1932

Abstract

The aversion of hydrophobic solutes for water drives diverse interactions and assemblies across materials science, biology, and beyond. Here, we review the theoretical, computational, and experimental developments that underpin a contemporary understanding of hydrophobic effects. We discuss how an understanding of density fluctuations in bulk water can shed light on the fundamental differences in the hydration of molecular and macroscopic solutes; these differences, in turn, explain why hydrophobic interactions become stronger upon increasing temperature. We also illustrate the sensitive dependence of surface hydrophobicity on the chemical and topographical patterns the surface displays, which makes the use of approximate approaches for estimating hydrophobicity particularly challenging. Importantly, the hydrophobicity of complex surfaces, such as those of proteins, which display nanoscale heterogeneity, can nevertheless be characterized using interfacial water density fluctuations; such a characterization also informs protein regions that mediate their interactions. Finally, we build upon an understanding of hydrophobic hydration and the ability to characterize hydrophobicity to inform the context-dependent thermodynamic forces that drive hydrophobic interactions and the desolvation barriers that impede them.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040220-045516
2022-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-040220-045516.html?itemId=/content/journals/10.1146/annurev-conmatphys-040220-045516&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ball P. 2008. Chem. Rev. 108:174–108
    [Google Scholar]
  2. 2. 
    Jamadagni SN, Godawat R, Garde S. 2011. Annu. Rev. Chem. Biomol. Eng. 2:147–71
    [Google Scholar]
  3. 3. 
    Hillyer MB, Gibb BC. 2016. Annu. Rev. Phys. Chem. 67:307–29
    [Google Scholar]
  4. 4. 
    Ben-Amotz D. 2016. Annu. Rev. Phys. Chem. 67:617–38
    [Google Scholar]
  5. 5. 
    Berne BJ, Weeks JD, Zhou R. 2009. Annu. Rev. Phys. Chem. 60:85–103
    [Google Scholar]
  6. 6. 
    Dill KA, Truskett TM, Vlachy V, Hribar-Lee B. 2005. Annu. Rev. Biophys. Biomol. Struct. 34:173–99
    [Google Scholar]
  7. 7. 
    Tanford C. 1973. Hydrophobic Effect: Formation of Micelles and Biological Membranes New York: Wiley
    [Google Scholar]
  8. 8. 
    Haase MF, Sharifi-Mood N, Lee D, Stebe KJ 2016. ACS Nano 10:66338–44
    [Google Scholar]
  9. 9. 
    Dobson CM. 2003. Nature 426:6968884–90
    [Google Scholar]
  10. 10. 
    Levy Y, Onuchic JN. 2006. Annu. Rev. Biophys. Biomol. Struct. 35:389–415
    [Google Scholar]
  11. 11. 
    Krone MG, Hua L, Soto P, Zhou R, Berne BJ, Shea JE. 2008. J. Am. Chem. Soc. 130:3311066–72
    [Google Scholar]
  12. 12. 
    Thirumalai D, O'Brien EP, Morrison G, Hyeon C. 2010. Annu. Rev. Biophys. 39:159–83
    [Google Scholar]
  13. 13. 
    Chandler D, Varilly P. 2012. Proc. Int. School Phys. “Enrico Fermi” 176 Complex Materials in Physics and Biology, Varenna, Italy, July 2010, ed. F Mallamace, HE Stanley, pp 75–111 Amsterdam: IOS Press
    [Google Scholar]
  14. 14. 
    Chandler D. 2005. Nature 437:7059640–47
    [Google Scholar]
  15. 15. 
    Godawat R, Jamadagni SN, Garde S. 2009. PNAS 106:3615119–24
    [Google Scholar]
  16. 16. 
    Patel AJ, Varilly P, Chandler D 2010. J. Phys. Chem. B 114:41632–37
    [Google Scholar]
  17. 17. 
    Patel AJ, Varilly P, Jamadagni SN, Acharya H, Garde S, Chandler D. 2011. PNAS 108:4317678–83
    [Google Scholar]
  18. 18. 
    Patel AJ, Varilly P, Jamadagni SN, Hagan MF, Chandler D, Garde S 2012. J. Phys. Chem. B 116:82498–503
    [Google Scholar]
  19. 19. 
    Patel AJ, Garde S. 2014. J. Phys. Chem. B 118:61564–73
    [Google Scholar]
  20. 20. 
    Giovambattista N, Lopez CF, Rossky PJ, Debenedetti PG. 2008. PNAS 105:72274–79
    [Google Scholar]
  21. 21. 
    Giovambattista N, Debenedetti PG, Rossky PJ. 2009. PNAS 106:3615181–85
    [Google Scholar]
  22. 22. 
    Acharya H, Vembanur S, Jamadagni SN, Garde S. 2010. Faraday Discuss 146:353–65
    [Google Scholar]
  23. 23. 
    Mittal J, Hummer G. 2010. Faraday Discuss 146:341–52
    [Google Scholar]
  24. 24. 
    Xi E, Venkateshwaran V, Li L, Rego N, Patel AJ, Garde S. 2017. PNAS 114:5113345–50
    [Google Scholar]
  25. 25. 
    Fennell CJ, Dill KA. 2011. J. Stat. Phys. 145:2209–26
    [Google Scholar]
  26. 26. 
    Harris RC, Pettitt BM. 2014. PNAS 111:4114681–86
    [Google Scholar]
  27. 27. 
    Wang J, Bratko D, Luzar A. 2011. PNAS 108:166374–79
    [Google Scholar]
  28. 28. 
    Factorovich MH, Molinero V, Scherlis DA. 2015. J. Am. Chem. Soc. 137:3310618–23
    [Google Scholar]
  29. 29. 
    Kanduč M, Netz RR. 2015. PNAS 112:4012338–43
    [Google Scholar]
  30. 30. 
    Rego NB, Xi E, Patel AJ. 2021. PNAS 118:6e2018234118
    [Google Scholar]
  31. 31. 
    Miller TF, Vanden-Eijnden E, Chandler D 2007. PNAS 104:3714559–64
    [Google Scholar]
  32. 32. 
    Setny P, Baron R, Kekenes-Huskey PM, McCammon JA, Dzubiella J. 2013. PNAS 110:41197–202
    [Google Scholar]
  33. 33. 
    Mondal J, Morrone JA, Berne BJ. 2013. PNAS 110:3313277–82
    [Google Scholar]
  34. 34. 
    Tiwary P, Mondal J, Morrone JA, Berne BJ. 2015. PNAS 112:3912015–19
    [Google Scholar]
  35. 35. 
    Jiang Z, Remsing RC, Rego NB, Patel AJ. 2019. J. Phys. Chem. B 123:71650–61
    [Google Scholar]
  36. 36. 
    Dhabal D, Jiang Z, Pallath A, Patel AJ. 2021. J. Phys. Chem. B 125:205434–42
    [Google Scholar]
  37. 37. 
    Giovambattista N, Rossky P, Debenedetti P. 2012. Annu. Rev. Phys. Chem. 63:179–200
    [Google Scholar]
  38. 38. 
    Baron R, McCammon JA. 2013. Annu. Rev. Phys. Chem. 64:151–75
    [Google Scholar]
  39. 39. 
    Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P et al. 2016. Chem. Rev. 116:137673–97
    [Google Scholar]
  40. 40. 
    Monroe J, Barry M, DeStefano A, Aydogan Gokturk P, Jiao S et al. 2020. Annu. Rev. Chem. Biomol. Eng. 11:523–57
    [Google Scholar]
  41. 41. 
    Hummer G, Garde S, García AE, Paulaitis ME, Pratt LR. 1998. J. Phys. Chem. B 102:5110469–82
    [Google Scholar]
  42. 42. 
    Southall NT, Dill KA, Haymet ADJ. 2002. J. Phys. Chem. B 106:3521–33
    [Google Scholar]
  43. 43. 
    Lee CY, McCammon JA, Rossky PJ. 1984. J. Chem. Phys. 80:94448–55
    [Google Scholar]
  44. 44. 
    Willard AP, Chandler D 2010. J. Phys. Chem. B 114:51954–58
    [Google Scholar]
  45. 45. 
    Hummer G, Garde S, García AE, Pohorille A, Pratt LR. 1996. PNAS 93:178951–55
    [Google Scholar]
  46. 46. 
    Garde S, Hummer G, García AE, Paulaitis ME, Pratt LR. 1996. Phys. Rev. Lett. 77:244966–68
    [Google Scholar]
  47. 47. 
    Patel AJ, Varilly P, Chandler D, Garde S 2011. J. Stat. Phys. 145:2265–75
    [Google Scholar]
  48. 48. 
    Li ITS, Walker GC. 2011. PNAS 108:4016527–32
    [Google Scholar]
  49. 49. 
    Remsing RC, Patel AJ. 2015. J. Chem. Phys. 142:2024502
    [Google Scholar]
  50. 50. 
    Weeks JD. 2002. Annu. Rev. Phys. Chem. 53:533–62
    [Google Scholar]
  51. 51. 
    Ashbaugh HS, Pratt LR. 2006. Rev. Mod. Phys. 78:1159–78
    [Google Scholar]
  52. 52. 
    Remsing RC, Weeks JD. 2013. J. Phys. Chem. B 117:4915479–91
    [Google Scholar]
  53. 53. 
    Widom B. 1963. J. Chem. Phys. 39:112808–12
    [Google Scholar]
  54. 54. 
    Beck TL, Paulaitis ME, Pratt LR. 2006. The Potential Distribution Theorem and Models of Molecular Solutions Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  55. 55. 
    Chandler D. 1993. Phys. Rev. E 48:42898–905
    [Google Scholar]
  56. 56. 
    Pratt LR, Chandler D. 1977. J. Chem. Phys. 67:83683–704
    [Google Scholar]
  57. 57. 
    Pratt LR. 2002. Annu. Rev. Phys. Chem. 53:409–36
    [Google Scholar]
  58. 58. 
    Stillinger FH. 1973. J. Solut. Chem. 2:2141–58
    [Google Scholar]
  59. 59. 
    Lum K, Chandler D, Weeks JD. 1999. J. Phys. Chem. B 103:224570–77
    [Google Scholar]
  60. 60. 
    Huang DM, Chandler D. 2000. PNAS 97:158324–27
    [Google Scholar]
  61. 61. 
    Huang DM, Geissler PL, Chandler D. 2001. J. Phys. Chem. B 105:286704–9
    [Google Scholar]
  62. 62. 
    Rajamani S, Truskett TM, Garde S. 2005. PNAS 102:279475–80
    [Google Scholar]
  63. 63. 
    ten Wolde PR, Sun SX, Chandler D. 2002. Phys. Rev. E 65:1 Pt. 1011201
    [Google Scholar]
  64. 64. 
    Varilly P, Patel AJ, Chandler D. 2011. J. Chem. Phys. 134:7074109
    [Google Scholar]
  65. 65. 
    Vaikuntanathan S, Rotskoff G, Hudson A, Geissler PL 2016. PNAS 113:16E2224–30
    [Google Scholar]
  66. 66. 
    Xi E, Patel AJ. 2016. PNAS 113:174549–51
    [Google Scholar]
  67. 67. 
    Davis JG, Gierszal KP, Wang P, Ben-Amotz D. 2012. Nature 491:7425582–85
    [Google Scholar]
  68. 68. 
    Garde S, Patel AJ. 2011. PNAS 108:4016491–92
    [Google Scholar]
  69. 69. 
    Israelachvili J, Wennerström H. 1996. Nature 379:6562219–25
    [Google Scholar]
  70. 70. 
    Ben-Naim A. 1978. J. Phys. Chem. 82:7792–803
    [Google Scholar]
  71. 71. 
    Ben-Naim A. 1987. Solvation Thermodynamics New York: Springer
    [Google Scholar]
  72. 72. 
    Beglov D, Roux B. 1994. J. Chem. Phys. 100:129050–63
    [Google Scholar]
  73. 73. 
    Jiang H, Patel AJ. 2019. Curr. Opin. Chem. Eng. 23:130–37
    [Google Scholar]
  74. 74. 
    Jiang H, Fialoke S, Vicars Z, Patel AJ. 2019. Soft Matter 15:5860–69
    [Google Scholar]
  75. 75. 
    Granick S, Bae SC. 2008. Science 322:59071477–78
    [Google Scholar]
  76. 76. 
    Mittal J, Hummer G. 2008. PNAS 105:5120130–35
    [Google Scholar]
  77. 77. 
    Sarupria S, Garde S. 2009. Phys. Rev. Lett. 103:3037803
    [Google Scholar]
  78. 78. 
    Laage D, Stirnemann G, Sterpone F, Hynes JT. 2012. Acc. Chem. Res. 45:153–62
    [Google Scholar]
  79. 79. 
    Shenogina N, Godawat R, Keblinski P, Garde S. 2009. Phys. Rev. Lett. 102:15156101
    [Google Scholar]
  80. 80. 
    Ajdari A, Bocquet L. 2006. Phys. Rev. Lett. 96:18186102
    [Google Scholar]
  81. 81. 
    Giovambattista N, Debenedetti PG, Rossky PJ. 2007. J. Phys. Chem. C 111:31323–32
    [Google Scholar]
  82. 82. 
    Heyden M, Tobias DJ. 2013. Phys. Rev. Lett. 111:21218101
    [Google Scholar]
  83. 83. 
    Fogarty AC, Laage D. 2014. J. Phys. Chem. B 118:287715–29
    [Google Scholar]
  84. 84. 
    Shin S, Willard AP. 2018. J. Phys. Chem. B 122:266781–89
    [Google Scholar]
  85. 85. 
    Monroe JI, Shell MS. 2018. PNAS 115:328093–98
    [Google Scholar]
  86. 86. 
    Heyden M. 2019. WIREs Comput. Mol. Sci. 9:2e1390
    [Google Scholar]
  87. 87. 
    Xiao Q, Liu Y, Guo Z, Liu Z, Lohse D, Zhang X. 2017. Langmuir 33:328090–96
    [Google Scholar]
  88. 88. 
    Xi E, Remsing RC, Patel AJ. 2016. J. Chem. Theory Comput. 12:2706–13
    [Google Scholar]
  89. 89. 
    Young T, Abel R, Kim B, Berne BJ, Friesner RA. 2007. PNAS 104:3808–13
    [Google Scholar]
  90. 90. 
    Nguyen CN, Kurtzman Young T, Gilson MK 2012. J. Chem. Phys. 137:4044101
    [Google Scholar]
  91. 91. 
    Huggins DJ, Payne MC. 2013. J. Phys. Chem. B 117:278232–44
    [Google Scholar]
  92. 92. 
    Levy RM, Cui D, Zhang BW, Matubayasi N. 2017. J. Phys. Chem. B 121:153825–41
    [Google Scholar]
  93. 93. 
    Ma CD, Wang C, Acevedo-Vélez C, Gellman SH, Abbott NL. 2015. Nature 517:7534347–50
    [Google Scholar]
  94. 94. 
    Barnett JW, Sullivan MR, Long JA, Tang D, Nguyen T et al. 2020. Nat. Chem. 12:7589–94
    [Google Scholar]
  95. 95. 
    Garde S. 2015. Nature 517:7534277–79
    [Google Scholar]
  96. 96. 
    Garde S. 2020. Nat. Chem. 12:7587–88
    [Google Scholar]
  97. 97. 
    Zhou R, Huang X, Margulis CJ, Berne BJ. 2004. Science 305:56901605–9
    [Google Scholar]
  98. 98. 
    Liu P, Huang X, Zhou R, Berne BJ. 2005. Nature 437:7055159–62
    [Google Scholar]
  99. 99. 
    Rego NB, Xi E, Patel AJ. 2019. J. Am. Chem. Soc. 141:52080–86
    [Google Scholar]
  100. 100. 
    Eisenberg D, McLachlan AD. 1986. Nature 319:6050199–203
    [Google Scholar]
  101. 101. 
    Roux B, Simonson T. 1999. Biophys. Chem. 78:1-21–20
    [Google Scholar]
  102. 102. 
    Kang YK, Nemethy G, Scheraga HA. 1987. J. Phys. Chem. 91:154105–9
    [Google Scholar]
  103. 103. 
    Mobley DL, Bayly CI, Cooper MD, Shirts MR, Dill KA. 2009. J. Chem. Theory Comput. 5:2350–58
    [Google Scholar]
  104. 104. 
    Kyte J, Doolittle RF. 1982. J. Mol. Biol. 157:1105–32
    [Google Scholar]
  105. 105. 
    Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL. 2004. J. Med. Chem. 47:123032–47
    [Google Scholar]
  106. 106. 
    Bonella S, Raimondo D, Milanetti E, Tramontano A, Ciccotti G. 2014. J. Phys. Chem. B 118:246604–13
    [Google Scholar]
  107. 107. 
    Eisenberg D. 1984. Annu. Rev. Biochem. 53:595–623
    [Google Scholar]
  108. 108. 
    Rose GD, Wolfenden R. 1993. Annu. Rev. Biophys. Biomol. Struct. 22:381–415
    [Google Scholar]
  109. 109. 
    Cornette JL, Cease KB, Margalit H, Spouge JL, Berzofsky JA, DeLisi C. 1987. J. Mol. Biol. 195:3659–85
    [Google Scholar]
  110. 110. 
    Kortemme T, Baker D. 2002. PNAS 99:2214116–21
    [Google Scholar]
  111. 111. 
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S et al. 2000. Acc. Chem. Res. 33:12889–97
    [Google Scholar]
  112. 112. 
    Kister AE, Phillips JC. 2008. PNAS 105:279233–37
    [Google Scholar]
  113. 113. 
    Shen VK, Cheung JK, Errington JR, Truskett TM. 2006. Biophys. J. 90:61949–60
    [Google Scholar]
  114. 114. 
    Palmer JC, Debenedetti PG. 2012. J. Phys. Chem. Lett. 3:182713–18
    [Google Scholar]
  115. 115. 
    Thirumalai D, Reddy G, Straub JE. 2012. Acc. Chem. Res. 45:183–92
    [Google Scholar]
  116. 116. 
    Vashisth H, Abrams CF. 2013. Proteins: Struct., Funct., Bioinf 81:61017–30
    [Google Scholar]
  117. 117. 
    Remsing RC, Xi E, Patel AJ. 2018. J. Phys. Chem. B 122:133635–46
    [Google Scholar]
  118. 118. 
    Whitesides GM, Grzybowski B. 2002. Science 295:55642418–21
    [Google Scholar]
  119. 119. 
    Mehta SK, Bhasin KK, Chauhan R, Dham S. 2005. Colloids Surf. A 255:1153–57 https://www.sciencedirect.com/journal/colloids-and-surfaces-a-physicochemical-and-engineering-aspects
    [Google Scholar]
  120. 120. 
    Kim SB, Palmer JC, Debenedetti PG. 2016. PNAS 113:328991–96
    [Google Scholar]
  121. 121. 
    Tang D, Barnett JW, Gibb BC, Ashbaugh HS. 2017. J. Phys. Chem. B 121:4710717–25
    [Google Scholar]
  122. 122. 
    Setny P, Baron R, McCammon JA. 2010. J. Chem. Theory Comput. 6:92866–71
    [Google Scholar]
  123. 123. 
    Avvisati G, Vissers T, Dijkstra M. 2015. J. Chem. Phys. 142:8084905
    [Google Scholar]
  124. 124. 
    Tanford C. 1968. Adv. Protein Chem. 23:121–282
    [Google Scholar]
  125. 125. 
    Privalov PL. 1990. Crit. Rev. Biochem. Mol. Biol. 25:4281–306
    [Google Scholar]
  126. 126. 
    Matysiak S, Debenedetti PG, Rossky PJ. 2012. J. Phys. Chem. B 116:288095–104
    [Google Scholar]
  127. 127. 
    Monroe JI, Jiao S, Davis RJ, Brown DR, Katz LE, Shell MS. 2021. PNAS 118:1e2020205118
    [Google Scholar]
  128. 128. 
    Suating P, Nguyen TT, Ernst NE, Wang Y, Jordan JH et al. 2020. Chem. Sci. 11:143656–63
    [Google Scholar]
  129. 129. 
    Snyder PW, Mecinović J, Moustakas DT, Thomas SW, Harder M et al. 2011. PNAS 108:4417889–94
    [Google Scholar]
  130. 130. 
    Young L, Jernigan RL, Covell DG. 1994. Prot. Sci. 3:5717–29
    [Google Scholar]
  131. 131. 
    Keskin O, Gursoy A, Ma B, Nussinov R. 2008. Chem. Rev. 108:41225–44
    [Google Scholar]
  132. 132. 
    Rossky PJ. 2010. Faraday Discuss 146:13–18
    [Google Scholar]
  133. 133. 
    Cui D, Ou S, Patel S 2014. Proteins: Struct., Funct., Bioinf 82:123312–26
    [Google Scholar]
  134. 134. 
    Vembanur S, Patel AJ, Sarupria S, Garde S. 2013. J. Phys. Chem. B 117:3510261–70
    [Google Scholar]
  135. 135. 
    Pangali C, Rao M, Berne BJ. 1979. J. Chem. Phys. 71:72982–90
    [Google Scholar]
  136. 136. 
    Ghosh T, García AE, Garde S. 2002. J. Chem. Phys. 116:62480–86
    [Google Scholar]
  137. 137. 
    Widom B, Bhimalapuram P, Koga K. 2003. Phys. Chem. Chem. Phys. 5:153085–93
    [Google Scholar]
  138. 138. 
    ten Wolde PR, Chandler D 2002. PNAS 99:106539–43
    [Google Scholar]
  139. 139. 
    Jamadagni SN, Godawat R, Dordick JS, Garde S. 2009. J. Phys. Chem. B 113:134093–101
    [Google Scholar]
  140. 140. 
    Pronchik J, He X, Giurleo JT, Talaga DS. 2010. J. Am. Chem. Soc. 132:289797–803
    [Google Scholar]
  141. 141. 
    Beverung CJ, Radke CJ, Blanch HW. 1999. Biophys. Chem. 81:159–80
    [Google Scholar]
  142. 142. 
    Lamim Ribeiro JM, Tiwary P 2019. J. Chem. Theory Comput. 15:1708–19
    [Google Scholar]
  143. 143. 
    Ahalawat N, Bandyopadhyay S, Mondal J. 2020. J. Chem. Phys. 152:7074104
    [Google Scholar]
  144. 144. 
    Remsing RC, Xi E, Vembanur S, Sharma S, Debenedetti PG et al. 2015. PNAS 112:278181–86
    [Google Scholar]
  145. 145. 
    Huang X, Margulis CJ, Berne BJ. 2003. PNAS 100:2111953–58
    [Google Scholar]
  146. 146. 
    Choudhury N, Pettitt BM. 2007. J. Am. Chem. Soc. 129:154847–52
    [Google Scholar]
  147. 147. 
    Xu L, Molinero V. 2010. J. Phys. Chem. B 114:217320–28
    [Google Scholar]
  148. 148. 
    Sharma S, Debenedetti PG. 2012. PNAS 109:124365–70
    [Google Scholar]
  149. 149. 
    Altabet YE, Haji-Akbari A, Debenedetti PG. 2017. PNAS 114:13E2548–55
    [Google Scholar]
  150. 150. 
    Xi E, Marks SM, Fialoke S, Patel AJ. 2018. Mol. Simul. 44:13–141124–35
    [Google Scholar]
  151. 151. 
    Cerdeiriña CA, Debenedetti PG, Rossky PJ, Giovambattista N. 2011. J. Phys. Chem. Lett. 2:91000–3
    [Google Scholar]
  152. 152. 
    Lum K, Luzar A. 1997. Phys. Rev. E 56:6R6283–86
    [Google Scholar]
  153. 153. 
    Bolhuis PG, Chandler D. 2000. J. Chem. Phys. 113:188154–60
    [Google Scholar]
  154. 154. 
    Leung K, Luzar A, Bratko D. 2003. Phys. Rev. Lett. 90:6065502
    [Google Scholar]
  155. 155. 
    Quéré D. 2008. Annu. Rev. Mater. Res. 38:71–99
    [Google Scholar]
  156. 156. 
    Papadopoulos P, Mammen L, Deng X, Vollmer D, Butt HJ. 2013. PNAS 110:93254–58
    [Google Scholar]
  157. 157. 
    Arunachalam S, Das R, Nauruzbayeva J, Domingues EM, Mishra H. 2019. J. Colloid Interface Sci. 534:156–62
    [Google Scholar]
  158. 158. 
    Prakash S, Xi E, Patel AJ. 2016. PNAS 113:205508–13
    [Google Scholar]
  159. 159. 
    Widom B. 1967. Science 157:3787375–82
    [Google Scholar]
  160. 160. 
    Chandler D. 2017. Annu. Rev. Phys. Chem. 68:19–38
    [Google Scholar]
  161. 161. 
    Kauzmann W 1959. Advances in Protein Chemistry 14 CB Anfinsen, ML Anson, K Bailey, JT Edsall 1–63 New York: Academic
    [Google Scholar]
  162. 162. 
    Rotenberg B, Patel AJ, Chandler D. 2011. J. Am. Chem. Soc. 133:20521–27
    [Google Scholar]
  163. 163. 
    Limmer DT, Willard AP, Madden P, Chandler D. 2013. PNAS 110:114200–5
    [Google Scholar]
  164. 164. 
    Kelkar AS, Dallin BC, Van Lehn RC. 2020. J. Phys. Chem. B 124:419103–14
    [Google Scholar]
  165. 165. 
    Chen S, Cao Z, Jiang S. 2009. Biomaterials 30:295892–96
    [Google Scholar]
  166. 166. 
    Shire SJ, Shahrokh Z, Liu J. 2004. J. Pharm. Sci. 93:61390–402
    [Google Scholar]
  167. 167. 
    Chong SH, Ham S. 2014. Angew. Chem. Int. Ed. Engl. 53:153961–64
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040220-045516
Loading
/content/journals/10.1146/annurev-conmatphys-040220-045516
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error