1932

Abstract

Electronic correlations give rise to fascinating macroscopic phenomena such as superconductivity, magnetism, and topological phases of matter. Although these phenomena manifest themselves macroscopically, fully understanding the underlying microscopic mechanisms often requires probing on multiple length scales. Spatial modulations on the mesoscopic scale are especially challenging to probe, owing to the limited range of suitable experimental techniques. Here, we review recent progress in scanning superconducting quantum interference device (SQUID) microscopy. We demonstrate how scanning SQUID combines unmatched magnetic field sensitivity and highly versatile designs, by surveying discoveries in unconventional superconductivity, exotic magnetism, topological states, and more. Finally, we discuss how SQUID microscopy can be further developed to answer the increasing demand for imaging new quantum materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-104226
2022-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031620-104226.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-104226&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hartmann U. 1999. Annu. Rev. Mater. Sci. 29:153–87
    [Google Scholar]
  2. 2. 
    Kirtley JR. 2010. Rep. Prog. Phys. 73:12126501
    [Google Scholar]
  3. 3. 
    Casola F, van der Sar T, Yacoby A. 2018. Nat. Rev. Mater. 3:117088
    [Google Scholar]
  4. 4. 
    Josephson BD. 1962. Phys. Lett. 1:7251–53
    [Google Scholar]
  5. 5. 
    Clarke J, Braginski AI 2004. The SQUID Handbook Vol. I Berlin: Wiley-VCH
    [Google Scholar]
  6. 6. 
    Lam SKH, Tilbrook DL. 2003. Appl. Phys. Lett. 82:71078–80
    [Google Scholar]
  7. 7. 
    Cleuziou J-P, Wernsdorfer W, Bouchiat V, Ondarçuhu T, Monthioux M. 2006. Nat. Nanotechnol. 1:153–59
    [Google Scholar]
  8. 8. 
    Troeman AGP, Derking H, Borger B, Pleikies J, Veldhuis D, Hilgenkamp H. 2007. Nano Lett 7:72152–56
    [Google Scholar]
  9. 9. 
    Schwarz T, Nagel J, Wölbing R, Kemmler M, Kleiner R, Koelle D. 2013. ACS Nano 7:1844–50
    [Google Scholar]
  10. 10. 
    Nagel J, Buchter A, Xue F, Kieler OF, Weimann T et al. 2013. Phys. Rev. B. 88:6064425
    [Google Scholar]
  11. 11. 
    Vasyukov D, Anahory Y, Embon L, Halbertal D, Cuppens J et al. 2013. Nat. Nanotechnol. 8:639–44
    [Google Scholar]
  12. 12. 
    Huber ME, Koshnick NC, Bluhm H, Archuleta LJ, Azua T et al. 2008. Rev. Sci. Instrum. 79:5053704
    [Google Scholar]
  13. 13. 
    Koshnick NC, Huber ME, Bert JA, Hicks CW, Large J et al. 2008. Appl. Phys. Lett. 93:24243101
    [Google Scholar]
  14. 14. 
    Kirtley JR, Paulius L, Rosenberg AJ, Palmstrom JC, Holland CM et al. 2016. Rev. Sci. Instrum. 87:9093702
    [Google Scholar]
  15. 15. 
    Sochnikov I, Davino D, Kalisky B. 2020. Phys. Rev. Appl. 14:1014020
    [Google Scholar]
  16. 16. 
    Ruffieux S, Kalaboukhov A, Xie M, Chukharkin M, Pfeiffer C et al. 2020. Supercond. Sci. Technol. 33:2025007
    [Google Scholar]
  17. 17. 
    Anahory Y, Naren HR, Lachman EO, Buhbut Sinai S, Uri A et al. 2020. Nanoscale 12:53174–82
    [Google Scholar]
  18. 18. 
    Ketchen MB, Kirtley JR. 1995. IEEE Trans. Appl. Supercond. 5:22133–36
    [Google Scholar]
  19. 19. 
    van Schendel PJA, Hug HJ, Stiefel B, Martin S, Güntherodt H-J. 2000. J. Appl. Phys. 88:1435–45
    [Google Scholar]
  20. 20. 
    Kazakova O, Puttock R, Barton C, Corte-León H, Jaafar M et al. 2019. J. Appl. Phys. 125:6060901
    [Google Scholar]
  21. 21. 
    Rondin L, Tetienne J-P, Hingant T, Roch J-F, Maletinsky P, Jacques V 2014. Rep. Prog. Phys. 77:5056503
    [Google Scholar]
  22. 22. 
    Barry JF, Schloss JM, Bauch E, Turner MJ, Hart CA et al. 2020. Rev. Mod. Phys. 92:1015004
    [Google Scholar]
  23. 23. 
    Tesche CD, Clarke J 1977. J. Low Temp. Phys. 29:3–4301–31
    [Google Scholar]
  24. 24. 
    Koch RH, Van Harlingen DJ, Clarke J 1980. Phys. Rev. Lett. 45:262132–35
    [Google Scholar]
  25. 25. 
    Dahm AJ, Denenstein A, Langenberg DN, Parker WH, Rogovin D, Scalapino DJ. 1969. Phys. Rev. Lett. 22:261416–20
    [Google Scholar]
  26. 26. 
    Ketchen MB, Clarke J, Goubau WM 1978. AIP Conf. Proc 44:122–27
    [Google Scholar]
  27. 27. 
    Koch RH, Van Harlingen DJ, Clarke J 1981. Appl. Phys. Lett. 38:5380–82
    [Google Scholar]
  28. 28. 
    Herrera C, Franklin J, Božović I, He X, Sochnikov I. 2021. Phys. Rev. B. 103:2024528
    [Google Scholar]
  29. 29. 
    Halbertal D, Cuppens J, Ben Shalom M, Embon L, Shadmi N et al. 2016. Nature 539:7629407–10
    [Google Scholar]
  30. 30. 
    Kirtley JR, Wikswo JP. 1999. Annu. Rev. Mater. Sci. 29:1117–48
    [Google Scholar]
  31. 31. 
    Tsuei CC, Kirtley JR, Chi CC, Yu-Jahnes LS, Gupta A et al. 1994. Phys. Rev. Lett. 73:4593–96
    [Google Scholar]
  32. 32. 
    Kalisky B, Kirtley JR, Analytis JG, Chu J-H, Fisher IR, Moler KA. 2011. Phys. Rev. B. 83:6064511
    [Google Scholar]
  33. 33. 
    Kremen A, Wissberg S, Haham N, Persky E, Frenkel Y, Kalisky B. 2016. Nano Lett 16:31626–30
    [Google Scholar]
  34. 34. 
    Embon L, Anahory Y, Jelić ŽL, Lachman EO, Myasoedov Y et al. 2017. Nat. Commun. 8:185
    [Google Scholar]
  35. 35. 
    Zhang IP, Palmstrom JC, Noad H, Bishop-Van Horn L, Iguchi Y et al. 2019. Phys. Rev. B. 100:2024514
    [Google Scholar]
  36. 36. 
    Llorens JB, Embon L, Correa A, González JD, Herrera E et al. 2020. Phys. Rev. Res. 2:1013329
    [Google Scholar]
  37. 37. 
    Ceccarelli L, Vasyukov D, Wyss M, Romagnoli G, Rossi N et al. 2019. Phys. Rev. B. 100:10104504
    [Google Scholar]
  38. 38. 
    Saito Y, Nojima T, Iwasa Y. 2016. Nat. Rev. Mater. 2:116094
    [Google Scholar]
  39. 39. 
    Benyamini A, Telford EJ, Kennes DM, Wang D, Williams A et al. 2019. Nat. Phys. 15:9947–53
    [Google Scholar]
  40. 40. 
    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T et al. 2018. Nature 556:769943–50
    [Google Scholar]
  41. 41. 
    Bert JA, Kalisky B, Bell C, Kim M, Hikita Y et al. 2011. Nat. Phys. 7:10767–71
    [Google Scholar]
  42. 42. 
    Bert JA, Nowack KC, Kalisky B, Noad H, Kirtley JR et al. 2012. Phys. Rev. B. 86:6060503
    [Google Scholar]
  43. 43. 
    Kremen A, Khan H, Loh YL, Baturina TI, Trivedi N et al. 2018. Nat. Phys. 14:121205–10
    [Google Scholar]
  44. 44. 
    Wissberg S, Frydman A, Kalisky B. 2018. Appl. Phys. Lett. 112:26262602
    [Google Scholar]
  45. 45. 
    Ghosal A, Randeria M, Trivedi N. 1998. Phys. Rev. Lett. 81:183940–43
    [Google Scholar]
  46. 46. 
    Bert JA. 2012. Superconductivty in reduced dimensions PhD Thesis, Stanford University Stanford, California:
    [Google Scholar]
  47. 47. 
    Kirtley JR, Kallin C, Hicks CW, Kim E-A, Liu Y et al. 2007. Phys. Rev. B. 76:114526
    [Google Scholar]
  48. 48. 
    Watson CA, Gibbs AS, Mackenzie AP, Hicks CW, Moler KA. 2018. Phys. Rev. B. 98:9094521
    [Google Scholar]
  49. 49. 
    Sacépé B, Chapelier C, Baturina TI, Vinokur VM, Baklanov MR, Sanquer M. 2008. Phys. Rev. Lett. 101:15157006
    [Google Scholar]
  50. 50. 
    Stewart GR. 1984. Rev. Mod. Phys. 56:4755–87
    [Google Scholar]
  51. 51. 
    Wirth S, Steglich F. 2016. Nat. Rev. Mater. 1:1016051
    [Google Scholar]
  52. 52. 
    Gegenwart P, Si Q, Steglich F 2008. Nat. Phys. 4:3186–97
    [Google Scholar]
  53. 53. 
    Si Q, Steglich F. 2010. Science 329:59961161–66
    [Google Scholar]
  54. 54. 
    Pelc D, Anderson Z, Yu B, Leighton C, Greven M. 2019. Nat. Commun. 10:12729
    [Google Scholar]
  55. 55. 
    Nagata S, Ebisu S, Aochi T, Kinoshita Y, Chikazawa S, Yamaya K. 1991. J. Phys. Chem. Solids. 52:6761–67
    [Google Scholar]
  56. 56. 
    Bachmann MD, Ferguson GM, Theuss F, Meng T, Putzke C et al. 2019. Science 366:6462221–26
    [Google Scholar]
  57. 57. 
    Shang T, Baumbach RE, Gofryk K, Ronning F, Weng ZF et al. 2014. Phys. Rev. B. 89:4041101
    [Google Scholar]
  58. 58. 
    Ng TK, Varma CM. 1997. Phys. Rev. Lett. 78:2330–33
    [Google Scholar]
  59. 59. 
    Fauré M, Buzdin AI. 2005. Phys. Rev. Lett. 94:18187202
    [Google Scholar]
  60. 60. 
    Paulsen C, Hykel DJ, Hasselbach K, Aoki D. 2012. Phys. Rev. Lett. 109:23237001
    [Google Scholar]
  61. 61. 
    Hykel DJ, Paulsen C, Aoki D, Kirtley JR, Hasselbach K. 2014. Phys. Rev. B. 90:18184501
    [Google Scholar]
  62. 62. 
    Ohta T, Hattori T, Ishida K, Nakai Y, Osaki E et al. 2010. J. Phys. Soc. Jpn. 79:2023707
    [Google Scholar]
  63. 63. 
    Iguchi Y, Zhang IP, Bauer ED, Ronning F, Kirtley JR, Moler KA. 2021. Phys. Rev. B. 103:22L220503
    [Google Scholar]
  64. 64. 
    Kallin C, Berlinsky J. 2016. Rep. Prog. Phys. 79:5054502
    [Google Scholar]
  65. 65. 
    Sigrist M, Ueda K. 1991. Rev. Mod. Phys. 63:2239–311
    [Google Scholar]
  66. 66. 
    Mackenzie AP, Maeno Y. 2003. Rev. Mod. Phys. 75:2657–712
    [Google Scholar]
  67. 67. 
    Mackenzie AP, Scaffidi T, Hicks CW, Maeno Y. 2017. npj Quantum Mater 2:140
    [Google Scholar]
  68. 68. 
    Kivelson SA, Yuan AC, Ramshaw B, Thomale R. 2020. npj Quantum Mater. 5:143
    [Google Scholar]
  69. 69. 
    Hicks CW, Kirtley JR, Lippman TM, Koshnick NC, Huber ME et al. 2010. Phys. Rev. B. 81:21214501
    [Google Scholar]
  70. 70. 
    Iguchi Y, Zhang IP, Bauer ED, Ronning F, Kirtley JR, Moler KA. 2021. Phys. Rev. B 103:L220503
    [Google Scholar]
  71. 71. 
    Hicks CW, Brodsky DO, Yelland EA, Gibbs AS, Bruin JAN et al. 2014. Science 344:6181283–85
    [Google Scholar]
  72. 72. 
    Benhabib S, Lupien C, Paul I, Berges L, Dion M et al. 2021. Nat. Phys. 17:2194–98
    [Google Scholar]
  73. 73. 
    Ghosh S, Shekhter A, Jerzembeck F, Kikugawa N, Sokolov DA et al. 2021. Nat. Phys. 17:2199–204
    [Google Scholar]
  74. 74. 
    Sigrist M, Joynt R, Rice TM. 1987. Phys. Rev. B. 36:105186–98
    [Google Scholar]
  75. 75. 
    Grinenko V, Ghosh S, Sarkar R, Orain J-C, Nikitin A et al. 2021. Nat. Phys. 17:6748–54
    [Google Scholar]
  76. 76. 
    Etter SB, Bouhon A, Sigrist M. 2018. Phys. Rev. B. 97:6064510
    [Google Scholar]
  77. 77. 
    Wernsdorfer W. 2009. Supercond. Sci. Technol. 22:6064013
    [Google Scholar]
  78. 78. 
    Kalisky B, Bert JA, Klopfer BB, Bell C, Sato HK et al. 2012. Nat. Commun. 3:1922
    [Google Scholar]
  79. 79. 
    Persky E, Kalisky B. 2018. Adv. Mater. 30:411706653
    [Google Scholar]
  80. 80. 
    Harada A, Taniyama T, Takeuchi Y, Sato T, Kyômen T, Itoh M. 2007. Phys. Rev. B. 75:18184426
    [Google Scholar]
  81. 81. 
    Kirtley JR, Kalisky B, Bert JA, Bell C, Kim M et al. 2012. Phys. Rev. B. 85:22224518
    [Google Scholar]
  82. 82. 
    Staňo M, Fruchart O. 2018. Handbook of Magnetic Materials, Vol. 27 E Brück 155–267 Oxford, UK: Elsevier
    [Google Scholar]
  83. 83. 
    Wernsdorfer W, Hasselbach K, Benoit A, Cernicchiaro G, Mailly D et al. 1995. J. Magn. Magn. Mater. 151:138–44
    [Google Scholar]
  84. 84. 
    Wernsdorfer W, Doudin B, Mailly D, Hasselbach K, Benoit A et al. 1996. Phys. Rev. Lett. 77:91873–76
    [Google Scholar]
  85. 85. 
    Martínez-Pérez MJ, Koelle D 2017. Phys. Sci. Rev. 2:820175001
    [Google Scholar]
  86. 86. 
    Buchter A, Nagel J, Rüffer D, Xue F, Weber DP et al. 2013. Phys. Rev. Lett. 111:667202
    [Google Scholar]
  87. 87. 
    Liu Y, Vaitiekėnas S, Martí-Sánchez S, Koch C, Hart S et al. 2020. Nano Lett 20:1456–62
    [Google Scholar]
  88. 88. 
    Schwarz T, Wölbing R, Reiche CF, Müller B, Martínez-Pérez MJ et al. 2015. Phys. Rev. Appl. 3:4044011
    [Google Scholar]
  89. 89. 
    Wang XR, Li CJ, Lu WM, Paudel TR, Leusink DP et al. 2015. Science 349:6249716–19
    [Google Scholar]
  90. 90. 
    Anahory Y, Embon L, Li CJ, Banerjee S, Meltzer A et al. 2016. Nat. Commun. 7:112566
    [Google Scholar]
  91. 91. 
    Xu B, Franklin J, Jayakody A, Yang H-Y, Tafti F, Sochnikov I. 2021. Adv. Quantum Technol. 4:32000101
    [Google Scholar]
  92. 92. 
    Christensen DV, Frenkel Y, Chen YZ, Xie YW, Chen ZY et al. 2019. Nat. Phys. 15:3269–74
    [Google Scholar]
  93. 93. 
    Wittlich P, Boschker H, Asaba T, Li L, Noad HML et al. 2019. Phys. Rev. Mater. 3:10104418
    [Google Scholar]
  94. 94. 
    Clarke J, Braginski AI 2006. The SQUID Handbook Vol. II Berlin: Wiley-VCH
    [Google Scholar]
  95. 95. 
    Lachman EO, Young AF, Richardella A, Cuppens J, Naren HR et al. 2015. Sci. Adv. 1:10e1500740
    [Google Scholar]
  96. 96. 
    Lachman EO, Mogi M, Sarkar J, Uri A, Bagani K et al. 2017. npj Quantum Mater 2:170
    [Google Scholar]
  97. 97. 
    Wang Z-C, Rogers JD, Yao X, Nichols R, Atay K et al. 2021. Adv. Mater. 33:102005755
    [Google Scholar]
  98. 98. 
    Yang H-Y, Singh B, Gaudet J, Lu B, Huang C-Y et al. 2021. Phys. Rev. B. 103:11115143
    [Google Scholar]
  99. 99. 
    Ilan R, Grushin AG, Pikulin DI. 2020. Nat. Rev. Phys. 2:129–41
    [Google Scholar]
  100. 100. 
    Juraschek DM, Fechner M, Balatsky AV, Spaldin NA. 2017. Phys. Rev. Mater. 1:1014401
    [Google Scholar]
  101. 101. 
    Dunnett K, Zhu J-X, Spaldin NA, Juričić V, Balatsky AV. 2019. Phys. Rev. Lett. 122:5057208
    [Google Scholar]
  102. 102. 
    Juraschek DM, Meier QN, Trassin M, Trolier-McKinstry SE, Degen CL, Spaldin NA. 2019. Phys. Rev. Lett. 123:12127601
    [Google Scholar]
  103. 103. 
    Moore JE. 2010. Nature 464:7286194–98
    [Google Scholar]
  104. 104. 
    Hasan MZ, Kane CL. 2010. Rev. Mod. Phys. 82:43045–67
    [Google Scholar]
  105. 105. 
    Klitzing KV, Dorda G, Pepper M. 1980. Phys. Rev. Lett. 45:6494–97
    [Google Scholar]
  106. 106. 
    Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M. 1982. Phys. Rev. Lett. 49:6405–8
    [Google Scholar]
  107. 107. 
    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H et al. 2007. Science 318:5851766–70
    [Google Scholar]
  108. 108. 
    Kane CL, Mele EJ. 2005. Phys. Rev. Lett. 95:22226801
    [Google Scholar]
  109. 109. 
    Nowack KC, Spanton EM, Baenninger M, König M, Kirtley JR et al. 2013. Nat. Mater. 12:9787–91
    [Google Scholar]
  110. 110. 
    Spanton EM, Nowack KC, Du L, Sullivan G, Du R-R, Moler KA. 2014. Phys. Rev. Lett. 113:2026804
    [Google Scholar]
  111. 111. 
    Halbertal D, Ben Shalom M, Uri A, Bagani K, Meltzer AY et al. 2017. Science 358:63681303–6
    [Google Scholar]
  112. 112. 
    Marguerite A, Birkbeck J, Aharon-Steinberg A, Halbertal D, Bagani K et al. 2019. Nature 575:7784628–33
    [Google Scholar]
  113. 113. 
    Uri A, Kim Y, Bagani K, Lewandowski CK, Grover S et al. 2020. Nat. Phys. 16:2164–70
    [Google Scholar]
  114. 114. 
    Aharon-Steinberg A, Marguerite A, Perello DJ, Bagani K, Holder T et al. 2021. Nature 593:7860528–34
    [Google Scholar]
  115. 115. 
    Vergniory MG, Elcoro L, Felser C, Regnault N, Bernevig BA, Wang Z. 2019. Nature 566:7745480–85
    [Google Scholar]
  116. 116. 
    Tang F, Po HC, Vishwanath A, Wan X. 2019. Nature 566:7745486–89
    [Google Scholar]
  117. 117. 
    Rachel S 2018. Rep. Prog. Phys. 81:11116501
    [Google Scholar]
  118. 118. 
    Golubov AA, Kupriyanov MY, Il'ichev E 2004. Rev. Mod. Phys. 76:2411–69
    [Google Scholar]
  119. 119. 
    Beenakker CWJ, van Houten H 1992. Nanostructures and Mesoscopic Systems WP Kirk, MA Reed 481–97 Boston: Elsevier
    [Google Scholar]
  120. 120. 
    Sochnikov I, Maier L, Watson CA, Kirtley JR, Gould C et al. 2015. Phys. Rev. Lett. 114:6066801
    [Google Scholar]
  121. 121. 
    Spanton EM, Deng M, Vaitiekėnas S, Krogstrup P, Nygård J et al. 2017. Nat. Phys. 13:121177–81
    [Google Scholar]
  122. 122. 
    Hart S, Cui Z, Ménard G, Deng M, Antipov AE et al. 2019. Phys. Rev. B. 100:6064523
    [Google Scholar]
  123. 123. 
    Kirtley JR, Tsuei CC, Sun JZ, Chi CC, Yu-Jahnes LS et al. 1995. Nature 373:6511225–28
    [Google Scholar]
  124. 124. 
    Gingrich EC, Niedzielski BM, Glick JA, Wang Y, Miller DL et al. 2016. Nat. Phys. 12:6564–67
    [Google Scholar]
  125. 125. 
    Bluhm H, Koshnick NC, Bert JA, Huber ME, Moler KA. 2009. Phys. Rev. Lett. 102:13136802
    [Google Scholar]
  126. 126. 
    Koshnick NC, Bluhm H, Huber ME, Moler KA. 2007. Science 318:58551440–43
    [Google Scholar]
  127. 127. 
    Bert JA, Koshnick NC, Bluhm H, Moler KA. 2011. Phys. Rev. B. 84:13134523
    [Google Scholar]
  128. 128. 
    Tkachov G, Hankiewicz EM. 2013. Phys. Rev. B. 88:7075401
    [Google Scholar]
  129. 129. 
    Sochnikov I, Bestwick AJ, Williams JR, Lippman TM, Fisher IR et al. 2013. Nano Lett 13:73086–92
    [Google Scholar]
  130. 130. 
    Hancock JN, van Mechelen JLM, Kuzmenko AB, van der Marel D, Brüne C et al. 2011. Phys. Rev. Lett. 107:13136803
    [Google Scholar]
  131. 131. 
    Sun L, DiCarlo L, Reed MD, Catelani G, Bishop LS et al. 2012. Phys. Rev. Lett. 108:23230509
    [Google Scholar]
  132. 132. 
    Serniak K, Hays M, de Lange G, Diamond S, Shankar S et al. 2018. Phys. Rev. Lett. 121:15157701
    [Google Scholar]
  133. 133. 
    Karzig T, Cole WS, Pikulin DI. 2021. Phys. Rev. Lett. 126:5057702
    [Google Scholar]
  134. 134. 
    Collignon C, Lin X, Rischau CW, Fauqué B, Behnia K. 2019. Annu. Rev. Condens. Matter Phys. 10:25–44
    [Google Scholar]
  135. 135. 
    Ohtomo A, Hwang HY. 2004. Nature 427:6973423–26
    [Google Scholar]
  136. 136. 
    Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y. 2012. Nat. Mater. 11:2103–13
    [Google Scholar]
  137. 137. 
    Sulpizio JA, Ilani S, Irvin P, Levy J. 2014. Annu. Rev. Mater. Res. 44:1117–49
    [Google Scholar]
  138. 138. 
    Pai Y-Y, Tylan-Tyler A, Irvin P, Levy J 2018. Reports Prog. Phys. 81:3036503
    [Google Scholar]
  139. 139. 
    Lin X, Gourgout A, Bridoux G, Jomard F, Pourret A et al. 2014. Phys. Rev. B. 90:14140508
    [Google Scholar]
  140. 140. 
    Kalisky B, Spanton EM, Noad H, Kirtley JR, Nowack KC et al. 2013. Nat. Mater. 12:121091–95
    [Google Scholar]
  141. 141. 
    Frenkel Y, Haham N, Shperber Y, Bell C, Xie Y et al. 2017. Nat. Mater. 16:121203–8
    [Google Scholar]
  142. 142. 
    Sakudo T, Unoki H. 1971. Phys. Rev. Lett. 26:14851–53
    [Google Scholar]
  143. 143. 
    Müller KA, Burkard H. 1979. Phys. Rev. B. 19:73593–602
    [Google Scholar]
  144. 144. 
    Persky E, Vardi N, Monteiro AMRVL, van Thiel TC, Yoon H et al. 2021. Nat. Commun. 12:13311
    [Google Scholar]
  145. 145. 
    Frenkel Y, Haham N, Shperber Y, Bell C, Xie Y et al. 2016. ACS Appl. Mater. Interfaces. 8:1912514–19
    [Google Scholar]
  146. 146. 
    Noad H, Spanton EM, Nowack KC, Inoue H, Kim M et al. 2016. Phys. Rev. B. 94:17174516
    [Google Scholar]
  147. 147. 
    Wissberg S, Kalisky B. 2017. Phys. Rev. B. 95:14144510
    [Google Scholar]
  148. 148. 
    Pai Y-Y, Lee H, Lee J-W, Annadi A, Cheng G et al. 2018. Phys. Rev. Lett. 120:14147001
    [Google Scholar]
  149. 149. 
    Tao Q, Loret B, Xu B, Yang X, Rischau CW et al. 2016. Phys. Rev. B. 94:3035111
    [Google Scholar]
  150. 150. 
    Cheng G, Annadi A, Lu S, Lee H, Lee J-W et al. 2018. Phys. Rev. Lett. 120:7076801
    [Google Scholar]
  151. 151. 
    Ma HJH, Scharinger S, Zeng SW, Kohlberger D, Lange M et al. 2016. Phys. Rev. Lett. 116:25257601
    [Google Scholar]
  152. 152. 
    Rischau CW, Lin X, Grams CP, Finck D, Harms S et al. 2017. Nat. Phys. 13:7643–48
    [Google Scholar]
  153. 153. 
    Tuvia G, Frenkel Y, Rout PK, Silber I, Kalisky B, Dagan Y. 2020. Adv. Mater. 32:292000216
    [Google Scholar]
  154. 154. 
    Kalisky B, Kirtley JR, Analytis JG, Chu J-H, Vailionis A et al. 2010. Phys. Rev. B. 81:18184513
    [Google Scholar]
  155. 155. 
    Davis SI, Ullah RR, Adamo C, Watson CA, Kirtley JR et al. 2018. Phys. Rev. B. 98:1014506
    [Google Scholar]
  156. 156. 
    Uri A, Grover S, Cao Y, Crosse JA, Bagani K et al. 2020. Nature 581:780647–52
    [Google Scholar]
  157. 157. 
    Tschirhart CL, Serlin M, Polshyn H, Shragai A, Xia Z et al. 2021. Science 372:65481323–27
    [Google Scholar]
  158. 158. 
    Bagani K, Sarkar J, Uri A, Rappaport ML, Huber ME et al. 2019. Phys. Rev. Appl. 12:4044062
    [Google Scholar]
  159. 159. 
    Martínez-Pérez MJ, Müller B, Schwebius D, Korinski D, Kleiner R et al. 2016. Supercond. Sci. Technol. 30:2024003
    [Google Scholar]
  160. 160. 
    Bishop-Van Horn L, Cui Z, Kirtley JR, Moler KA. 2019. Rev. Sci. Instrum. 90:6063705
    [Google Scholar]
  161. 161. 
    Chumak AV, Vasyuchka VI, Serga AA, Hillebrands B. 2015. Nat. Phys. 11:6453–61
    [Google Scholar]
  162. 162. 
    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R et al. 2016. C. R. Phys. 17:7729–39
    [Google Scholar]
  163. 163. 
    Wei DS, van der Sar T, Lee SH, Watanabe K, Taniguchi T et al. 2018. Science 362:6411229–33
    [Google Scholar]
  164. 164. 
    Balents L. 2010. Nature 464:7286199–208
    [Google Scholar]
  165. 165. 
    Hatridge M, Vijay R, Slichter DH, Clarke J, Siddiqi I 2011. Phys. Rev. B. 83:13134501
    [Google Scholar]
  166. 166. 
    Levenson-Falk EM, Vijay R, Antler N, Siddiqi I. 2013. Supercond. Sci. Technol. 26:5055015
    [Google Scholar]
  167. 167. 
    Levenson-Falk EM, Antler N, Siddiqi I. 2016. Supercond. Sci. Technol. 29:11113003
    [Google Scholar]
  168. 168. 
    Foroughi F, Mol J-M, Müller T, Kirtley JR, Moler KA, Bluhm H. 2018. Appl. Phys. Lett. 112:25252601
    [Google Scholar]
  169. 169. 
    Faris SM. 1980. Appl. Phys. Lett. 36:121005–7
    [Google Scholar]
  170. 170. 
    Cui Z, Kirtley JR, Wang Y, Kratz PA, Rosenberg AJ et al. 2017. Rev. Sci. Instrum. 88:8083703
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031620-104226
Loading
/content/journals/10.1146/annurev-conmatphys-031620-104226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error