1932

Abstract

This article analyzes modulated phases in liquid crystals, from the long-established cholesteric and blue phases to the recently discovered twist-bend, splay-bend, and splay nematic phases, as well as the twist-grain-boundary (TGB) and helical nanofilament variations on smectic phases. The analysis uses the concept of four fundamental modes of director deformation: twist, bend, splay, and a fourth mode related to saddle-splay. Each mode is coupled to a specific type of molecular order: chirality, polarization perpendicular and parallel to the director, and octupolar order. When the liquid crystal develops one type of spontaneous order, the ideal local structure becomes nonuniform, with the corresponding director deformation. In general, the ideal local structure is frustrated; it cannot fill space. As a result, the liquid crystal must form a complex global phase, which may have a combination of deformation modes, and may have a periodic array of defects. Thus, the concept of an ideal local structure under geometric frustration provides a unified framework to understand the wide variety of modulated phases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-105712
2022-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031620-105712.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-105712&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dunmur D, Sluckin T. 2011. Soap, Science, and Flat-Screen TVs: A History of Liquid Crystals Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  2. 2. 
    Machon T, Alexander GP. 2016. Phys. Rev. X 6:011033
    [Google Scholar]
  3. 3. 
    Selinger JV. 2018. Liq. Cryst. Rev. 6:129–42
    [Google Scholar]
  4. 4. 
    Moessner R, Ramirez AP. 2006. Phys. Today 59:24–29
    [Google Scholar]
  5. 5. 
    Grason GM. 2016. J. Chem. Phys. 145:110901
    [Google Scholar]
  6. 6. 
    Kamien RD, Selinger JV. 2001. J. Phys. Condens. Matter 13:R1–22
    [Google Scholar]
  7. 7. 
    Meyer RB. 1969. Phys. Rev. Lett. 22:918–21
    [Google Scholar]
  8. 8. 
    Jákli A, Lavrentovich OD, Selinger JV. 2018. Rev. Mod. Phys. 90:045004 https://doi.org/10.1103/RevModPhys.90.045004
    [Crossref] [Google Scholar]
  9. 9. 
    Meyer RB. 1976. Molecular Fluids (Les Houches Summer School in Theoretical Physics, 1973) R Balian, G Weill 271–343 New York: Gordon and Breach
    [Google Scholar]
  10. 10. 
    Shamid SM, Dhakal S, Selinger JV. 2013. Phys. Rev. E 87:052503
    [Google Scholar]
  11. 11. 
    Dhakal S, Selinger JV. 2010. Phys. Rev. E 81:031704
    [Google Scholar]
  12. 12. 
    Basu R, Pendery JS, Petschek RG, Lemieux RP, Rosenblatt C. 2011. Phys. Rev. Lett. 107:237804
    [Google Scholar]
  13. 13. 
    Selinger JV, Wang ZG, Bruinsma RF, Knobler CM. 1993. Phys. Rev. Lett. 70:1139–42
    [Google Scholar]
  14. 14. 
    Davidson ZS, Kang L, Jeong J, Still T, Collings PJ et al. 2015. Phys. Rev. E 91:050501
    [Google Scholar]
  15. 15. 
    Lubensky TC, Radzihovsky L. 2002. Phys. Rev. E 66:1–27
    [Google Scholar]
  16. 16. 
    Gaeta G, Virga EG. 2016. Eur. Phys. J. E 39:113
    [Google Scholar]
  17. 17. 
    Dozov I. 2001. Europhys. Lett. 56:247–53
    [Google Scholar]
  18. 18. 
    Sethna JP, Wright DC, Mermin ND. 1983. Phys. Rev. Lett. 51:467–70
    [Google Scholar]
  19. 19. 
    Niv I, Efrati E. 2018. Soft Matter 14:424–31
    [Google Scholar]
  20. 20. 
    Virga EG. 2019. Phys. Rev. E 100:052701
    [Google Scholar]
  21. 21. 
    Sadoc JF, Mosseri R, Selinger JV. 2020. New J. Phys. 22:093036
    [Google Scholar]
  22. 22. 
    Pollard J, Alexander GP 2021. New J. Phys. 23:063006
    [Google Scholar]
  23. 23. 
    da Silva LCB, Efrati E. 2021. New J. Phys. 23:063016
    [Google Scholar]
  24. 24. 
    Wright D, Mermin N. 1989. Rev. Mod. Phys. 61:385–432
    [Google Scholar]
  25. 25. 
    Cestari M, Diez-Berart S, Dunmur DA, Ferrarini A, de la Fuente MR et al. 2011. Phys. Rev. E 84:031704
    [Google Scholar]
  26. 26. 
    Chen D, Porada JH, Hooper JB, Klittnick A, Shen Y et al. 2013. PNAS 110:15931–36
    [Google Scholar]
  27. 27. 
    Borshch V, Kim YK, Xiang J, Gao M, Jákli A et al. 2013. Nat. Commun. 4:2365
    [Google Scholar]
  28. 28. 
    Samulski ET, Vanakaras AG, Photinos DJ. 2020. Liq. Cryst. 47:2092–97
    [Google Scholar]
  29. 29. 
    Dozov I, Luckhurst GR. 2020. Liq. Cryst. 47:2098–115
    [Google Scholar]
  30. 30. 
    Lorman VL, Mettout B. 1999. Phys. Rev. Lett. 82:940–43
    [Google Scholar]
  31. 31. 
    Lorman VL, Mettout B. 2004. Phys. Rev. E 69:061710
    [Google Scholar]
  32. 32. 
    Shamid SM, Allender DW, Selinger JV. 2014. Phys. Rev. Lett. 113:237801
    [Google Scholar]
  33. 33. 
    Ungar G, Liu Y, Zeng X, Percec V, Cho WD. 2003. Science 299:1208–11
    [Google Scholar]
  34. 34. 
    Mertelj A, Cmok L, Sebastián N, Mandle RJ, Parker RR et al. 2018. Phys. Rev. X 8:041025
    [Google Scholar]
  35. 35. 
    Chaturvedi N, Kamien RD. 2019. Phys. Rev. E 100:022704
    [Google Scholar]
  36. 36. 
    Rosseto MP, Selinger JV. 2020. Phys. Rev. E 101:052707
    [Google Scholar]
  37. 37. 
    Chen X, Korblova E, Dong D, Wei X, Shao R et al. 2020. PNAS 117:14021–31
    [Google Scholar]
  38. 38. 
    Priest RG, Lubensky TC. 1974. Phys. Rev. A 9:893–98
    [Google Scholar]
  39. 39. 
    Harris AB, Kamien RD, Lubensky TC. 1999. Rev. Mod. Phys. 71:1745–57
    [Google Scholar]
  40. 40. 
    Dhakal S, Selinger JV. 2011. Phys. Rev. E 83:020702(R)
    [Google Scholar]
  41. 41. 
    Helfrich W. 1973. Z. Naturforsch. C 28:693–703
    [Google Scholar]
  42. 42. 
    de Gennes PG. 1972. Solid State Commun. 10:753–56
    [Google Scholar]
  43. 43. 
    Renn SR, Lubensky TC. 1988. Phys. Rev. A 38:2132–47
    [Google Scholar]
  44. 44. 
    Goodby JW, Waugh MA, Stein SM, Chin E, Pindak R, Patel JS. 1989. Nature 337:449–52
    [Google Scholar]
  45. 45. 
    Goodby JW, Waugh MA, Stein SM, Chin E, Pindak R, Patel JS. 1989. J. Am. Chem. Soc. 111:8119–25
    [Google Scholar]
  46. 46. 
    Hough LE, Jung HT, Krüerke D, Heberling MS, Nakata M et al. 2009. Science 325:456–60
    [Google Scholar]
  47. 47. 
    Matsumoto EA, Alexander GP, Kamien RD. 2009. Phys. Rev. Lett. 103:257804
    [Google Scholar]
  48. 48. 
    Matsumoto EA, Kamien RD, Alexander GP. 2017. Interface Focus 7:20160118
    [Google Scholar]
  49. 49. 
    Barry E, Dogic Z, Meyer RB, Pelcovits RA, Oldenbourg R. 2009. J. Phys. Chem. B 113:3910–13
    [Google Scholar]
  50. 50. 
    Gibaud T, Barry E, Zakhary MJ, Henglin M, Ward A et al. 2012. Nature 481:348–51
    [Google Scholar]
  51. 51. 
    Efrati E, Irvine WTM. 2014. Phys. Rev. X 4:011003
    [Google Scholar]
  52. 52. 
    Klein Y, Efrati E, Sharon E 2007. Science 315:1116–20
    [Google Scholar]
  53. 53. 
    Efrati E, Sharon E, Kupferman R 2009. J. Mech. Phys. Solids 57:762–75
    [Google Scholar]
  54. 54. 
    Sharon E, Efrati E. 2010. Soft Matter 6:5693–704
    [Google Scholar]
  55. 55. 
    Spector MS, Selinger JV, Schnur JM 2003. Materials-Chirality: Volume 24 of Topics in Stereochemistry MM Green, RJM Nolte, EW Meijer 281–372 Hoboken, New Jersey: John Wiley and Sons
    [Google Scholar]
  56. 56. 
    Yager P, Schoen PE. 1984. Mol. Cryst. Liq. Cryst. 106:371–81
    [Google Scholar]
  57. 57. 
    Schnur JM. 1993. Science 262:1669–76
    [Google Scholar]
  58. 58. 
    Selinger RLB, Selinger JV, Malanoski AP, Schnur JM. 2004. Phys. Rev. Lett. 93:158103
    [Google Scholar]
  59. 59. 
    Ghafouri R, Bruinsma R. 2005. Phys. Rev. Lett. 94:138101
    [Google Scholar]
  60. 60. 
    Armon S, Aharoni H, Moshe M, Sharon E 2014. Soft Matter 10:2733
    [Google Scholar]
  61. 61. 
    Helfrich W, Prost J. 1988. Phys. Rev. A 38:3065–68
    [Google Scholar]
  62. 62. 
    Selinger JV, Spector MS, Schnur JM. 2001. J. Phys. Chem. B 105:7157–69
    [Google Scholar]
  63. 63. 
    Pakhomov S, Hammer RP, Mishra BK, Thomas BN. 2003. PNAS 100:3040–42
    [Google Scholar]
  64. 64. 
    Warner M. 2020. Annu. Rev. Condens. Matter Phys. 11:125–45
    [Google Scholar]
  65. 65. 
    Warner M, Terentjev EM. 2003. Liquid Crystal Elastomers Oxford, UK: Oxford University Press
    [Google Scholar]
  66. 66. 
    White TJ, Broer DJ. 2015. Nat. Mater. 14:1087–98
    [Google Scholar]
  67. 67. 
    Nguyen TS, Selinger JV. 2017. Eur. Phys. J. E 40:76
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031620-105712
Loading
/content/journals/10.1146/annurev-conmatphys-031620-105712
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error