1932

Abstract

Active fluids exhibit spontaneous flows with complex spatiotemporal structure, which have been observed in bacterial suspensions, sperm cells, cytoskeletal suspensions, self-propelled colloids, and cell tissues. Despite occurring in the absence of inertia, chaotic active flows are reminiscent of inertial turbulence, and hence they are known as active turbulence. Here, we survey the field, providing a unified perspective over different classes of active turbulence. To this end, we divide our review into sections for systems with either polar or nematic order, and with or without momentum conservation (wet or dry). Comparing to inertial turbulence, we highlight the emergence of power-law scaling with either universal or nonuniversal exponents. We also contrast scenarios for the transition from steady to chaotic flows, and we discuss the absence of energy cascades. We link this feature to both the existence of intrinsic length scales and the self-organized nature of energy injection in active turbulence, which are fundamental differences from inertial turbulence. We close by outlining the emerging picture, remaining challenges, and future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-082321-035957
2022-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-082321-035957.html?itemId=/content/journals/10.1146/annurev-conmatphys-082321-035957&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Frisch U. 1995. Turbulence. The legacy of A.N. Kolmogorov Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  2. 2. 
    Rose H, Sulem P. 1978. J. Phys. 39:441–84
    [Google Scholar]
  3. 3. 
    Falkovich G, Sreenivasan KR. 2006. Phys. Today 59:43–49
    [Google Scholar]
  4. 4. 
    Kolmogorov AN. 1991. Proc. R. Soc. A Math. Phys. Eng. Sci. 434:9–13
    [Google Scholar]
  5. 5. 
    Kraichnan RH, Montgomery D. 1980. Rep. Prog. Phys. 43:547–619
    [Google Scholar]
  6. 6. 
    Boffetta G, Ecke RE. 2012. Annu. Rev. Fluid Mech. 44:427–51
    [Google Scholar]
  7. 7. 
    Groisman A, Steinberg V. 2000. Nature 405:53–55
    [Google Scholar]
  8. 8. 
    Groisman A, Steinberg V. 2001. Nature 410:905–8
    [Google Scholar]
  9. 9. 
    Steinberg V. 2019. Phys. Rev. Lett. 123:234501
    [Google Scholar]
  10. 10. 
    Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO. 2004. Phys. Rev. Lett. 93:098103
    [Google Scholar]
  11. 11. 
    Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO. 2007. Exp. Fluids 43:737–53
    [Google Scholar]
  12. 12. 
    Sokolov A, Aranson IS, Kessler JO, Goldstein RE. 2007. Phys. Rev. Lett. 98:158102
    [Google Scholar]
  13. 13. 
    Ishikawa T, Yoshida N, Ueno H, Wiedeman M, Imai Y, Yamaguchi T. 2011. Phys. Rev. Lett. 107:028102
    [Google Scholar]
  14. 14. 
    Sokolov A, Aranson IS. 2012. Phys. Rev. Lett. 109:248109
    [Google Scholar]
  15. 15. 
    Wensink HH, Dunkel J, Heidenreich S, Drescher K, Goldstein RE et al. 2012. PNAS 109:14308–13
    [Google Scholar]
  16. 16. 
    Dunkel J, Heidenreich S, Drescher K, Wensink HH, Bär M, Goldstein RE. 2013. Phys. Rev. Lett. 110:228102
    [Google Scholar]
  17. 17. 
    Patteson AE, Gopinath A, Arratia PE. 2018. Nat. Commun. 9:5373
    [Google Scholar]
  18. 18. 
    Li H, Shi XQ, Huang M, Chen X, Xiao M et al. 2019. PNAS 116:777–85
    [Google Scholar]
  19. 19. 
    Peng Y, Liu Z, Cheng X. 2021. Sci. Adv. 7:eabd1240
    [Google Scholar]
  20. 20. 
    Liu Z, Zeng W, Ma X, Cheng X. 2021. 171050617
  21. 21. 
    Creppy A, Praud O, Druart X, Kohnke PL, Plouraboué F. 2015. Phys. Rev. E 92:032722
    [Google Scholar]
  22. 22. 
    Sanchez T, Chen DTN, DeCamp SJ, Heymann M, Dogic Z. 2012. Nature 491:431–34
    [Google Scholar]
  23. 23. 
    Henkin G, DeCamp SJ, Chen DTN, Sanchez T, Dogic Z. 2014. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372:20140142
    [Google Scholar]
  24. 24. 
    Guillamat P, Ignés-Mullol J, Sagués F. 2017. Nat. Commun. 8:564
    [Google Scholar]
  25. 25. 
    Lemma LM, DeCamp SJ, You Z, Giomi L, Dogic Z. 2019. Soft Matter 15:3264–72
    [Google Scholar]
  26. 26. 
    Martínez-Prat B, Ignés-Mullol J, Casademunt J, Sagués F. 2019. Nat. Phys. 15:36266
    [Google Scholar]
  27. 27. 
    Tan AJ, Roberts E, Smith SA, Olvera UA, Arteaga J et al. 2019. Nat. Phys. 15:1033–39
    [Google Scholar]
  28. 28. 
    Martínez-Prat B, Alert R, Meng F, Ignés-Mullol J, Joanny JF et al. 2021. Phys. Rev. X 11:031065
    [Google Scholar]
  29. 29. 
    Doostmohammadi A, Thampi SP, Saw TB, Lim CT, Ladoux B, Yeomans JM. 2015. Soft Matter 11:7328–36
    [Google Scholar]
  30. 30. 
    Yang TD, Kim H, Yoon C, Baek SK, Lee KJ. 2016. New J. Phys. 18:103032
    [Google Scholar]
  31. 31. 
    Blanch-Mercader C, Yashunsky V, Garcia S, Duclos G, Giomi L, Silberzan P. 2018. Phys. Rev. Lett. 120:208101
    [Google Scholar]
  32. 32. 
    Lin SZ, Zhang WY, Bi D, Li B, Feng XQ. 2021. Commun. Phys. 4:21
    [Google Scholar]
  33. 33. 
    Nishiguchi D, Sano M. 2015. Phys. Rev. E 92:052309
    [Google Scholar]
  34. 34. 
    Karani H, Pradillo GE, Vlahovska PM. 2019. Phys. Rev. Lett. 123:208002
    [Google Scholar]
  35. 35. 
    Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:1143–89
    [Google Scholar]
  36. 36. 
    Thampi SP, Yeomans JM. 2016. Eur. Phys. J. Spec. Top. 225:651–62
    [Google Scholar]
  37. 37. 
    Drescher K, Dunkel J, Cisneros LH, Ganguly S, Goldstein RE. 2011. PNAS 108:10940–45
    [Google Scholar]
  38. 38. 
    Koch DL, Subramanian G. 2011. Annu. Rev. Fluid Mech. 43:637–59
    [Google Scholar]
  39. 39. 
    Blanch-Mercader C, Vincent R, Bazellières E, Serra-Picamal X, Trepat X, Casademunt J. 2017. Soft Matter 13:1235–43
    [Google Scholar]
  40. 40. 
    Duclos G, Blanch-Mercader C, Yashunsky V, Salbreux G, Joanny JF et al. 2018. Nat. Phys. 14:728–32
    [Google Scholar]
  41. 41. 
    Pérez-González C, Alert R, Blanch-Mercader C, Gómez-González M, Kolodziej T et al. 2019. Nat. Phys. 15:79–88
    [Google Scholar]
  42. 42. 
    Saffman PG, Delbrück M. 1975. PNAS 72:3111–13
    [Google Scholar]
  43. 43. 
    Maitra A, Srivastava P, Marchetti MC, Ramaswamy S, Lenz M. 2020. Phys. Rev. Lett. 124:028002
    [Google Scholar]
  44. 44. 
    Bricard A, Caussin JB, Desreumaux N, Dauchot O, Bartolo D. 2013. Nature 503:95–98
    [Google Scholar]
  45. 45. 
    Narayan V, Ramaswamy S, Menon N. 2007. Science 317:105–8
    [Google Scholar]
  46. 46. 
    Kumar N, Zhang R, de Pablo JJ, Gardel ML. 2018. Sci. Adv. 4:eaat7779
    [Google Scholar]
  47. 47. 
    Zhang R, Kumar N, Ross JL, Gardel ML, de Pablo JJ. 2018. PNAS 115:E124–33
    [Google Scholar]
  48. 48. 
    Loiseau E, Gsell S, Nommick A, Jomard C, Gras D et al. 2020. Nat. Phys. 16:1158–64
    [Google Scholar]
  49. 49. 
    Copenhagen K, Alert R, Wingreen NS, Shaevitz JW. 2021. Nat. Phys. 17:211–15
    [Google Scholar]
  50. 50. 
    Aranson IS, Sokolov A, Kessler JO, Goldstein RE. 2007. Phys. Rev. E 75:040901
    [Google Scholar]
  51. 51. 
    Wolgemuth CW. 2008. Biophys. J. 95:1564–74
    [Google Scholar]
  52. 52. 
    Bär M, Großmann R, Heidenreich S, Peruani F. 2020. Annu. Rev. Condens. Matter Phys. 11:441–66
    [Google Scholar]
  53. 53. 
    Großmann R, Romanczuk P, Bär M, Schimansky-Geier L. 2014. Phys. Rev. Lett. 113:258104
    [Google Scholar]
  54. 54. 
    Dunkel J, Heidenreich S, Bär M, Goldstein RE. 2013. New J. Phys. 15:045016
    [Google Scholar]
  55. 55. 
    Bratanov V, Jenko F, Frey E. 2015. PNAS 112:15048–53
    [Google Scholar]
  56. 56. 
    James M, Bos WJT, Wilczek M. 2018. Phys. Rev. Fluids 3:061101
    [Google Scholar]
  57. 57. 
    James M, Wilczek M. 2018. Eur. Phys. J. E 41:21
    [Google Scholar]
  58. 58. 
    Heidenreich S, Dunkel J, Klapp SHL, Bär M. 2016. Phys. Rev. E 94:020601
    [Google Scholar]
  59. 59. 
    Reinken H, Klapp SHL, Bär M, Heidenreich S. 2018. Phys. Rev. E 97:022613
    [Google Scholar]
  60. 60. 
    Toner J, Tu Y. 1995. Phys. Rev. Lett. 75:4326–29
    [Google Scholar]
  61. 61. 
    Toner J, Tu Y, Ramaswamy S. 2005. Ann. Phys. (N. Y.) 318:170–244
    [Google Scholar]
  62. 62. 
    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. 1995. Phys. Rev. Lett. 75:1226–29
    [Google Scholar]
  63. 63. 
    Hatwalne Y, Ramaswamy S, Rao M, Simha R. 2004. Phys. Rev. Lett. 92:118101
    [Google Scholar]
  64. 64. 
    Sokolov A, Aranson I. 2009. Phys. Rev. Lett. 103:148101
    [Google Scholar]
  65. 65. 
    Giomi L, Liverpool TB, Marchetti MC. 2010. Phys. Rev. E 81:051908
    [Google Scholar]
  66. 66. 
    Ramaswamy S. 2010. Annu. Rev. Condens. Matter Phys. 1:323–45
    [Google Scholar]
  67. 67. 
    Gachelin J, Miño G, Berthet H, Lindner A, Rousselet A, Clément É. 2013. Phys. Rev. Lett. 110:268103
    [Google Scholar]
  68. 68. 
    López HM, Gachelin J, Douarche C, Auradou H, Clément E. 2015. Phys. Rev. Lett. 115:028301
    [Google Scholar]
  69. 69. 
    Saintillan D. 2018. Annu. Rev. Fluid Mech. 50:563–92
    [Google Scholar]
  70. 70. 
    Swift J, Hohenberg P. 1977. Phys. Rev. A 15:319–28
    [Google Scholar]
  71. 71. 
    Cross M, Hohenberg P. 1993. Rev. Mod. Phys. 65:851–1112
    [Google Scholar]
  72. 72. 
    Zhang J, Alert R, Yan J, Wingreen NS, Granick S. 2021. Nat. Phys. 17:961–67
    [Google Scholar]
  73. 73. 
    Kim JH, Serra-Picamal X, Tambe DT, Zhou EH, Park CY et al. 2013. Nat. Mater. 12:856–63
    [Google Scholar]
  74. 74. 
    Notbohm J, Banerjee S, Utuje KJ, Gweon B, Jang H et al. 2016. Biophys. J. 110:2729–38
    [Google Scholar]
  75. 75. 
    Alert R, Trepat X. 2020. Annu. Rev. Condens. Matter Phys. 11:77–101
    [Google Scholar]
  76. 76. 
    Blanch-Mercader C, Casademunt J. 2017. Soft Matter 13:6913–28
    [Google Scholar]
  77. 77. 
    de Gennes PG, Prost J. 1993. The Physics of Liquid Crystals Oxford, UK: Oxford Univ. Press. , 2nd ed..
    [Google Scholar]
  78. 78. 
    Prost J, Jülicher F, Joanny JF. 2015. Nat. Phys. 11:111–17
    [Google Scholar]
  79. 79. 
    Jülicher F, Grill SW, Salbreux G. 2018. Rep. Prog. Phys. 81:076601
    [Google Scholar]
  80. 80. 
    Aranson IS, Kramer L. 2002. Rev. Mod. Phys. 74:99–143
    [Google Scholar]
  81. 81. 
    Chate H. 1994. Nonlinearity 7:185–204
    [Google Scholar]
  82. 82. 
    Marcq P. 2014. Eur. Phys. J. E 37:29
    [Google Scholar]
  83. 83. 
    Słomka J, Dunkel J. 2015. Eur. Phys. J. Spec. Top. 224:1349–58
    [Google Scholar]
  84. 84. 
    Aranson IS, Tsimring LS. 2006. Rev. Mod. Phys. 78:641–92
    [Google Scholar]
  85. 85. 
    Słomka J, Dunkel J. 2017. PNAS 114:2119–24
    [Google Scholar]
  86. 86. 
    Słomka J, Dunkel J. 2017. Phys. Rev. Fluids 2:043102
    [Google Scholar]
  87. 87. 
    Mickelin O, Słomka J, Burns KJ, Lecoanet D, Vasil GM et al. 2018. Phys. Rev. Lett. 120:164503
    [Google Scholar]
  88. 88. 
    Słomka J, Suwara P, Dunkel J. 2018. J. Fluid Mech. 841:702–31
    [Google Scholar]
  89. 89. 
    Linkmann M, Boffetta G, Marchetti MC, Eckhardt B. 2019. Phys. Rev. Lett. 122:214503
    [Google Scholar]
  90. 90. 
    Linkmann M, Marchetti MC, Boffetta G, Eckhardt B. 2020. Phys. Rev. E 101:022609
    [Google Scholar]
  91. 91. 
    Kokot G, Das S, Winkler RG, Gompper G, Aranson IS, Snezhko A. 2017. PNAS 114:12870–75
    [Google Scholar]
  92. 92. 
    Bourgoin M, Kervil R, Cottin-Bizonne C, Raynal F, Volk R, Ybert C. 2020. Phys. Rev. X 10:021065
    [Google Scholar]
  93. 93. 
    Bonelli F, Gonnella G, Tiribocchi A, Marenduzzo D. 2016. Eur. Phys. J. E. 39:1
    [Google Scholar]
  94. 94. 
    Chatterjee R, Rana N, Simha RA, Perlekar P, Ramaswamy S. 2021. Phys. Rev. X 11:031063
    [Google Scholar]
  95. 95. 
    Giomi L, Marchetti MC, Liverpool TB. 2008. Phys. Rev. Lett. 101:198101
    [Google Scholar]
  96. 96. 
    Tjhung E, Cates ME, Marenduzzo D. 2011. Soft Matter 7:7453–64
    [Google Scholar]
  97. 97. 
    Giomi L, Marchetti MC. 2012. Soft Matter 8:129–39
    [Google Scholar]
  98. 98. 
    Tu Y, Toner J, Ulm M. 1998. Phys. Rev. Lett. 80:4819–22
    [Google Scholar]
  99. 99. 
    Bertin E, Droz M, Grégoire G. 2009. J. Phys. A Math. Theor. 42:445001
    [Google Scholar]
  100. 100. 
    Geyer D, Morin A, Bartolo D. 2018. Nat. Mater. 17:789–93
    [Google Scholar]
  101. 101. 
    Chen C, Liu S, Xq Shi, Chaté H, Wu Y. 2017. Nature 542:210–14
    [Google Scholar]
  102. 102. 
    Ramaswamy R, Jülicher F. 2016. Sci. Rep. 6:20838
    [Google Scholar]
  103. 103. 
    Giomi L, Mahadevan L, Chakraborty B, Hagan MF. 2011. Phys. Rev. Lett. 106:218101
    [Google Scholar]
  104. 104. 
    Carenza LN, Biferale L, Gonnella G. 2020. Phys. Rev. Fluids 5:011302
    [Google Scholar]
  105. 105. 
    Škultéty V, Nardini C, Stenhammar J, Marenduzzo D, Morozov A. 2020. Phys. Rev. X 10:031059
    [Google Scholar]
  106. 106. 
    Doostmohammadi A, Ignés-Mullol J, Yeomans JM, Sagués F. 2018. Nat. Commun. 9:3246
    [Google Scholar]
  107. 107. 
    Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K. 2005. Eur. Phys. J. E 16:5–16
    [Google Scholar]
  108. 108. 
    Voituriez R, Joanny JF, Prost J. 2005. Europhys. Lett. 70:404–10
    [Google Scholar]
  109. 109. 
    Simha RA, Ramaswamy S. 2002. Phys. Rev. Lett. 89:058101
    [Google Scholar]
  110. 110. 
    Edwards SA, Yeomans JM. 2009. Europhys. Lett. 85:18008
    [Google Scholar]
  111. 111. 
    Alert R, Joanny JF, Casademunt J. 2020. Nat. Phys. 16:682–88
    [Google Scholar]
  112. 112. 
    Kléman M. 1989. Rep. Prog. Phys. 52:555
    [Google Scholar]
  113. 113. 
    Aranson IS. 2019. Physics-Uspekhi 62:892–909
    [Google Scholar]
  114. 114. 
    Thampi SP, Golestanian R, Yeomans JM. 2014. Europhys. Lett. 105:18001
    [Google Scholar]
  115. 115. 
    Thampi SP, Golestanian R, Yeomans JM. 2014. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372:20130366
    [Google Scholar]
  116. 116. 
    Giomi L, Bowick MJ, Ma X, Marchetti MC. 2013. Phys. Rev. Lett. 110:228101
    [Google Scholar]
  117. 117. 
    Giomi L, Bowick MJ, Mishra P, Sknepnek R, Marchetti MC. 2014. Philos. Trans. A. Math. Phys. Eng. Sci. 372:20130365
    [Google Scholar]
  118. 118. 
    Shankar S, Ramaswamy S, Marchetti MC, Bowick MJ. 2018. Phys. Rev. Lett. 121:108002
    [Google Scholar]
  119. 119. 
    Thampi SP, Golestanian R, Yeomans JM. 2013. Phys. Rev. Lett. 111:118101
    [Google Scholar]
  120. 120. 
    Giomi L. 2015. Phys. Rev. X 5:031003
    [Google Scholar]
  121. 121. 
    Fielding SM, Marenduzzo D, Cates ME. 2011. Phys. Rev. E 83:041910
    [Google Scholar]
  122. 122. 
    Shendruk TN, Doostmohammadi A, Thijssen K, Yeomans JM. 2017. Soft Matter 13:3853–62
    [Google Scholar]
  123. 123. 
    Doostmohammadi A, Yeomans JM. 2019. Eur. Phys. J. Spec. Top. 227:2401–11
    [Google Scholar]
  124. 124. 
    Doostmohammadi A, Shendruk TN, Thijssen K, Yeomans JM. 2017. Nat. Commun. 8:15326
    [Google Scholar]
  125. 125. 
    Hardoüin J, Hughes R, Doostmohammadi A, Laurent J, Lopez-Leon T et al. 2019. Commun. Phys. 2:121
    [Google Scholar]
  126. 126. 
    Maitra A, Srivastava P, Marchetti MC, Lintuvuori JS, Ramaswamy S, Lenz M. 2018. PNAS 115:6934–39
    [Google Scholar]
  127. 127. 
    Hemingway EJ, Mishra P, Marchetti MC, Fielding SM. 2016. Soft Matter 12:7943–52
    [Google Scholar]
  128. 128. 
    Underhill PT, Hernandez-Ortiz JP, Graham MD. 2008. Phys. Rev. Lett. 100:248101
    [Google Scholar]
  129. 129. 
    Bárdfalvy D, Nordanger H, Nardini C, Morozov A, Stenhammar J. 2019. Soft Matter 15:7747–56
    [Google Scholar]
  130. 130. 
    Worlitzer VM, Ariel G, Be'er A, Stark H, Bär M, Heidenreich S. 2021. New J. Phys. 23:033012
    [Google Scholar]
  131. 131. 
    Urzay J, Doostmohammadi A, Yeomans JM. 2017. J. Fluid Mech. 822:762–73
    [Google Scholar]
  132. 132. 
    Carenza LN, Biferale L, Gonnella G. 2020. Europhys. Lett. 132:44003
    [Google Scholar]
  133. 133. 
    Chaté H. 2020. Annu. Rev. Condens. Matter Phys. 11:189–212
    [Google Scholar]
  134. 134. 
    Ngo S, Peshkov A, Aranson IS, Bertin E, Ginelli F, Chaté H. 2014. Phys. Rev. Lett. 113:038302
    [Google Scholar]
  135. 135. 
    Putzig E, Redner GS, Baskaran A, Baskaran A. 2016. Soft Matter 12:3854–59
    [Google Scholar]
  136. 136. 
    Maryshev I, Goryachev AB, Marenduzzo D, Morozov A. 2019. Soft Matter 15:6038–43
    [Google Scholar]
  137. 137. 
    Patelli A, Djafer-Cherif I, Aranson IS, Bertin E, Chaté H. 2019. Phys. Rev. Lett. 123:258001
    [Google Scholar]
  138. 138. 
    Kawaguchi K, Kageyama R, Sano M. 2017. Nature 545:327–31
    [Google Scholar]
  139. 139. 
    Thijssen K, Metselaar L, Yeomans JM, Doostmohammadi A. 2020. Soft Matter 16:2065–74
    [Google Scholar]
  140. 140. 
    Guillamat P, Ignés-Mullol J, Sagués F. 2016. PNAS 113:5498–502
    [Google Scholar]
  141. 141. 
    Thampi SP, Golestanian R, Yeomans JM. 2014. Phys. Rev. E 90:062307
    [Google Scholar]
  142. 142. 
    Doostmohammadi A, Adamer MF, Thampi SP, Yeomans JM. 2016. Nat. Commun. 7:10557
    [Google Scholar]
  143. 143. 
    Srivastava P, Mishra P, Marchetti MC. 2016. Soft Matter 12:8214–25
    [Google Scholar]
  144. 144. 
    Oza AU, Dunkel J. 2016. New J. Phys. 18:093006
    [Google Scholar]
  145. 145. 
    Oza AU, Heidenreich S, Dunkel J. 2016. Eur. Phys. J. E 39:97
    [Google Scholar]
  146. 146. 
    Coelho RCV, Araújo NAM, Telo da Gama MM. 2020. Soft Matter 16:4256–66
    [Google Scholar]
  147. 147. 
    Thijssen K, Nejad MR, Yeomans JM. 2020. Phys. Rev. Lett. 125:218004
    [Google Scholar]
  148. 148. 
    DeCamp SJ, Redner GS, Baskaran A, Hagan MF, Dogic Z. 2015. Nat. Mater. 14:1110–15
    [Google Scholar]
  149. 149. 
    Pearce DJG, Nambisan J, Ellis PW, Fernandez-Nieves A, Giomi L. 2021. Phys. Rev. Lett 127197801
    [Google Scholar]
  150. 150. 
    Shankar S, Marchetti MC. 2019. Phys. Rev. X 9:041047
    [Google Scholar]
  151. 151. 
    Thijssen K, Khaladj D, Aghvami SA, Gharbi MA, Fraden S et al. 2021. PNAS 118:38e2106038118
    [Google Scholar]
  152. 152. 
    Guillamat P, Ignés-Mullol J, Shankar S, Marchetti MC, Sagués F. 2016. Phys. Rev. E 94:060602
    [Google Scholar]
  153. 153. 
    Qiu X, Ding L, Huang Y, Chen M, Lu Z et al. 2016. Phys. Rev. E 93:062226
    [Google Scholar]
  154. 154. 
    Wang L, Huang Y. 2017. Phys. Rev. E 95:052215
    [Google Scholar]
  155. 155. 
    Hashemi A, Ejtehadi MR. 2021. Soft Mater. 19:316–22
    [Google Scholar]
  156. 156. 
    Ellis PW, Pearce DJG, Chang YW, Goldsztein G, Giomi L, Fernandez-Nieves A. 2018. Nat. Phys. 14:85–90
    [Google Scholar]
  157. 157. 
    Duclos G, Adkins R, Banerjee D, Peterson MSE, Varghese M et al. 2020. Science 367:1120–24
    [Google Scholar]
  158. 158. 
    Shendruk TN, Thijssen K, Yeomans JM, Doostmohammadi A. 2018. Phys. Rev. E 98:010601
    [Google Scholar]
  159. 159. 
    Čopar S, Aplinc J, Kos Ž, Žumer S, Ravnik M. 2019. Phys. Rev. X 9:031051
    [Google Scholar]
  160. 160. 
    Binysh J, Kos Ž, Čopar S, Ravnik M, Alexander GP. 2020. Phys. Rev. Lett. 124:088001
    [Google Scholar]
  161. 161. 
    Krajnik Ž, Kos Ž, Ravnik M. 2020. Soft Matter 16:9059–68
    [Google Scholar]
  162. 162. 
    Carenza LN, Gonnella G, Marenduzzo D, Negro G. 2019. PNAS 116:22065–70
    [Google Scholar]
  163. 163. 
    Needleman D, Shelley M. 2019. Phys. Today 72:32–38
    [Google Scholar]
  164. 164. 
    Nishikawa M, Naganathan SR, Jülicher F, Grill SW. 2017. eLife 6:e19595
    [Google Scholar]
  165. 165. 
    Sanjay CP, Joy A. 2020. Phys. Rev. Fluids 5:024302
    [Google Scholar]
  166. 166. 
    Mukherjee S, Singh RK, James M, Ray SS. 2021. Phys. Rev. Lett. 127:118001
    [Google Scholar]
  167. 167. 
    Hemingway EJ, Maitra A, Banerjee S, Marchetti MC, Ramaswamy S et al. 2015. Phys. Rev. Lett. 114:098302
    [Google Scholar]
  168. 168. 
    Hemingway EJ, Cates ME, Fielding SM. 2016. Phys. Rev. E 93:032702
    [Google Scholar]
  169. 169. 
    Liu S, Shankar S, Marchetti MC, Wu Y. 2021. Nature 590:80–84
    [Google Scholar]
  170. 170. 
    Tan TH, Liu J, Miller PW, Tekant M, Dunkel J, Fakhri N. 2020. Nat. Phys. 16:657–62
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-082321-035957
Loading
/content/journals/10.1146/annurev-conmatphys-082321-035957
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error