1932

Abstract

Dense suspensions of particles are relevant to many applications and are a key platform for developing a fundamental physics of out-of-equilibrium systems. They present challenging flow properties, apparently turning from liquid to solid upon small changes in composition or, intriguingly, in the driving forces applied to them. The emergent physics close to the ubiquitous jamming transition (and to some extent the glass and gelation transitions) provides common principles with which to achieve a consistent interpretation of a vast set of phenomena reported in the literature. In light of this, we review the current state of understanding regarding the relation between the physics at the particle scale and the rheology at the macroscopic scale. We further show how this perspective opens new avenues for the development of continuum models for dense suspensions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-105938
2022-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031620-105938.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-105938&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Einstein A 1911. Ann. Phys. 339:3591–92
    [Google Scholar]
  2. 2. 
    Batchelor GK 1970. J. Fluid Mech. 41:3545–70
    [Google Scholar]
  3. 3. 
    Fuchs M, Cates ME 2002. Phys. Rev. Lett. 89:24248304
    [Google Scholar]
  4. 4. 
    Boyer F, Guazzelli É, Pouliquen O 2011. Phys. Rev. Lett. 107:18188301
    [Google Scholar]
  5. 5. 
    Mewis J, Wagner NJ 2012. Colloidal Suspension Rheology Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  6. 6. 
    Guazzelli É, Pouliquen O 2018. J. Fluid Mech. 852:P1
    [Google Scholar]
  7. 7. 
    Morris JF 2020. Annu. Rev. Fluid Mech. 52:121–44
    [Google Scholar]
  8. 8. 
    Denn MM, Morris JF 2014. Annu. Rev. Chem. Biomol. Eng. 5:1203–28
    [Google Scholar]
  9. 9. 
    Zhou J, Dupuy B, Bertozzi AL, Hosoi AE 2005. Phys. Rev. Lett. 94(11):117803. https://doi.org/10.1103/PhysRevLett.94.117803
    [Crossref] [Google Scholar]
  10. 10. 
    Fusier J, Goyon J, Chateau X, Toussaint F 2018. J. Rheol. 62:3753–71
    [Google Scholar]
  11. 11. 
    Bossis G, Boustingorry P, Grasselli Y, Meunier A, Morini R et al. 2017. Rheol. Acta 56:5415–30
    [Google Scholar]
  12. 12. 
    Israelachvili JN 2011. Intermolecular and Surface Forces New York: Academic
    [Google Scholar]
  13. 13. 
    Cates ME, Wittmer JP, Bouchaud JP, Claudin P 1998. Phys. Rev. Lett. 81:1841–44
    [Google Scholar]
  14. 14. 
    Seto R, Mari R, Morris JF, Denn MM 2013. Phys. Rev. Lett. 111:21218301
    [Google Scholar]
  15. 15. 
    Fernandez N, Mani R, Rinaldi D, Kadau D, Mosquet M et al. 2013. Phys. Rev. Lett. 111:10108301
    [Google Scholar]
  16. 16. 
    Comtet J, Chatté G, Niguès A, Bocquet L, Siria A, Colin A 2017. Nat. Commun. 8:15633
    [Google Scholar]
  17. 17. 
    Johnson KL 1985. Contact Mechanics Cambridge/New York: Cambridge Univ. Press
    [Google Scholar]
  18. 18. 
    Chatté G, Comtet J, Niguès A, Bocquet L, Siria A et al. 2018. Soft Matter 14:6879–93
    [Google Scholar]
  19. 19. 
    Lobry L, Lemaire E, Blanc F, Gallier S, Peters F 2019. J. Fluid Mech. 860:682–710
    [Google Scholar]
  20. 20. 
    Nagahiro Si, Nakanishi H 2016. Phys. Rev. E 94:062614
    [Google Scholar]
  21. 21. 
    Maiti M, Heussinger C 2014. Phys. Rev. E 89:5052308
    [Google Scholar]
  22. 22. 
    Berthier L, Biroli G 2011. Rev. Mod. Phys. 83:2587–645
    [Google Scholar]
  23. 23. 
    Zaccarelli E 2007. J. Phys. Condens. Matter 19:32323101
    [Google Scholar]
  24. 24. 
    Liu AJ, Nagel SR 1998. Nature 396:670621–22
    [Google Scholar]
  25. 25. 
    Liu AJ, Nagel SR 2010. Annu. Rev. Condens. Matter Phys. 1:347–69
    [Google Scholar]
  26. 26. 
    Torquato S, Truskett TM, Debenedetti PG 2000. Phys. Rev. Lett. 84:102064–67
    [Google Scholar]
  27. 27. 
    Santos AP, Bolintineanu DS, Grest GS, Lechman JB, Plimpton SJ et al. 2020. Phys. Rev. E 102:3032903
    [Google Scholar]
  28. 28. 
    Donev A, Cisse I, Sachs D, Variano EA, Stillinger FH et al. 2004. Science 303:5660990–93
    [Google Scholar]
  29. 29. 
    Hsiao LC, Jamali S, Glynos E, Green PF, Larson RG, Solomon MJ 2017. Phys. Rev. Lett. 119:15158001
    [Google Scholar]
  30. 30. 
    Shapiro AP, Probstein RF 1992. Phys. Rev. Lett. 68:91422–25
    [Google Scholar]
  31. 31. 
    Hopkins AB, Stillinger FH, Torquato S 2013. Phys. Rev. E 88:2022205
    [Google Scholar]
  32. 32. 
    Alexander S 1998. Phys. Rep. 296:2–465–236
    [Google Scholar]
  33. 33. 
    Maxwell JC 1864. Lond. Edinb. Dublin Philos. Mag. J. Sci. 27:182294–99
    [Google Scholar]
  34. 34. 
    Shundyak K, van Hecke M, van Saarloos W 2007. Phys. Rev. E 75:1010301
    [Google Scholar]
  35. 35. 
    Liu AJ, Nagel SR, van Saarloos W, Wyart M. 2011. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media L Berthier, G Biroli, J-P Bouchaud, L Cipeletti, W van Saarloos 298–340 Oxford/New York: Oxford Univ. Press
    [Google Scholar]
  36. 36. 
    DeGiuli E, Düring G, Lerner E, Wyart M 2015. Phys. Rev. E 91:6062206
    [Google Scholar]
  37. 37. 
    Olsson P, Teitel S 2007. Phys. Rev. Lett. 99:17178001
    [Google Scholar]
  38. 38. 
    Heussinger C, Barrat JL 2009. Phys. Rev. Lett. 102:21218303
    [Google Scholar]
  39. 39. 
    Andreotti B, Barrat JL, Heussinger C 2012. Phys. Rev. Lett. 109:10105901
    [Google Scholar]
  40. 40. 
    Heussinger C 2013. Phys. Rev. E 88:5050201
    [Google Scholar]
  41. 41. 
    Düring G, Lerner E, Wyart M 2014. Phys. Rev. E 89:2022305
    [Google Scholar]
  42. 42. 
    Pusey PN, Van Megen W 1986. Nature 320:6060340–42
    [Google Scholar]
  43. 43. 
    Ikeda A, Berthier L, Sollich P 2012. Phys. Rev. Lett. 109:1018301
    [Google Scholar]
  44. 44. 
    Hunter GL, Weeks ER 2012. Rep. Prog. Phys. 75:6066501
    [Google Scholar]
  45. 45. 
    Trappe V, Prasad V, Cipelletti L, Segre PN, Weitz DA 2001. Nature 411:6839772–75
    [Google Scholar]
  46. 46. 
    Larson RG 1999. The Structure and Rheology of Complex Fluids New York/Oxford: Oxford Univ. Press
    [Google Scholar]
  47. 47. 
    Koeze DJ, Tighe BP 2018. Phys. Rev. Lett. 121:18188002
    [Google Scholar]
  48. 48. 
    Coussot P 2016. Rheophysics: Matter in All Its States Cham, Switz.: Springer
    [Google Scholar]
  49. 49. 
    Maxey M 2017. Annu. Rev. Fluid Mech. 49:171–93
    [Google Scholar]
  50. 50. 
    Krieger IM 1963. Trans. Soc. Rheol. 7:1101–9
    [Google Scholar]
  51. 51. 
    Giusteri GG, Seto R 2018. J. Rheol. 62:3713–23
    [Google Scholar]
  52. 52. 
    Ovarlez G, Bertrand F, Rodts S 2006. J. Rheol. 50:3259–92
    [Google Scholar]
  53. 53. 
    Ness C, Sun J 2015. Phys. Rev. E 91:1012201
    [Google Scholar]
  54. 54. 
    Zarraga IE, Hill DA, Leighton DT 2000. J. Rheol. 44:2185–220
    [Google Scholar]
  55. 55. 
    Gallier S, Lemaire E, Lobry L, Peters F 2014. J. Comput. Phys. 256:367–87
    [Google Scholar]
  56. 56. 
    Trulsson M, DeGiuli E, Wyart M 2017. Phys. Rev. E 95:1012605
    [Google Scholar]
  57. 57. 
    Lerner E, Düring G, Wyart M 2012. PNAS 109:134798–803
    [Google Scholar]
  58. 58. 
    Tapia F, Shaikh S, Butler JE, Pouliquen O, Guazzelli E 2017. J. Fluid Mech. 827:R5
    [Google Scholar]
  59. 59. 
    da Cruz F, Emam S, Prochnow M, Roux J-N, Chevoir F 2005. Phys. Rev. E 72:2021309
    [Google Scholar]
  60. 60. 
    Chèvremont W, Chareyre B, Bodiguel H 2019. Phys. Rev. Fluids 4:6064302
    [Google Scholar]
  61. 61. 
    Cwalina CD, Wagner NJ 2014. J. Rheol. 58:4949–67
    [Google Scholar]
  62. 62. 
    Richards JA, O'Neill RE, Poon WCK 2021. Rheol. Acta 60:97–106
    [Google Scholar]
  63. 63. 
    Brown E, Forman NA, Orellana CS, Zhang H, Maynor BW et al. 2010. Nat. Mater. 9:3220–24
    [Google Scholar]
  64. 64. 
    Gadala-Maria F, Acrivos A 1980. J. Rheol. 24:6799–814
    [Google Scholar]
  65. 65. 
    Leighton D, Acrivos A 1987. J. Fluid Mech. 177:109–31
    [Google Scholar]
  66. 66. 
    Parsi F, Gadala-Maria F 1987. J. Rheol. 31:8725–32
    [Google Scholar]
  67. 67. 
    Brady JF, Morris JF 1997. J. Fluid Mech. 348:103–39
    [Google Scholar]
  68. 68. 
    Seto R, Giusteri GG 2018. J. Fluid Mech. 857:200–15
    [Google Scholar]
  69. 69. 
    Han E, Wyart M, Peters IR, Jaeger HM 2018. Phys. Rev. Fluids 3:7073301
    [Google Scholar]
  70. 70. 
    Blanc F, Lemaire E, Peters F 2014. J. Fluid Mech. 746:R4
    [Google Scholar]
  71. 71. 
    Seto R, Singh A, Chakraborty B, Denn MM, Morris JF 2019. Granul. Matter 21:382
    [Google Scholar]
  72. 72. 
    Pine DJ, Gollub JP, Brady JF, Leshansky AM 2005. Nature 438:7070997–1000
    [Google Scholar]
  73. 73. 
    Tjhung E, Berthier L 2015. Phys. Rev. Lett. 114:14148301
    [Google Scholar]
  74. 74. 
    Bagnold RA 1954. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 225:116049–63
    [Google Scholar]
  75. 75. 
    Savage SB, Mckeown S 1983. J. Fluid Mech. 127:453–72
    [Google Scholar]
  76. 76. 
    Madraki Y, Oakley A, Nguyen Le A, Colin A, Ovarlez G, Hormozi S 2020. J. Rheol. 64:2227–38
    [Google Scholar]
  77. 77. 
    Verberg R, Koch DL 2006. Phys. Fluids 18:8083303
    [Google Scholar]
  78. 78. 
    Kulkarni PM, Morris JF 2008. Phys. Fluids 20:4040602
    [Google Scholar]
  79. 79. 
    Trulsson M, Andreotti B, Claudin P 2012. Phys. Rev. Lett. 109:11118305
    [Google Scholar]
  80. 80. 
    Jop P, Forterre Y, Pouliquen O 2006. Nature 441:7094727–30
    [Google Scholar]
  81. 81. 
    Lemaître A, Roux JN, Chevoir F 2009. Rheol. Acta 48:8925–42
    [Google Scholar]
  82. 82. 
    Otsuki M, Hayakawa H 2009. Prog. Theor. Phys. 121:3647–55
    [Google Scholar]
  83. 83. 
    Otsuki M, Hayakawa H 2011. Phys. Rev. E 83:5051301
    [Google Scholar]
  84. 84. 
    Vågberg D, Olsson P, Teitel S 2016. Phys. Rev. E 93:5052902
    [Google Scholar]
  85. 85. 
    Fall A, Lemaitre A, Bertrand F, Bonn D, Ovarlez G 2010. Phys. Rev. Lett. 105:26268303
    [Google Scholar]
  86. 86. 
    Batchelor GK 1977. J. Fluid Mech. 83:197–117
    [Google Scholar]
  87. 87. 
    Foss DR, Brady JF 2000. J. Fluid Mech. 407:167–200
    [Google Scholar]
  88. 88. 
    Woods ME, Krieger IM 1970. J. Colloid Interface Sci. 34:191–99
    [Google Scholar]
  89. 89. 
    de Kruif CG, van Iersel EMF, Vrij A, Russel WB 1985. J. Chem. Phys. 83:94717–25
    [Google Scholar]
  90. 90. 
    Trulsson M, Bouzid M, Kurchan J, Clément E, Claudin P, Andreotti B 2015. Europhys. Lett. 111:118001
    [Google Scholar]
  91. 91. 
    Wyart M, Cates M 2014. Phys. Rev. Lett. 112:9098302
    [Google Scholar]
  92. 92. 
    Ness C, Sun J 2016. Soft Matter 12:3914–24
    [Google Scholar]
  93. 93. 
    Guy BM, Hermes M, Poon WCK 2015. Phys. Rev. Lett. 115:8088304
    [Google Scholar]
  94. 94. 
    Lin NY, Guy BM, Hermes M, Ness C, Sun J et al. 2015. Phys. Rev. Lett. 115:22228304
    [Google Scholar]
  95. 95. 
    Rathee V, Blair DL, Urbach JS 2017. PNAS 114:338740–45
    [Google Scholar]
  96. 96. 
    Fall A, Bertrand F, Ovarlez G, Bonn D 2009. Phys. Rev. Lett. 103:17178301
    [Google Scholar]
  97. 97. 
    Hermes M, Guy BM, Poon WC, Poy G, Cates ME, Wyart M 2016. J. Rheol. 60:5905–16
    [Google Scholar]
  98. 98. 
    Chacko RN, Mari R, Cates ME, Fielding SM 2018. Phys. Rev. Lett. 121:10108003
    [Google Scholar]
  99. 99. 
    Maranzano BJ, Wagner NJ 2001. J. Rheol. 45:51205–22
    [Google Scholar]
  100. 100. 
    Rueb C, Zukoski C 1997. J. Rheol. 41:2197–218
    [Google Scholar]
  101. 101. 
    Cross MM 1965. J. Colloid Sci. 20:5417–37
    [Google Scholar]
  102. 102. 
    Woutersen ATJM, de Kruif C 1991. J. Chem. Phys. 94:85739–50
    [Google Scholar]
  103. 103. 
    Rueb C, Zukoski C 1998. J. Rheol. 42:61451–76
    [Google Scholar]
  104. 104. 
    Roussel N, Lemaître A, Flatt RJ, Coussot P 2010. Cement Concrete Res. 40:177–84
    [Google Scholar]
  105. 105. 
    Guery J, Bertrand E, Rouzeau C, Levitz P, Weitz D, Bibette J 2006. Phys. Rev. Lett. 96:19198301
    [Google Scholar]
  106. 106. 
    Snabre P, Mills P 1996. J. Phys. III 6:121811–34
    [Google Scholar]
  107. 107. 
    Chaouche M, Koch DL 2001. J. Rheol. 45:2369–82
    [Google Scholar]
  108. 108. 
    Zhou JZ, Uhlherr PH, Luo FT 1995. Rheol. Acta 34:6544–61
    [Google Scholar]
  109. 109. 
    Kurokawa A, Vidal V, Kurita K, Divoux T, Manneville S 2015. Soft Matter 11:469026–37
    [Google Scholar]
  110. 110. 
    Park N, Rathee V, Blair DL, Conrad JC 2019. Phys. Rev. Lett. 122:22228003
    [Google Scholar]
  111. 111. 
    Richards JA, Guy BM, Blanco E, Hermes M, Poy G, Poon WCK 2020. J. Rheol. 64:2405–12
    [Google Scholar]
  112. 112. 
    Guy BM, Richards JA, Hodgson DJM, Blanco E, Poon WCK 2018. Phys. Rev. Lett. 121:12128001
    [Google Scholar]
  113. 113. 
    Wildemuth C, Williams M 1984. Rheol. Acta 23:6627–35
    [Google Scholar]
  114. 114. 
    Pednekar S, Chun J, Morris JF 2017. Soft Matter 13:91773–79
    [Google Scholar]
  115. 115. 
    Singh A, Pednekar S, Chun J, Denn MM, Morris JF 2019. Phys. Rev. Lett. 122:9098004
    [Google Scholar]
  116. 116. 
    Laun HM 1984. Die Angew. Makromol. Chem.: Appl. Macromol. Chem. Phys. 123:1335–59
    [Google Scholar]
  117. 117. 
    Gopalakrishnan V, Zukoski C 2004. J. Rheol. 48:61321–44
    [Google Scholar]
  118. 118. 
    Guy BM, Ness C, Hermes M, Sawiak LJ, Sun J, Poon WCK 2019. Soft Matter 16:1229–37
    [Google Scholar]
  119. 119. 
    Bouzid M, Izzet A, Trulsson M, Clément E, Claudin P, Andreotti B 2015. Eur. Phys. J. E 38:11125
    [Google Scholar]
  120. 120. 
    Kamrin K, Koval G 2012. Phys. Rev. Lett. 108:17178301
    [Google Scholar]
  121. 121. 
    Hand GL 1962. J. Fluid Mech. 13:0133–46
    [Google Scholar]
  122. 122. 
    Phan-Thien N, Mai-Duy N 2017. Understanding Viscoelasticity: An Introduction to Rheology Graduate Texts in Physics. Cham, Switz.: Springer Int. Publ. AG
    [Google Scholar]
  123. 123. 
    Goddard J 2006. J. Fluid Mech. 568:1–17
    [Google Scholar]
  124. 124. 
    Chacko RN, Mari R, Fielding SM, Cates ME 2018. J. Fluid Mech. 847:700–34
    [Google Scholar]
  125. 125. 
    Ozenda O, Saramito P, Chambon G 2018. J. Rheol. 62:4889–903
    [Google Scholar]
  126. 126. 
    Hinch EJ, Leal LG 1976. J. Fluid Mech. 76:1187–208
    [Google Scholar]
  127. 127. 
    Phan-Thien N 1995. J. Rheol. 39:4679–95
    [Google Scholar]
  128. 128. 
    Gillissen JJJ, Ness C, Peterson JD, Wilson HJ, Cates ME 2019. Phys. Rev. Lett. 123:21214504
    [Google Scholar]
  129. 129. 
    Szeri AJ, Leal LG 1994. J. Fluid Mech. 262:171–204
    [Google Scholar]
  130. 130. 
    Stickel JJ, Phillips RJ, Powell RL 2007. J. Rheol. 51:61271–302
    [Google Scholar]
  131. 131. 
    Ozenda O, Saramito P, Chambon G 2020. J. Fluid Mech. 898:A25
    [Google Scholar]
  132. 132. 
    Gillissen JJJ, Wilson HJ 2018. Phys. Rev. E 98:3033119
    [Google Scholar]
  133. 133. 
    Carreau PJ 1972. Trans. Soc. Rheol. 16:199–127
    [Google Scholar]
  134. 134. 
    Royer JR, Blair DL, Hudson SD 2016. Phys. Rev. Lett. 116:18188301
    [Google Scholar]
  135. 135. 
    Nakanishi H, Nagahiro Si, Mitarai N 2012. Phys. Rev. E 85:1011401
    [Google Scholar]
  136. 136. 
    Singh A, Mari R, Denn MM, Morris JF 2018. J. Rheol. 62:2457–68
    [Google Scholar]
  137. 137. 
    Baumgarten AS, Kamrin K 2019. PNAS 116:4220828–36
    [Google Scholar]
  138. 138. 
    Dong J, Trulsson M 2017. Phys. Rev. Fluids 2:8081301
    [Google Scholar]
  139. 139. 
    Mari R, Seto R 2019. Soft Matter 15:336650–59
    [Google Scholar]
  140. 140. 
    Jackson R 1997. Chem. Eng. Sci. 52:152457–69
    [Google Scholar]
  141. 141. 
    Deboeuf A, Gauthier G, Martin J, Yurkovetsky Y, Morris JF 2009. Phys. Rev. Lett. 102:10108301
    [Google Scholar]
  142. 142. 
    Dbouk T, Lemaire E, Lobry L, Moukalled F 2013. J. Non-Newtonian Fluid Mech. 198:78–95
    [Google Scholar]
  143. 143. 
    Nott PR, Brady JF 1994. J. Fluid Mech. 275:157–99
    [Google Scholar]
  144. 144. 
    Nott PR, Guazzelli E, Pouliquen O 2011. Phys. Fluids 23:4043304
    [Google Scholar]
  145. 145. 
    Gillissen JJJ, Ness C 2020. Phys. Rev. Lett. 125:18184503
    [Google Scholar]
  146. 146. 
    Besseling R, Isa L, Ballesta P, Petekidis G, Cates ME, Poon WCK 2010. Phys. Rev. Lett. 105:26268301
    [Google Scholar]
  147. 147. 
    Saint-Michel B, Gibaud T, Manneville S 2018. Phys. Rev. X 8:3031006
    [Google Scholar]
  148. 148. 
    Ovarlez G, Le AVN, Smit WJ, Fall A, Mari R et al. 2020. Sci. Adv. 6:16eaay5589
    [Google Scholar]
  149. 149. 
    Rathee V, Blair DL, Urbach JS 2020. J. Rheol. 64:2299–308
    [Google Scholar]
  150. 150. 
    Leighton D, Acrivos A 1987. J. Fluid Mech. 181:415–39
    [Google Scholar]
  151. 151. 
    Altobelli SA, Givler RC, Fukushima E 1991. J. Rheol. 35:5721–34
    [Google Scholar]
  152. 152. 
    Medhi BJ, Reddy MM, Singh A 2019. Adv. Powder Technol. 30:91897–909
    [Google Scholar]
  153. 153. 
    Balmforth N, Bush J, Craster R 2005. Phys. Lett. A 338:6479–84
    [Google Scholar]
  154. 154. 
    Darbois Texier B, Lhuissier H, Forterre Y, Metzger B 2020. Commun. Phys. 3:232
    [Google Scholar]
  155. 155. 
    Brown E, Jaeger HM 2012. J. Rheol. 56:4875–923
    [Google Scholar]
  156. 156. 
    Tang H, Grivas W, Homentcovschi D, Geer J, Singler T 2000. Phys. Rev. Lett. 85:102112
    [Google Scholar]
  157. 157. 
    Eriksen JA, Toussaint R, Måløy KJ, Flekkøy E, Galland O, Sandnes B 2018. Phys. Rev. Fluids 3:1013801
    [Google Scholar]
  158. 158. 
    Iveson SM, Litster JD, Hapgood K, Ennis BJ 2001. Powder Technol. 117:13–39
    [Google Scholar]
  159. 159. 
    Cates ME, Wyart M 2014. Rheol. Acta 53:755–64
    [Google Scholar]
  160. 160. 
    Dagois-Bohy S, Hormozi S, Guazzelli É, Pouliquen O 2015. J. Fluid Mech. 776:R2
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031620-105938
Loading
/content/journals/10.1146/annurev-conmatphys-031620-105938
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error