1932

Abstract

Macroscopic responses of magnets are often governed by magnetization and, thus, have been restricted to ferromagnets. However, such responses are strikingly large in the newly developed topological magnets, breaking the conventional scaling with magnetization. Taking the recently discovered antiferromagnetic (AF) Weyl semimetals as a prime example, we highlight the two central ingredients driving the significant macroscopic responses: the Berry curvature enhanced because of nontrivial band topology in momentum space, and the cluster magnetic multipoles in real space. The combination of large Berry curvature and multipoles enables large macroscopic responses such as the anomalous Hall and Nernst effects, the magneto-optical effect, and the novel magnetic spin Hall effect in antiferromagnets with negligible net magnetization, but also allows us to manipulate these effects by electrical means. Furthermore, nodal-point and nodal-line semimetallic states in ferromagnets may provide the strongly enhanced Berry curvature near the Fermi energy, leading to large responses beyond the conventional magnetization scaling. These significant properties and functions of the topological magnets lay the foundation for future technological development such as spintronics and thermoelectric technology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-103859
2022-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031620-103859.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-103859&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Castro Neto AH, Guinea F, Peres N, Novoselov KS, Geim AK 2009. Rev. Mod. Phys. 81:1109–62
    [Google Scholar]
  2. 2. 
    Hasan MZ, Kane CL. 2010. Rev. Mod. Phys. 82:13045–67
    [Google Scholar]
  3. 3. 
    Ando Y. 2013. J. Phys. Soc. Jpn. 82:1102001
    [Google Scholar]
  4. 4. 
    Machida Y, Nakatsuji S, Onoda S, Tayama T, Sakakibara T. 2010. Nature 463:7278210–13
    [Google Scholar]
  5. 5. 
    Yan B, Felser C. 2017. Annu. Rev. Condens. Matter Phys. 8:1337–54
    [Google Scholar]
  6. 6. 
    Armitage NP, Mele EJ, Vishwanath A. 2018. Rev. Mod. Phys. 90:1015001
    [Google Scholar]
  7. 7. 
    Wan X, Turner AM, Vishwanath A, Savrasov SY. 2011. Phys. Rev. B 83:20205101
    [Google Scholar]
  8. 8. 
    Burkov AA, Balents L. 2011. Phys. Rev. Lett. 107:12127205
    [Google Scholar]
  9. 9. 
    Nakatsuji S, Kiyohara N, Higo T. 2015. Nature 527:7577212–15
    [Google Scholar]
  10. 10. 
    Kuroda K, Tomita T, Suzuki MT, Bareille C, Nugroho AA et al. 2017. Nat. Mater. 16:111090–95
    [Google Scholar]
  11. 11. 
    Sakai A, Mizuta YP, Nugroho AA, Sihombing R, Koretsune T et al. 2018. Nat. Phys. 14:1119–24
    [Google Scholar]
  12. 12. 
    Liu E, Sun Y, Kumar N, Muechler L, Sun A et al. 2018. Nat. Phys. 14:111125–31
    [Google Scholar]
  13. 13. 
    Belopolski I, Manna K, Sanchez DS, Chang G, Ernst B et al. 2019. Science 365:64591278–81
    [Google Scholar]
  14. 14. 
    Liu DF, Liang AJ, Liu EK, Xu QN, Li YW et al. 2019. Science 365:64591282–85
    [Google Scholar]
  15. 15. 
    Fert A, Cros V, Sampaio J. 2013. Nat. Nanotechnol. 8:152–56
    [Google Scholar]
  16. 16. 
    Nagaosa N, Tokura Y. 2013. Nat. Nanotechnol. 8:899–911
    [Google Scholar]
  17. 17. 
    Yang SH, Naaman R, Paltiel Y, Parkin SSP. 2021. Nat. Rev. Phys. 3:328–343
    [Google Scholar]
  18. 18. 
    Balents L. 2010. Nature 464:7286199–208
    [Google Scholar]
  19. 19. 
    Rau JG, Gingras MJ. 2019. Annu. Rev. Condens. Matter Phys. 10:357–86
    [Google Scholar]
  20. 20. 
    Broholm C, Cava RJ, Kivelson SA, Nocera DG, Norman MR, Senthil T. 2020. Science 367:6475eaay0668
    [Google Scholar]
  21. 21. 
    Witczak-Krempa W, Chen G, Kim YB, Balents L. 2014. Annu. Rev. Condens. Matter Phys. 5:157–82
    [Google Scholar]
  22. 22. 
    Takagi H, Takayama T, Jackeli G, Khaliullin G, Nagler SE. 2019. Nat. Rev. Phys. 1:4264–80
    [Google Scholar]
  23. 23. 
    Dzero M, Sun K, Galitski V, Coleman P. 2010. Phys. Rev. Lett. 104:10106408
    [Google Scholar]
  24. 24. 
    Lai HH, Grefe SE, Paschen S, Si Q 2018. PNAS 115:193–97
    [Google Scholar]
  25. 25. 
    Ye L, Kang M, Liu J, von Cube F, Wicker CR et al. 2018. Nature 555:638–42
    [Google Scholar]
  26. 26. 
    Yin JX, Ma W, Cochran TA, Xu X, Zhang SS et al. 2020. Nature 583:7817533–36
    [Google Scholar]
  27. 27. 
    Kang M, Ye L, Fang S, You JS, Levitan A et al. 2020. Nat. Mater. 19:2163–69
    [Google Scholar]
  28. 28. 
    Kiyohara N, Tomita T, Nakatsuji S. 2016. Phys. Rev. Appl. 5:6064009
    [Google Scholar]
  29. 29. 
    Nayak AK, Fischer JE, Sun Y, Yan B, Karel J et al. 2016. Sci. Adv. 2:4e1501870
    [Google Scholar]
  30. 30. 
    Chen T, Tomita T, Minami S, Fu M, Koretsune T et al. 2021. Nat. Comm. 12:572
    [Google Scholar]
  31. 31. 
    Jungwirth T, Marti X, Wadley P, Wunderlich J. 2016. Nat. Nanotech. 11:1231–41
    [Google Scholar]
  32. 32. 
    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y. 2018. Rev. Mod. Phys. 90:1015005
    [Google Scholar]
  33. 33. 
    Šmejkal L, Mokrousov Y, Yan B, MacDonald AH 2018. Nat. Phys. 14:242–51
    [Google Scholar]
  34. 34. 
    Bonbien V, Zhuo F, Salimath A, Ly O, Abbout A, Manchon A. 2021. arXiv:2102.01632
  35. 35. 
    Ikhlas M, Tomita T, Koretsune T, Suzuki MT, Nishio-Hamane D et al. 2017. Nat. Phys. 13:111085–90
    [Google Scholar]
  36. 36. 
    Guin SN, Vir P, Zhang Y, Kumar N, Watzman SJ et al. 2019. Adv. Mater. 31:251806622
    [Google Scholar]
  37. 37. 
    Sakai A, Minami S, Koretsune T, Chen T, Higo T et al. 2020. Nature 581:153–57
    [Google Scholar]
  38. 38. 
    Goswami P, Tewari S. 2013. Phys. Rev. B 88:24245107
    [Google Scholar]
  39. 39. 
    Mizuguchi M, Nakatsuji S. 2019. Sci. Tech. Adv. Mater. 20:1262–75
    [Google Scholar]
  40. 40. 
    Higo T, Man H, Gopman DB, Wu L, Koretsune T et al. 2018. Nat. Photon. 12:273–78
    [Google Scholar]
  41. 41. 
    Kimata M, Chen H, Kondou K, Sugimoto S, Muduli PK et al. 2019. Nature 565:7741627–30
    [Google Scholar]
  42. 42. 
    Matsuda T, Kanda N, Higo T, Armitage NP, Nakatsuji S, Matsunaga R. 2020. Nat. Commun. 11:8909
    [Google Scholar]
  43. 43. 
    Tsai H, Higo T, Kondou K, Nomoto T, Sakai A et al. 2020. Nature 580:0608–13
    [Google Scholar]
  44. 44. 
    Otani Y, Higo T. 2021. Appl. Phys. Lett. 118:4040501
    [Google Scholar]
  45. 45. 
    Yang KY, Lu YM, Ran Y. 2011. Phys. Rev. B 84:7075129
    [Google Scholar]
  46. 46. 
    Chen H, Niu Q, MacDonald AH. 2014. Phys. Rev. Lett. 112:1017205
    [Google Scholar]
  47. 47. 
    Kübler J, Felser C. 2014. Euro. Phys. Lett. 108:667001
    [Google Scholar]
  48. 48. 
    Yang H, Sun Y, Zhang Y, Shi WJ, Parkin SSP, Yan BH. 2017. N. J. Phys. 19:015008
    [Google Scholar]
  49. 49. 
    Guo GY, Wang TC. 2017. Phys. Rev. B 96:22224415
    [Google Scholar]
  50. 50. 
    Zhang Y, Sun Y, Yang H, Železný J, Parkin SPP et al. 2017. Phys. Rev. B 95:7075128
    [Google Scholar]
  51. 51. 
    Kübler J, Felser C. 2017. Euro. Phys. Lett. 120:447002
    [Google Scholar]
  52. 52. 
    Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. 2010. Rev. Mod. Phys. 1:11539–92
    [Google Scholar]
  53. 53. 
    Xiao D, Chang MC, Niu Q 2010. Rev. Mod. Phys. 82:31959–2007
    [Google Scholar]
  54. 54. 
    Karplus R, Luttinger JM. 1954. Phys. Rev. 95:51154–60
    [Google Scholar]
  55. 55. 
    Weyl H. 1929. Z. Phys. 56:1330–52
    [Google Scholar]
  56. 56. 
    Xu SY, Belopolski I, Alidoust N, Neupane M, Bian G et al. 2015. Science 349:6248613–17
    [Google Scholar]
  57. 57. 
    Lv BQ, Weng HM, Fu BB, Wang XP, Miao H et al. 2015. Phys. Rev. X 5:3031013
    [Google Scholar]
  58. 58. 
    Ali MN, Xiong J, Flynn S, Tao J, Gibson QD et al. 2014. Nature 514:7521205–8
    [Google Scholar]
  59. 59. 
    Nielsen HB, Ninomiya M. 1983. Phys. Lett. B 130:6389–96
    [Google Scholar]
  60. 60. 
    Son DT, Spivak BZ. 2013. Phys. Rev. B 88:10104412
    [Google Scholar]
  61. 61. 
    Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T et al. 2006. Phys. Rev. Lett. 96:8087204
    [Google Scholar]
  62. 62. 
    Balicas L, Nakatsuji S, Machida Y, Onoda S. 2011. Phys. Rev. Lett. 106:21217204
    [Google Scholar]
  63. 63. 
    Lee WL, Watauchi S, Miller VL, Cava RJ, Ong NP. 2004. Phys. Rev. Lett. 93:22226601
    [Google Scholar]
  64. 64. 
    Miyasato T, Abe N, Fujii T, Asamitsu A, Onose Y et al. 2007. J. Magn. Magn. Mater. 310:21053–55
    [Google Scholar]
  65. 65. 
    Xiao D, Yao Y, Fang Z, Niu Q. 2006. Phys. Rev. Lett. 97:2026603
    [Google Scholar]
  66. 66. 
    Smith AW. 1911. Phys. Rev. (Series I) 33:4295–306
    [Google Scholar]
  67. 67. 
    Li X, Xu L, Ding L, Wang J, Shen M et al. 2017. Phys. Rev. Lett. 119:5056601
    [Google Scholar]
  68. 68. 
    Soluyanov AA, Gresch D, Wang ZJ, Wu QS, Troyer M et al. 2015. Nature 527:7579495–98
    [Google Scholar]
  69. 69. 
    Guin SN, Manna K, Noky J, Watzman SJ, Fu C et al. 2019. NPG Asia Mater. 11:16
    [Google Scholar]
  70. 70. 
    Xu L, Li X, Ding L, Chen T, Sakai A et al. 2020. Phys. Rev. B 101:18180404
    [Google Scholar]
  71. 71. 
    Sumida K, Sakuraba Y, Masuda K, Kono T, Kakoki M et al. 2020. Commun. Mater. 1:89
    [Google Scholar]
  72. 72. 
    Kleiner WH. 1966. Phys. Rev. 142:2318–26
    [Google Scholar]
  73. 73. 
    Kleiner WH. 1967. Phys. Rev. 153:3726–27
    [Google Scholar]
  74. 74. 
    Kleiner WH. 1969. Phys. Rev. 182:3705–9
    [Google Scholar]
  75. 75. 
    Seemann M, Ködderitzsch D, Wimmer S, Ebert H. 2015. Phys. Rev. B 92:15155138
    [Google Scholar]
  76. 76. 
    Kuramoto Y, Kusunose H, Kiss A. 2009. J. Phys. Soc. Jpn. 78:072001
    [Google Scholar]
  77. 77. 
    Santini P, Carretta S, Amoretti G, Caciuffo R, Magnani N, Lander GH. 2009. Rev. Mod. Phys. 81:2807–63
    [Google Scholar]
  78. 78. 
    Mydosh JA, Oppeneer PM, Riseborough PS. 2020. J. Phys. Condens. Matter 32:14143002
    [Google Scholar]
  79. 79. 
    Suzuki MT, Koretsune T, Ochi M, Arita R. 2017. Phys. Rev. B 95:9094406
    [Google Scholar]
  80. 80. 
    Suzuki MT, Nomoto T, Arita R, Yanagi Y, Hayami S, Kusunose H. 2019. Phys. Rev. B 99:17174407
    [Google Scholar]
  81. 81. 
    Nomoto T, Arita R. 2020. Phys. Rev. Res. 2:012045(R)
    [Google Scholar]
  82. 82. 
    Huebsch MT, Nomoto T, Suzuki MT, Arita R. 2021. Phys. Rev. X 11:1011031
    [Google Scholar]
  83. 83. 
    Chappert C, Fert A, Van Dau FN. 2007. Nat. Mater. 6:11813–23
    [Google Scholar]
  84. 84. 
    Shull CG, Samuel Smart J. 1949. Phys. Rev. 76:11256–57
    [Google Scholar]
  85. 85. 
    Núñez AS, Duine RA, Haney P, MacDonald AH. 2006. Phys. Rev. B 73:21214426
    [Google Scholar]
  86. 86. 
    Gomonay EV, Loktev VM. 2014. Low Temp. Phys. 40:117–35
    [Google Scholar]
  87. 87. 
    Higo T, Li Y, Kondou K, Qu D, Ikhlas M et al. 2021. Adv. Funct. Mater. 31:152008971
    [Google Scholar]
  88. 88. 
    Wadley P, Howells B, Železny J, Andrews C, Hills V et al. 2016. Science 351:6273587–90
    [Google Scholar]
  89. 89. 
    Marti X, Fina I, Frontera C, Liu J, Wadley P et al. 2014. Nat. Mater. 13:367–74
    [Google Scholar]
  90. 90. 
    Tsai H, Higo T, Kondou K, Sakamoto S, Kobayashi A et al. 2021. Small Sci. 1:52000025
    [Google Scholar]
  91. 91. 
    Chien CL, Westgate CR 1980. The Hall Effect and Its Applications New York: Springer Sci. & Bus. Media
    [Google Scholar]
  92. 92. 
    Hall EH. 1880. Proc. Phys. Soc. Lond. 4:1325–42
    [Google Scholar]
  93. 93. 
    Shindou R, Nagaosa N. 2001. Phys. Rev. Lett. 87:11116801
    [Google Scholar]
  94. 94. 
    Martin I, Batista CD. 2008. Phys. Rev. Lett. 101:15156402
    [Google Scholar]
  95. 95. 
    Nagamiya T, Tomiyoshi S, Yamaguchi Y. 1982. Solid State Commun. 42:5385–88
    [Google Scholar]
  96. 96. 
    Tomiyoshi S, Yamaguchi Y. 1982. J. Phys. Soc. Jpn. 51:82478–86
    [Google Scholar]
  97. 97. 
    Brown PJ, Nunez V, Tasset F, Forsyth JB, Radhakrishna P. 1990. J. Phys. Condens. Matter. 2:479409–22
    [Google Scholar]
  98. 98. 
    Tomiyoshi S, Yamaguchi Y, Nagamiya T. 1983. J. Magn. Magn. Mater. 31-34:629–30
    [Google Scholar]
  99. 99. 
    Yang SY, Wang Y, Ortiz BR, Liu D, Gayles J et al. 2020. Sci. Adv. 6:31eabb6003
    [Google Scholar]
  100. 100. 
    Pippard AB. 1989. Magnetoresistance in Metals 2 New York: Cambridge Univ. Press
    [Google Scholar]
  101. 101. 
    Xiong J, Kushwaha SK, Liang T, Krizan JW, Hirschberger M et al. 2015. Science 350:6259413–16
    [Google Scholar]
  102. 102. 
    Huang XC, Zhao LX, Long YJ, Wang PP, Chen D et al. 2015. Phys. Rev. X 5:3031023
    [Google Scholar]
  103. 103. 
    Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S et al. 2016. Nat. Mater. 15:111161–65
    [Google Scholar]
  104. 104. 
    Haubold E, Koepernik K, Efremov D, Khim S, Fedorov A et al. 2017. Phys. Rev. B 95:24241108
    [Google Scholar]
  105. 105. 
    Li X, Xu L, Zuo H, Subedi A, Zhu Z, Behnia K. 2018. SciPost Phys. 5:6063
    [Google Scholar]
  106. 106. 
    Xu L, Li X, Lu X, Collignon C, Fu H et al. 2020. Sci. Adv. 6:17eaaz3522
    [Google Scholar]
  107. 107. 
    Sugii K, Imai Y, Shimozawa M, Ikhlas M, Kiyohara N et al. 2019. arXiv:1902.06601
  108. 108. 
    Wuttke C, Caglieris F, Sykora S, Scaravaggi F, Wolter AUB et al. 2019. Phys. Rev. B 100:8085111
    [Google Scholar]
  109. 109. 
    Reichlova H, Janda T, Godinho J, Markou A, Kriegner D et al. 2019. Nat. Commun. 10:5459
    [Google Scholar]
  110. 110. 
    Miwa S, Iihama S, Nomoto T, Tomita T, Higo T et al. 2021. Small Sci. 1:2000062
    [Google Scholar]
  111. 111. 
    Liu J, Balents L. 2017. Phys. Rev. Lett. 119:8087202
    [Google Scholar]
  112. 112. 
    Li X, Collignon C, Xu L, Zuo H, Cavanna A et al. 2019. Nat. Commun. 10:13021
    [Google Scholar]
  113. 113. 
    Mansuripur M. 1995. The Physical Principles of Magneto-optical Recording New York: Cambridge Univ. Press
    [Google Scholar]
  114. 114. 
    Oppeneer PM. 1887. Handbook of Magnetic Materials 13 KHJ Buschow 229–422 Amsterdam: Elsevier
    [Google Scholar]
  115. 115. 
    McCord J. 2015. J. Phys. D: Appl. Phys. 48:1333001
    [Google Scholar]
  116. 116. 
    Feng W, Guo GY, Zhou J, Yao Y, Niu Q. 2015. Phys. Rev. B 92:14144426
    [Google Scholar]
  117. 117. 
    Wu M, Isshiki H, Chen T, Higo T, Nakatsuji S, Otani Y. 2020. Appl. Phys. Lett. 116:13132408
    [Google Scholar]
  118. 118. 
    Yamasaki Y, Nakao H, Arima T. 2020. J. Phys. Soc. Jpn. 89:8083703
    [Google Scholar]
  119. 119. 
    Sasabe N, Kimata M, Nakamura T. 2021. Phys. Rev. Lett. 126:15157402
    [Google Scholar]
  120. 120. 
    Markou A, Taylor JM, Kalache A, Werner P, Parkin SSP, Felser C. 2018. Phys. Rev. Mater. 2:5051001
    [Google Scholar]
  121. 121. 
    Higo T, Qu D, Li Y, Chien CL, Otani Y, Nakatsuji S. 2018. Appl. Phys. Lett. 113:20202402
    [Google Scholar]
  122. 122. 
    Ikeda T, Tsunoda M, Oogane M, Oh S, Morita T, Ando Y. 2018. Appl. Phys. Lett. 113:22222405
    [Google Scholar]
  123. 123. 
    Yoon J, Takeuchi Y, Itoh R, Kanai S, Fukami S, Ohno H. 2019. Appl. Phys. Express 13:1013001
    [Google Scholar]
  124. 124. 
    You Y, Chen X, Zhou X, Gu Y, Zhang R et al. 2019. Adv. Electron. Mater. 5:31800818
    [Google Scholar]
  125. 125. 
    Taylor JM, Markou A, Lesne E, Sivakumar PK, Luo C et al. 2020. Phys. Rev. B 101:9094404
    [Google Scholar]
  126. 126. 
    Nakano T, Higo T, Kobayashi A, Miwa S, Nakatsuji S, Yakushiji K. 2021. Phys. Rev. Mater. 5:5054402
    [Google Scholar]
  127. 127. 
    Muduli PK, Higo T, Nishikawa T, Qu D, Isshiki H et al. 2019. Phys. Rev. B 99:18184425
    [Google Scholar]
  128. 128. 
    Hirsch JE. 1999. Phys. Rev. Lett. 83:91834–37
    [Google Scholar]
  129. 129. 
    Kato YK, Myers RC, Gossard AC, Awschalom DD. 2004. Science 306:57031910–13
    [Google Scholar]
  130. 130. 
    Wunderlich J, Kaestner B, Sinova J, Jungwirth T. 2005. Phys. Rev. Lett. 94:4047204
    [Google Scholar]
  131. 131. 
    Saitoh E, Ueda M, Miyajima H, Tatara G. 2006. Appl. Phys. Lett. 88:18182509
    [Google Scholar]
  132. 132. 
    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S. 2007. Phys. Rev. Lett. 98:15156601
    [Google Scholar]
  133. 133. 
    Liu L, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA. 2012. Science 336:0555–58
    [Google Scholar]
  134. 134. 
    Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. 2015. Rev. Mod. Phys. 87:41213–60
    [Google Scholar]
  135. 135. 
    Hellman F, Hoffmann A, Tserkovnyak Y, Beach GSD, Fullerton EE et al. 2017. Rev. Mod. Phys. 89:2025006
    [Google Scholar]
  136. 136. 
    Železný J, Zhang Y, Felser C, Yan B. 2017. Phys. Rev. Lett. 119:18187204
    [Google Scholar]
  137. 137. 
    Nan T, Quintela CX, Irwin J, Gurung G, Shao DF et al. 2020. Nat. Commun. 11:14671
    [Google Scholar]
  138. 138. 
    Chen X, Shi S, Shi G, Fan X, Song C et al. 2021. Nat. Mater. 20:6800–4
    [Google Scholar]
  139. 139. 
    Zhang W, Han W, Yang SH, Sun Y, Zhang Y et al. 2016. Sci. Adv. 2:9e1600759
    [Google Scholar]
  140. 140. 
    Tsai H, Higo T, Kondou K, Kobayashi A, Nakano T et al. 2021. AIP Adv. 11:4045110
    [Google Scholar]
  141. 141. 
    Slonczewski JC. 1996. J. Magn. Magn. Mater. 159:1–2L1–7
    [Google Scholar]
  142. 142. 
    Berger L. 1996. Phys. Rev. B. 54:1–29353
    [Google Scholar]
  143. 143. 
    Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC. 2000. Phys. Rev. Lett. 84:1–23149
    [Google Scholar]
  144. 144. 
    Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV et al. 2011. Nature 476:189–93
    [Google Scholar]
  145. 145. 
    MacDonald AH, Tsoi M. 2011. Philos. Trans. R. Soc. A 369: 1948.3098–114
    [Google Scholar]
  146. 146. 
    Bodnar S, Šmejkal YL, Turek I, Jungwirth T, Gomonay O et al. 2018. Nat. Commun. 9:348
    [Google Scholar]
  147. 147. 
    Moriyama T, Oda K, Ohkochi T, Kimata M, Ono T. 2018. Sci. Rep. 8:14167
    [Google Scholar]
  148. 148. 
    Chen XZ, Zarzuela R, Zhang J, Song C, Zhou XF et al. 2018. Phys. Rev. Lett. 120:207204–6
    [Google Scholar]
  149. 149. 
    Zhou X, Chen X, Zhang J, Li F, Shi G et al. 2019. Phys. Rev. Appl. 11:5054030
    [Google Scholar]
  150. 150. 
    Saidl V, Němec P, Wadley P, Hills V, Campion RP et al. 2017. Nat. Photon. 11:591–96
    [Google Scholar]
  151. 151. 
    Chiang CC, Huang SY, Qu D, Wu PH, Chien CL. 2019. Phys. Rev. Lett. 123:22227203
    [Google Scholar]
  152. 152. 
    Sugimoto S, Nakatani Y, Yamane Y, Ikhlas M, Kondou K et al. 2020. Commun. Phys. 3:111
    [Google Scholar]
  153. 153. 
    Bell LE. 2008. Science 321:58951457–61
    [Google Scholar]
  154. 154. 
    Sakuraba Y, Hasegawa K, Mizuguchi M, Kubota T, Mizukami S et al. 2013. Appl. Phys. Express 6:3033003
    [Google Scholar]
  155. 155. 
    Narita H, Ikhlas M, Kimata M, Nugroho AA, Nakatsuji S, Otani Y. 2017. Appl. Phys. Lett. 111:20202404
    [Google Scholar]
  156. 156. 
    Li X, Zhu Z, Behnia K. 2021. Adv. Mater. 33:202100751
    [Google Scholar]
  157. 157. 
    Minami S, Ishii F, Hirayama M, Nomoto T, Koretsune T, Arita R. 2020. Phys. Rev. B 102:20205128
    [Google Scholar]
  158. 158. 
    Kargarian M, Randeria M, Trivedi N. 2015. Sci. Rep. 5:12683
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031620-103859
Loading
/content/journals/10.1146/annurev-conmatphys-031620-103859
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error