(N+1)>0, we conclude from Lemma 3.1 (ii) , Lemma 3.6 (iii), Proposition 2.7 and Proposition 2.5 (ii) that

C˜++εlim supd(x)0(u(x)ξ+ψ(K(d(x)))1)(d(x))μ;C˜εlim infd(x)0(u(x)ξψ(K(d(x)))1)(d(x))μ.

Letting ε → 0, the proof is finished. □

4.3 Proof of Theorem 1.3

Now, we prove Theorem 1.3. As before, for fixed ε > 0, we define

w ± ( d ( x ) ) = η ± ψ ( ( 0 d ( x ) L ~ ( s ) s d s ) N N + 1 ) ( 1 + ( C ± ± ε ) M ( d ( x ) ) ) , x Ω δ 1 ,

where η ± , C ± * and M are given in Theorem 1.3. By the Lagrange’s mean value theorem, it is clear that there exist λ ± ∈(0, 1) and

(4.28) Θ ± ( d ( x ) ) = η ± ψ ( ( 0 d ( x ) L ~ ( s ) s d s ) N N + 1 ) ( 1 + λ ± ( C ± ± ε ) M ( d ( x ) ) )

such that for xΩδ1

g ( w ± ( d ( x ) ) ) = g ( η ± ψ ( ( 0 d ( x ) L ~ ( s ) s d s ) N N + 1 ) ) + η ± ψ ( ( 0 d ( x ) L ~ ( s ) s d s ) N N + 1 ) g ( Θ ± ( d ( x ) ) ) ( C ± ± ε ) M ( d ( x ) ) .

We obtain by Proposition 2.2 that (4.2) still holds. Moreover, we can adjust δ1 such that (4.3) holds here.

Proof. The proof is still divided into the following two steps.

Step 1. As before, for fixed ε> 0 and ∀ x∈Ωδ1, we define

(4.29) r ( d ( x ) ) = ( 0 d ( x ) L ~ ( s ) s d s ) N N + 1

and

I 1 ± ( d ( x ) ) = ( M ( d ( x ) ) ) 1 { [ ( N N + 1 ) N ( N N + 1 1 N + 1 ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + ( N N + 1 ) N ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) ] m ^ ± g ( ξ ± ψ ( r ( d ( x ) ) ) ) ξ ± N g ( ψ ( r ( d ( x ) ) ) ) } ; I 2 ± ( d ( x ) ) = C ± [ ( N N + 1 ) N N ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) C ± i = 1 N 1 ( 1 d ( x ) κ i ( x ¯ ) ) 1 η ± ψ ( r ( d ( x ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) g ( Θ ± ( d ( x ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) η ± N g ( ψ ( r ( d ( x ) ) ) ) ] ± ε [ ( N N + 1 ) N N ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) m ^ + i = 1 N 1 ( 1 d ( x ) κ i ( x ¯ ) ) 1 η ± ψ ( r ( d ( x ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) g ( Θ ± ( d ( x ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) η ± N g ( ψ ( r ( d ( x ) ) ) ) ] ; I 3 ± ( d ( x ) ) = ( B 0 ± ε ) g ( η ± ψ ( r ( d ( x ) ) ) ) η ± N g ( ψ ( r ( d ( x ) ) ) ) ( d ( x ) ) μ ( M ( d ( x ) ) ) 1 + ( M ( d ( x ) ) ) 1 [ ( N N + 1 ) N ( N N + 1 1 N + 1 ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + ( N N + 1 ) N ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) ] m ^ ± i = 1 N 1 C N 1 i ( 1 ) i + 1 ( m ± d ( x ) ) i ( 1 d ( x ) m ± ) N 1 ( B 0 ± ε ) ( C ± ± ε ) η ± ψ ( r ( d ( x ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) g ( Θ ± ( d ( x ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) g ( η ± ψ ( r ( d ( x ) ) ) ) η ± N g ( ψ ( r ( d ( x ) ) ) ) ( d ( x ) ) μ + ( N N + 1 ) N ζ ± ( d ( x ) ) ( M ( d ( x ) ) ) 1 i = 1 N 1 κ i ( x ¯ ) 1 d ( x ) κ i ( x ¯ ) ,

where

if(S2) holds and θ=0,C±=mˆ±, if X+0 and X0,C=mˆ, if X+0 and X0,C+=C=mˆ+, if X+>0 and X<0,C+=C=mˆ, if X+<0 and X>0; if (S1)holds,C±=mˆ±,

m ±  are defined by (4.6) and

ζ ± = ( C ± ± ε ) ( N N + 1 1 N + 1 ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ) M ( d ( x ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s × ( N + ( C ± ± ε ) ( N 1 ) M ( d ( x ) ) ) + ( C ± ± ε ) 2 ( N 1 ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ( d ( x ) ) d ( x ) L ( d ( x ) ) 1 ) × ( M ( d ( x ) ) ) 2 + [ β N N + 1 ( C ± ± ε ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ψ ( r ( d ( x ) ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s × ( M ( d ( x ) ) ) β + 1 β + β N N + 1 ( C ± ± ε ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s ( M ( d ( x ) ) ) β + 1 β + β ( β + 1 ) N ( C ± ± ε ) N + 1 × ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s ( M ( d ( x ) ) ) β + 2 β + β ( C ± ± ε ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + L ~ ( d ( x ) ) d ( x ) L ( d ( x ) ) 1 ) ( M ( d ( x ) ) ) β + 1 β ] × ( 1 + ( C ± ± ε ) ( N 1 ) M ( d ( x ) ) + ν ± ( d ( x ) ) ) + ν ± ( d ( x ) ) [ ( N N + 1 1 N + 1 ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ) ( 1 + ( C ± ± ε ) M ( d ( x ) ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) ( 1 + ( C ± ± ε ) M ( d ( x ) ) ) ]

with

ν±(d(x))=R2±(d(x))+i=2N1CN1i(R1±(d(x))+R2±(d(x)))i,

where CiN-1 is given in (4.7) and

R1±(d(x))=(C±±ε)M(d(x))andR2±(d(x))=β(C±±ε)(M(d(x)))β+1β.

Next, we prove

(4.30) limd(x)0(I1±(d(x))+I2±(d(x))+I3±(d(x)))=±ε(γ+Nmˆ+mˆ±)η±(γ+N).

To prove (4.30), we calculate the limits of I1 ± (d(x)), I2 ± (d(x)) and I3 ± (d(x)) as d(x)→0.

∙ First, by Lemma 3.2 (ii)−(iii), Lemma 3.6 (iv), (vi)−(vii) and (ix), we obtain

(4.31) limd(x)0I1±(d(x))=NM+1N(N+1)σmˆ±(γ1)2+σlnη±η±γN, if S2 and g3g4 hold with θ=0,0, if S1 holds ing2.

∙ Second, by (4.2), Lemma 3.6 (iv) and the choices of η ±  and C* ±  in Theorem 1.3, we obtain

(4.32) limd(x)0I2±(d(x))=C±[(NN+1)NN(γ+N)γ1C±+γη±(γ+N)]±ε(γ+Nmˆ+mˆ±)η±(γ+N).

∙ ,Third, we conclude by Lemma 3.5, Lemma 3.6 (iii)−(iv) and a straightforward calculation that

(4.33) limd(x)0I3±(d(x))=0.

Combining (4.31)-(4.33), we obtain (4.30) holds. By (b1), (b3) and (4.30), we see that there exists a sufficiently small positive constant δεδ1 such that for any x∈Ωδε

(d(x))(N+1)L˜N(d(x))(1+(B0ε)(d(x))μ)b(x)(d(x))(N+1)L˜N(d(x))(1+(B0+ε)(d(x))μ)

and (4.4)-(4.5) hold here.

Step 2. Let

u_ε(x)=η+ψ(r(d(x)))(1+(C++ε)M(d(x))),xΩδε,

where r(d(x)) is given by (4.29). Then

g(u_ε(x))=g(η+ψ(r(d(x))))+η+ψ(r(d(x)))g(Θ+(d(x)))(C++ε)M(d(x)),xΩδε,

where Θ+(d(x)) is given by (4.28). By Lemma 4.2, we have for any x∈Ωδε

(4.34) det ( D 2 u _ ε ( x ) ) b ( x ) g ( u _ ε ( x ) ) η + N ( N N + 1 ) N ( ψ ( r ( d ( x ) ) ) ) N 1 ψ ( r ( d ( x ) ) ) ( d ( x ) ) ( N + 1 ) × L ~ N ( d ( x ) ) ( 1 + ( C + + ε ) ( N 1 ) M ( d ( x ) ) + ν + ( d ( x ) ) ) [ ( N N + 1 1 N + 1 ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ) × ( 1 + ( C + + ε ) M ( d ( x ) ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) × ( 1 + ( C + + ε ) M ( d ( x ) ) ) + β N N + 1 ( C + + ε ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ψ ( r ( d ( x ) ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s × ( M ( d ( x ) ) ) β + 1 β + β N N + 1 ( C + + ε ) ( M ( d ( x ) ) ) β + 1 β L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + β ( β + 1 ) N ( C + + ε ) N + 1 × ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( M ( d ( x ) ) ) β + 2 β L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + β ( C + + ε ) × ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( M ( d ( x ) ) ) β + 1 β ( L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) ] × i = 1 N 1 κ i ( x ¯ ) 1 d ( x ) κ i ( x ¯ ) ( d ( x ) ) ( N + 1 ) L ~ N ( d ( x ) ) ( 1 + ( B 0 + ε ) ( d ( x ) ) μ ) × [ g ( η + ψ ( r ( d ( x ) ) ) ) + η + ( C + + ε ) g ( Θ + ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) M ( d ( x ) ) ] = η + N ( ψ ( r ( d ( x ) ) ) ) N 1 ψ ( r ( d ( x ) ) ) ( d ( x ) ) ( N + 1 ) L ~ N ( d ( x ) ) M ( d ( x ) ) { ( M ( d ( x ) ) ) 1 × [ ( ( N N + 1 ) N ( N N + 1 1 N + 1 ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + ( N N + 1 ) N ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) ) m ^ + g ( η + ψ ( r ( d ( x ) ) ) ) η + N g ( ψ ( r ( d ( x ) ) ) ) ] + ( C + + ε ) [ ( N N + 1 ) N N ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) i = 1 N 1 κ i ( x ¯ ) 1 d ( x ) κ i ( x ¯ ) η + ψ ( r ( d ( x ) ) ) g ( η + ψ ( r ( d ( x ) ) ) ) g ( η + ψ ( r ( d ( x ) ) ) ) g ( Θ + ( d ( x ) ) ) g ( η + ψ ( r ( d ( x ) ) ) ) g ( η + ψ ( r ( d ( x ) ) ) ) η + N g ( ψ ( r ( d ( x ) ) ) ) ] ( B 0 + ε ) g ( η + ψ ( r ( d ( x ) ) ) ) η + N g ( ψ ( r ( d ( x ) ) ) ) ( d ( x ) ) μ ( M ( d ( x ) ) ) 1 + ( M ( d ( x ) ) ) 1 [ ( N N + 1 ) N ( N N + 1 1 N + 1 × ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + ( N N + 1 ) N ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) ] × m ^ + i = 1 N 1 C N 1 i ( 1 ) i + 1 ( m + d ( x ) ) i ( 1 d ( x ) m + ) N 1 ( B 0 + ε ) ( C + + ε ) η + ψ ( r ( d ( x ) ) ) g ( η + ψ ( r ( d ( x ) ) ) ) g ( η + ψ ( r ( d ( x ) ) ) ) g ( Θ + ( d ( x ) ) ) g ( η + ψ ( r ( d ( x ) ) ) ) g ( η + ψ ( r ( d ( x ) ) ) ) η + N g ( ψ ( r ( d ( x ) ) ) ) ( d ( x ) ) μ + ( N N + 1 ) N ζ + ( d ( x ) ) ( M ( d ( x ) ) ) 1 i = 1 N 1 κ i ( x ¯ ) 1 d ( x ) κ i ( x ¯ ) } η + N ( ψ ( r ( d ( x ) ) ) ) N 1 ψ ( r ( d ( x ) ) ) ( d ( x ) ) ( N + 1 ) L ~ N ( d ( x ) ) M ( d ( x ) ) i = 1 3 I i + ( d ( x ) ) > 0 ,

i.e. uε is a subsolution of Eq. (1.1) in Ωδε. Moreover, it follows by Lemma 4.3 that for i=1, ... ,N

S i ( D 2 u _ ε ( x ) ) = η + i ( N N + 1 ) i ( ψ ( r ( d ( x ) ) ) ) i ( d ( x ) ) i L ~ i ( d ( x ) ) ( 0 d ( x ) L ~ ( s ) s d s ) i N + 1 × ( 1 + ( C + + ε ) M ( d ( x ) ) + β ( C + + ε ) ( M ( d ( x ) ) ) β + 1 β ) i S i ( ϵ 1 , , ϵ N 1 ) η + i ( N N + 1 ) i ( ψ ( r ( d ( x ) ) ) ) i 1 ψ ( r ( d ( x ) ) ) ( d ( x ) ) ( i + 1 ) L ~ i ( d ( x ) ) ( 0 d ( x ) L ~ ( s ) s d s ) N i N + 1 × ( 1 + ( C + + ε ) M ( d ( x ) ) + β ( C + + ε ) ( M ( d ( x ) ) ) β + 1 β ) i 1 [ ( N N + 1 1 N + 1 ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ) × ( 1 + ( C + + ε ) M ( d ( x ) ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) × ( 1 + ( C + + ε ) M ( d ( x ) ) ) + β N N + 1 ( C + + ε ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ψ ( r ( d ( x ) ) ) L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s × ( M ( d ( x ) ) ) β + 1 β + β N N + 1 ( C + + ε ) ( M ( d ( x ) ) ) β + 1 β L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + β ( β + 1 ) N ( C + + ε ) N + 1 × ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( M ( d ( x ) ) ) β + 2 β L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + β ( C + + ε ) × ψ ( r ( d ( x ) ) ) ψ ( r ( d ( x ) ) ) r ( d ( x ) ) ( M ( d ( x ) ) ) β + 1 β ( L ~ ( d ( x ) ) 0 d ( x ) L ~ ( s ) s d s + L ~ ( d ( x ) ) d ( x ) L ~ ( d ( x ) ) 1 ) ] S i 1 ( ϵ 1 , , ϵ N 1 ) .

This implies that we can adjust the above positive constant δε such that for any xΩδε

S i ( D 2 u _ ε ( x ) ) > 0 for i = 1 , , N .

We obtain by Lemma 4.4 that D2uε is positive definite in Ωδε.

Let

uε(x)=ηψ(r(d(x)))(1+(Cε)M(d(x))),xΩδε

By the same calculation as (4.34), we obtain

det ( D 2 u ¯ ε ( x ) ) b ( x ) g ( u ¯ ε ( x ) ) η N ( ψ ( r ( d ( x ) ) ) ) N 1 ψ ( r ( d ( x ) ) ) ( d ( x ) ) ( N + 1 ) L ~ N ( d ( x ) ) M ( d ( x ) ) i = 1 3 I i ( d ( x ) ) < 0 ,

i.e. uε is a supersolution of Eq. (1.1) in Ωδε.

Let u be the unique strictly convex solution to problem (1.1). Through the same argument as Theorem 1.1, we see that there exists a large constant M > 0 such that

u_ε(x)Md(x)u(x)uε(x)+Md(x),xΩδε.

Hence, we have for any xΩδε

C++ε+M(M(d(x)))1d(x)η+ψ(r(d(x)))(u(x)η+ψ(r(d(x)))1)(M(d(x)))1;CεM(M(d(x)))1d(x)ηψ(r(d(x)))(u(x)ηψ(r(d(x)))1)(M(d(x)))1.

We conclude from (3.17)-(3.18), Proposition 2.5 (i)−(ii) that

C++εlim supd(x)0(u(x)η+ψ(r(d(x)))1)(M(d(x)))1;Cεlim infd(x)0(u(x)ηψ(r(d(x)))1)(M(d(x)))1.

Letting ε → 0 , the proof is finished.

Acknowledgments

This research was supported by National Natural Science Foundation of China (No. 11801321).

  1. Conflict of interest

    The authors declare that they have no conflict of interest.

References

[1] S. Berhanu, F. Gladiali, G. Porru, Qualitative properties of solutions to elliptic singular problems, J. Inequal. Appl. 3 (1999), no. 4, 313-330.10.1155/S1025583499000223Search in Google Scholar

[2] S. Berhanu, F. Cuccu, G. Porru, On the boundary behaviour, including second order effects, of solutions to singular elliptic problems, Acta Math. Appl. Sin. Engl. Ser. 23 (2007), no. 3, 479-486.Search in Google Scholar

[3] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Encyclopedia Math. Appl., vol.27, Cambridge University Press, Cambridge, 1987.10.1017/CBO9780511721434Search in Google Scholar

[4] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge- Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369-402.10.1002/cpa.3160400508Search in Google Scholar

[5] S. Y. Cheng and S. T. Yau, On the regularity of the Monge-Ampère equation det(𝜕2u/𝜕xi𝜕xj) = F(x, u), Comm. Pure Appl. Math. 30 (1977), no. 1, 41-68.10.1002/cpa.3160300104Search in Google Scholar

[6] F. C. Cîrstea and V. Radulescu, Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris, Sér. I 335 (2002), no. 5, 447-452.10.1016/S1631-073X(02)02503-7Search in Google Scholar

[7] F. C. Cîrstea and V. Radulescu, Asymptotics for the blow-up boundary solution of the logistic equation with absorption, C. R. Acad. Sci. Paris, Sér. I 336 (2003), no. 3, 231-236.10.1016/S1631-073X(03)00027-XSearch in Google Scholar

[8] F. C. Cîrstea and V. Radulescu, Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3275-3286.10.1090/S0002-9947-07-04107-4Search in Google Scholar

[9] F. C. Cîrstea and C. Trombetti, On the Monge-Ampère equation with boundary blow-up: Existence, uniqueness and asymptotics, Calc. Var. Partial Differential Equations 31 (2008), no. 2, 167-186.10.1007/s00526-007-0108-7Search in Google Scholar

[10] M. G. Crandall, P. H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), no. 2, 193-222.10.1080/03605307708820029Search in Google Scholar

[11] F. Cui, H. Jian and Y. Li, Boundary Hölder estimates for nonlinear singular elliptic equations, J. Math. Anal. Appl. 470 (2019), no. 2, 1185-1193.Search in Google Scholar

[12] J. Dávila, M. del Pino, M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Commun. PDEs 32 (2007), no. 7-9, 1225-1243.Search in Google Scholar

[13] J. Dávila, M. del Pino, M. Musso, J. Wei, Fast and slow decay solutions for supercritical elliptic problems in exterior domains, Calc. Var. PDEs 32 (2008), no. 4, 453-480.Search in Google Scholar

[14] L. Dupaigne, M. Ghergu, V. Radulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl. 87 (2007), no. 6, 563-581.10.1016/j.matpur.2007.03.002Search in Google Scholar

[15] W. Fulks, J. S. Maybee, A singular non-linear equation, Osaka J. Math. 12 (1960), 1-19.Search in Google Scholar

[16] M. Ghergu, V. Radulescu, Singular Elliptic problems: Bifurcation and Asymptotic Analysis, in: Oxford Lecture Series in Mathematics and its Applications, vol. 37, The Clarendon Press, Oxford University Press, Oxford, 2008.Search in Google Scholar

[17] E. Giarrusso and G. Porru, Problems for elliptic singular equations with a gradient term, Nonlinear Anal. 65 (2006), no. 1, 107-128.10.1016/j.na.2005.08.007Search in Google Scholar

[18] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, third ed., Springer-Verlag, Berlin, 1998.Search in Google Scholar

[19] J. V. A. Goncalves and C. A. P. Santos, Classical solutions of singular Monge-Ampère equations in a ball, J. Math. Anal. Appl. 305 (2005), no. 1, 240-252.10.1016/j.jmaa.2004.11.019Search in Google Scholar

[20] Y. Huang, Boundary asymptotical behavior of large solutions to Hessian equations, Pacific J. Math. 244 (2010), no. 1, 85-98.10.2140/pjm.2010.244.85Search in Google Scholar

[21] N. M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 131 (1983), 72-79.10.1007/BF02105345Search in Google Scholar

[22] X. Jia, D. Li and Z. Li, Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces, J. Differential Equations 269 (2020), no. 1, 326-348.Search in Google Scholar

[23] H. Jian, X. Wang and Y. Zhao, Global smoothness for a singular Monge-Ampère equation, J. Differential Equations 263 (2017), no. 11, 7250-7262.10.1016/j.jde.2017.08.004Search in Google Scholar

[24] H. Jian and Y. Li, A singular Monge-Ampère equation on unbounded domains, Sci. China Math. 61 (2018), no. 8, 1473-1480.10.1007/s11425-018-9351-1Search in Google Scholar

[25] H. Jian and Y. Li, Optimal boundary regularity for a singular Monge-Ampère equation, J. Differential Equations 264 (2018), no. 11, 6873-6890.10.1016/j.jde.2018.01.051Search in Google Scholar

[26] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), no. 3, 721-730.10.1090/S0002-9939-1991-1037213-9Search in Google Scholar

[27] A. C. Lazer and P. J. McKenna, On singular boundary value problems for the Monge-Ampère operator, J. Math. Anal. Appl. 197 (1996), no. 2, 341-362.10.1006/jmaa.1996.0024Search in Google Scholar

[28] D. Li and S. Ma, Boundary behavior of solutions of Monge-Ampère equations with singular righthand sides, J. Math. Anal. Appl. 454 (2017), no.1, 79-93.10.1016/j.jmaa.2017.04.074Search in Google Scholar

[29] D. Li and S. Ma, Existence and boundary behavior of solutions of Hessian equations with singular right-hand sides, J. Funct. Anal. 276 (2019), no. 10, 2969-2989.10.1016/j.jfa.2019.02.018Search in Google Scholar

[30] P. L. Lions, Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl. 142 (1985), 263-275.10.1007/BF01766596Search in Google Scholar

[31] C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in: Contributions to Analysis. A Collection of Papers Dedicated to Lipman Bers, Academic Press, New York (1974), 245-272.10.1016/B978-0-12-044850-0.50027-7Search in Google Scholar

[32] V. Maric, Regular Variation and Differential Equations, Lecture Notes in Math., vol.1726, Springer-Verlag, Berlin, 2000.Search in Google Scholar

[33] A. Mohammed, Boundary asymptotic and uniqueness of solutions to the p -Laplacian with infinite boundary values, J. Math. Anal. Appl. 325 (2007), no. 1, 480-489.10.1016/j.jmaa.2006.02.008Search in Google Scholar

[34] A. Mohammed, Existence and estimates of solutions to a singular Dirichlet problem for the Monge-Ampère equation, J. Math. Anal. Appl. 340 (2008), no. 2, 1226-1234.10.1016/j.jmaa.2007.09.014Search in Google Scholar

[35] A. Mohammed, Singular boundary value problems for the Monge-Ampère equation, Nonlinear Anal. 70 (2009), no. 1, 457-464.10.1016/j.na.2007.12.017Search in Google Scholar

[36] A. Mohammed, V. D. Radulescu and A. Vitolo, Blow-up solutions for fully nonlinear equations: existence, asymptotic estimates and uniqueness, Adv. Nonlinear Anal. 9 (2020), no. 1, 39-64.Search in Google Scholar

[37] A. Mohammed and A. Vitolo, On the strong maximum principle, Complex Var. Elliptic Equ. 65 (2020), no. 8, 1299-1314.10.1080/17476933.2019.1594207Search in Google Scholar

[38] L. Nirenberg, Monge-Ampère equations and some associated problems in geometry, in: Proceedings of the International Congress of Mathematicians. Vol. 2 (Vancouver 1974), Canadian Mathematical Congress, Vancouver (1975), 275-279.Search in Google Scholar

[39] G. Porru and A. Vitolo, Problems for elliptic singular equations with a quadratic gradient term, J. Math. Anal. Appl. 334 (2007), no. 1, 467-486.10.1016/j.jmaa.2006.12.017Search in Google Scholar

[40] S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, Berlin, 1987.10.1007/978-0-387-75953-1Search in Google Scholar

[41] E. Seneta, Regularly Varying Functions, Lecture Notes in Math., vol. 508, Springer-Verlag, 1976.10.1007/BFb0079658Search in Google Scholar

[42] P. Salani, Boundary blow-up problems for Hessian equations, Manuscripta Math. 96 (1998), no. 3, 281-294.10.1007/s002290050068Search in Google Scholar

[43] H. Sun and M. Feng, Boundary behavior of k-convex solutions for singular k-Hessian equations, Nonlinear Anal. 176 (2018), 141-156.10.1016/j.na.2018.06.010Search in Google Scholar

[44] N. S. Trudinger and X. Wang, The Monge-Ampère equation and its geometric applications, in: Handbook of Geometric Analysis. No. 1, Adv. Lect. Math. (ALM) 7, International Press, Somerville (2008), 467-524.Search in Google Scholar

[45] A. Vitolo, Singular elliptic equations with directional diffusion, Math. Eng. 3 (2021), no. 3, 1-16.10.3934/mine.2021027Search in Google Scholar

[46] H. Wan, Y. Shi, The second expansion of the unique vanishing at infinity solution to a singular elliptic equation, Nonlinear Anal. 171 (2018), 238-270.10.1016/j.na.2018.02.007Search in Google Scholar

[47] H. Yang and Y. Chang, On the blow-up boundary solutions of the Monge-Ampère equation with singular weights. Commun. Pure Appl. Anal. 11 (2012), no. 2, 697-708.Search in Google Scholar

[48] N. Zeddini, R. Alsaedi and H. Mâagli, Exact boundary behavior of the unique positive solution to some singular elliptic problems, Nonlinear Anal. 89 (2013), 146-156.10.1016/j.na.2013.05.006Search in Google Scholar

[49] X. Zhang and Y. Du, Sharp conditions for the existence of boundary blow-up solutions to the Monge-Ampère equation, Calc. Var. Partial Differential Equations 57 (2018), no. 2, 1-24.10.1007/s00526-018-1312-3Search in Google Scholar

[50] Z. Zhang, The second expansion of the solution for a singular elliptic boundary value problem, J. Math. Anal. Appl. 381 (2011), no. 2, 922-934.10.1016/j.jmaa.2011.04.018Search in Google Scholar

[51] Z. Zhang, Refined boundary behavior of the unique convex solution to a singular Dirichlet problem for the Monge-Ampère equation, Adv. Nonlinear Stud. 18 (2018), no, 2, 289-302.10.1515/ans-2017-6045Search in Google Scholar

Received: 2020-11-23
Accepted: 2021-06-28
Published Online: 2021-08-23

© 2021 HaitaoWan et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.1515/anona-2022-0199/html
Scroll to top button