Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 14, 2022

Progress in the field of hydrotropy: mechanism, applications and green concepts

  • Akash D. Patel and Meghal A. Desai EMAIL logo

Abstract

Sustainability and greenness are the concepts of growing interest in the area of research as well as industries. One of the frequently encountered challenges faced in research and industrial fields is the solubility of the hydrophobic compound. Conventionally organic solvents are used in various applications; however, their contribution to environmental pollution, the huge energy requirement for separation and higher consumption lead to unsustainable practice. We require solvents that curtail the usage of hazardous material, increase the competency of mass and energy and embrace the concept of recyclability or renewability. Hydrotropy is one of the approaches for fulfilling these requirements. The phenomenon of solubilizing hydrophobic compound using hydrotrope is termed hydrotropy. Researchers of various fields are attracted to hydrotropy due to its unique physicochemical properties. In this review article, fundamentals about hydrotropes and various mechanisms involved in hydrotropy have been discussed. Hydrotropes are widely used in separation, heterogeneous chemical reactions, natural product extraction and pharmaceuticals. Applications of hydrotropes in these fields are discussed at length. We have examined the significant outcomes and correlated them with green engineering and green chemistry principles, which could give an overall picture of hydrotropy as a green and sustainable approach for the above applications.


Corresponding author: Meghal A. Desai, Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India, E-mail:

Award Identifier / Grant number: EMR/2017/003893

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We are thankful to the Science and Engineering Research Board (SERB) (project no: EMR/2017/003893) under the Department of Science and Technology (DST), India, for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix: Toxicological information of hydrotrope

Sr. no. Hydrotrope Toxicity
1. Sodium cumene sulfonate (NaCuS) Oral LD50: >7000 mg/kg
Dermal LD50: >2000 mg/kg
Inhalation LD50: >770,000 mg/m3
2. Sodium p-toluene sulfonate (NaPTS) Oral LD50: 6500 mg/kg
Intravenous LD50: 1700 mg/kg
3. Sodium xylene sulfonate (NaXS) Oral LD50: >5000 mg/kg
Dermal LD50: 182–727 mg/kg
4. Sodium benzoate (NaB) Oral LD50: 4070 mg/kg
5. Sodium salicylate (NaS) Oral LD50: 540 mg/kg
6. Nicotinamide Oral LD50: 2500 mg/kg
7. Urea Oral LD50: 8471 mg/kg
8. p-Toluene sulfonic acid (p-TsOH) Oral LD50: 1410 mg/kg
9. Maleic acid Oral LD50: 708 mg/kg
Dermal LD50: 1560 mg/kg
Inhalation LD50: >720 mg/m3
10. Ethanol Oral LD50: 7060 mg/kg
Dermal LD50: 20000 mg/kg
Inhalation LD50: 66000 mg/Lit
11. Methanol Oral LD50: 1187–2769 mg/kg
Dermal LD50: 17100 mg/kg
Inhalation LD50: 128 mg/L
12. Acetone Oral LD50: 5800 mg/kg
Dermal LD50: 20000 mg/kg
Inhalation LD50: 71 mg/L

References

Abbott, S., Booth, J., and Shimizu, S. (2017). Practical molecular thermodynamics for greener solution chemistry. Green Chem. 19: 68–75, https://doi.org/10.1039/c6gc03002e.Search in Google Scholar

Abranches, D.O., Benfica, J., Soares, B.P., Ferreira, A.M., Sintra, T.E., Shimizu, S., and Coutinho, J.A. (2021). The impact of the counterion in the performance of ionic hydrotropes. Chem. Commun. 57: 2951–2954, https://doi.org/10.1039/d0cc08092f.Search in Google Scholar PubMed

Abranches, D.O., Benfica, J., Soares, B.P., Leal-Duaso, A., Sintra, T., Pires, E., Pinho, S., Shimizu, P.S., and Coutinho, J.A. (2020). Unveiling the mechanism of hydrotropy: evidence for water-mediated aggregation of hydrotropes around the solute. Chem. Commun. 56: 7143–7146, https://doi.org/10.1039/d0cc03217d.Search in Google Scholar PubMed

Agrawal, S., Pancholi, S., Jain, N., and Agrawal, G. (2004). Hydrotropic solubilization of nimesulide for parenteral administration. Int. J. Pharm. 274: 149–155, https://doi.org/10.1016/j.ijpharm.2004.01.012.Search in Google Scholar PubMed

Anastas, P. and Eghbali, N. (2010). Green chemistry: principles and practice. Chem. Soc. Rev. 39: 301–312, https://doi.org/10.1039/b918763b.Search in Google Scholar PubMed

Anastas, P.T. and Zimmerman, J.B. (2003). Design of through the 12 principles of green engineering. Environ. Sci. Technol. 37: 95A–101A, https://doi.org/10.1021/es032373g.Search in Google Scholar PubMed

Ansari, K.B. and Gaikar, V.G. (2014). Green hydrotropic extraction technology for delignification of sugarcane bagasse by using alkybenzene sulfonates as hydrotropes. Chem. Eng. Sci. 115: 157166, https://doi.org/10.1016/j.ces.2013.10.042.Search in Google Scholar

Badwan, A.A., El-Khordagui, L.K., Saleh, A.M., and Khalil, S.A. (1980). The solubilities of benzodiazepines in sodium salicylate solution and a proposed mechanism for hydrotropic solubilization. J. Pharm. Pharmacol. 32: 74.10.1111/j.2042-7158.1980.tb10877.xSearch in Google Scholar

Balachandran, S., Prakash, D.G., Anantharaj, R., and Paul, M.R.D.J. (2020). Enhancement of aqueous solubility and extraction of lauric acid using hydrotropes and its interaction studies by COSMO-RS model. J. Dispersion Sci. Technol.: 1–10, https://doi.org/10.1080/01932691.2020.1789471.Search in Google Scholar

Balasubramanian, D., Srinivas, V., Gaikar, V.G., and Sharma, M.M. (1989). Aggregation behavior of hydrotropic compounds in aqueous solution. J. Phys. Chem. 93: 3865–3870, https://doi.org/10.1021/j100346a098.Search in Google Scholar

Barge, M., Kamble, S., Kumbhar, A., Rashinkar, G., and Salunkhe, R. (2013). Hydrotrope: green and rapid approach for the catalyst-free synthesis of pyrazole derivatives. Monatshefte fur Chemie 144: 1213–1218, https://doi.org/10.1007/s00706-013-0944-4.Search in Google Scholar

Bauduin, P., Renoncourt, A., Kopf, A., Touraud, D., and Kunz, W. (2005). Unified concept of solubilization in water by hydrotropes and cosolvents. Langmuir 21: 6769–6775, https://doi.org/10.1021/la050554l.Search in Google Scholar PubMed

Bauduin, P., Testard, F., and Zemb, T. (2008). Solubilization in alkanes by alcohols as reverse hydrotropes or “lipotropes”. J. Phys. Chem. B 112: 12354–12360, https://doi.org/10.1021/jp804668n.Search in Google Scholar PubMed

Beig, A., Lindley, D., Miller, J., Agbaria, R., and Dahan, A. (2016). Hydrotropic solubilization of lipophilic drugs for oral delivery: the effects of urea and nicotinamide on carbamazepine solubility-permeability interplay. Front. Pharmacol. 7: 1–8, https://doi.org/10.3389/fphar.2016.00379.Search in Google Scholar PubMed PubMed Central

Booth, J., Abbott, S., and Shimizu, S. (2012). Mechanism of hydrophobic drug solubilization by small molecule hydrotropes. J. Phys. Chem. B 116: 14915–14921, https://doi.org/10.1021/jp309819r.Search in Google Scholar PubMed

Booth, J., Omar, M., Abbott, S., and Shimizu, S. (2015). Hydrotrope accumulation around the drug: the driving force for solubilization and minimum hydrotrope concentration for nicotinamide and urea. Phys. Chem. Chem. Phys. 17: 8028–8037, https://doi.org/10.1039/c4cp05414h.Search in Google Scholar PubMed

Buchecker, T., Krickl, S., Winkler, R., Grillo, I., Bauduin, P., Touraud, D., Pfitzner, A., and Kunz, W. (2017). The impact of the structuring of hydrotropes in water on the mesoscale solubilisation of a third hydrophobic component. Phys. Chem. Chem. Phys. 19: 1806–1816, https://doi.org/10.1039/c6cp06696h.Search in Google Scholar PubMed

Cai, C., Hirth, K., Gleisner, R., Lou, H., Qiu, X., and Zhu, J.Y. (2020). Maleic acid as a dicarboxylic acid hydrotrope for sustainable fractionation of wood at atmospheric pressure and ≤ 100 °C: mode and utility of lignin esterification. Green Chem. 22: 1605–1617, https://doi.org/10.1039/c9gc04267a.Search in Google Scholar

Castro-Puyana, M., Marina, M.L., and Plaza, M. (2017). Water as green extraction solvent: principles and reasons for its use. Curr. Opin. Green Sustain. Chem. 5: 31–36, https://doi.org/10.1016/j.cogsc.2017.03.009.Search in Google Scholar

Chandratre, S.J. and Filmwala, Z.A. (2007). Syntheses of quinolines by Friedlander’s heteroannulation method in aqueous hydrotropic medium. J. Dispersion Sci. Technol. 28: 279–283, https://doi.org/10.1080/01932690601061954.Search in Google Scholar

Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., and Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 34: 540–560, https://doi.org/10.1016/j.ultsonch.2016.06.035.Search in Google Scholar PubMed

Chen, L., Dou, J., Ma, Q., Li, N., Wu, R., Bian, H., Yelle, D.J., Vuorinen, T., Fu, S., Pan, X, et al.. (2017). Rapid and near-complete dissolution of wood lignin at ≤ 80 °C by a recyclable acid hydrotrope. Sci. Adv. 3: 701735, https://doi.org/10.1126/sciadv.1701735.Search in Google Scholar PubMed PubMed Central

Cheng, J., Hirth, K., Ma, Q., Zhu, J., Wang, Z., and Zhu, J.Y. (2019). Toward sustainable and complete wood valorization by fractionating lignin with low condensation using an acid hydrotrope at low temperatures (≤ 80 °C). Ind. Eng. Chem. Res. 58: 7063–7073, https://doi.org/10.1021/acs.iecr.9b00931.Search in Google Scholar

Chirravuri, V.S., Ichapurapu, P.K.C., Bharadwaj, A.V.S.L.S., and Kommuri, M.M.K.P. (2012). Functions of hydrotropes in solution. Chem. Eng. Technol. 35: 225–237.10.1002/ceat.201100484Search in Google Scholar

Clark, J.H., Farmer, T.J., Hunt, A.J., and Sherwood, J. (2015). Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int. J. Mol. Sci. 16: 17101–17159, https://doi.org/10.3390/ijms160817101.Search in Google Scholar PubMed PubMed Central

Cláudio, A.F.M., Neves, M.C., Shimizu, K., Lopes, J.N.C., Freire, M.G., and Coutinho, J.A. (2015). The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes. Green Chem. 17: 3948–3963.10.1039/C5GC00712GSearch in Google Scholar PubMed PubMed Central

Colonia, E.J., Dixit, A.B., and Tavare, N.S. (1996). Separation of o and p chlorobenzoic acid: hydrotropy and precipitation. J. Cryst. Growth 166: 976–980, https://doi.org/10.1016/0022-0248(96)00058-9.Search in Google Scholar

Dandekar, D. and Gaikar, V. (2003). Hydrotropic extraction of curcuminoids from turmeric. Separ. Sci. Technol. 38: 1185–1215, https://doi.org/10.1081/ss-120018130.Search in Google Scholar

Dandekar, D., Jayaprakash, G., and Patil, B. (2008). Hydrotropic extraction of bioactive limonin from sour orange (Citrus aurantium L.) seeds. Food Chem. 109: 515–520, https://doi.org/10.1016/j.foodchem.2007.12.071.Search in Google Scholar

Darwish, I., Florence, A., and Saleh, A. (1989). Effect of hydrotropic agents on the solubility, precipitation and protein binding of etoposide. J. Pharmacol. Sci. 78: 577–581, https://doi.org/10.1002/jps.2600780714.Search in Google Scholar PubMed

Das, S. and Paul, S. (2015). Exploring molecular insights into aggregation of hydrotrope sodium cumene sulfonate in aqueous solution: a molecular dynamics simulation study. J. Phys. Chem. B 119: 3142–3154, https://doi.org/10.1021/jp512282x.Search in Google Scholar PubMed

Das, S. and Paul, S. (2016a). Computer simulation studies of the mechanism of hydrotrope-assisted solubilization of a sparingly soluble drug molecule. J. Phys. Chem. B 120: 3540–3550, https://doi.org/10.1021/acs.jpcb.5b11902.Search in Google Scholar PubMed

Das, S. and Paul, S. (2016b). Mechanism of hydrotropic action of hydrotrope sodium cumene sulfonate on the solubility of di-t-butyl-methane: a molecular dynamics simulation study. J. Phys. Chem. B 120: 173–183, https://doi.org/10.1021/acs.jpcb.5b09668.Search in Google Scholar PubMed

Das, S. and Paul, S. (2017a). Hydrotropic action of cationic hydrotrope p-toluidinium chloride on the solubility of sparingly soluble gliclazide drug molecule: a computational study. J. Chem. Inf. Model. 57: 1461–1473, https://doi.org/10.1021/acs.jcim.7b00182.Search in Google Scholar PubMed

Das, S. and Paul, S. (2017b). Hydrotropic solubilization of sparingly soluble riboflavin drug molecule in aqueous nicotinamide solution. J. Phys. Chem. B 121: 8774–8785, https://doi.org/10.1021/acs.jpcb.7b05774.Search in Google Scholar PubMed

Dawid, M. and Grzegorz, K. (2021). Microwave-assisted hydrotropic pretreatment as a new and highly efficient way to cellulosic ethanol production from maize distillery stillage. Appl. Microbiol. Biotechnol. 105: 3381–3392, https://doi.org/10.1007/s00253-021-11258-2.Search in Google Scholar PubMed PubMed Central

Degot, P., Huber, V., Hofmann, E., Hahn, M., Touraud, D., and Kunz, W. (2021a). Solubilization and extraction of curcumin from Curcuma Longa using green, sustainable, and food-approved surfactant-free microemulsions. Food Chem. 336: 127660, https://doi.org/10.1016/j.foodchem.2020.127660.Search in Google Scholar PubMed

Degot, P., Huber, V., Touraud, D., and Kunz, W. (2021b). Curcumin extracts from Curcuma Longa–improvement of concentration, purity, and stability in food-approved and water-soluble surfactant-free microemulsions. Food Chem. 339: 128140, https://doi.org/10.1016/j.foodchem.2020.128140.Search in Google Scholar PubMed

Degot, P., Huber, V., El Maangar, A., Gramüller, J., Rohr, L., Touraud, D., Zemb, T., Gschwind, R.M., and Kunz, W. (2021c). Triple role of sodium salicylate in solubilization, extraction, and stabilization of curcumin from Curcuma longa. J. Mol. Liq. 329: 115538, https://doi.org/10.1016/j.molliq.2021.115538.Search in Google Scholar

Desai, M., Parikh, J., and Parikh, P.A. (2010). Extraction of natural products using microwaves as a heat source. Separ. Purif. Rev. 39: 1–32, https://doi.org/10.1080/15422111003662320.Search in Google Scholar

Desai, M. and Parikh, J. (2012). Hydrotropic extraction of citral from Cymbopogon flexuosus (Steud.) Wats. Ind. Eng. Chem. Res. 51: 3750–3757, https://doi.org/10.1021/ie202025b.Search in Google Scholar

Devendra, L.P. and Pandey, A. (2016). Hydrotropic pre-treatment on rice straw for bioethanol production. Renew. Energy 98: 2–8, https://doi.org/10.1016/j.renene.2016.02.032.Search in Google Scholar

Dhapte, V. and Mehta, P. (2015). Advances in hydrotropic solutions: an updated review, St. Petersburg Polytech. Univ. J. Phys. Math. 1: 424–435, https://doi.org/10.1016/j.spjpm.2015.12.006.Search in Google Scholar

Dhinakaran, M., Bertie, A., and Gandhi, N. (2013). Extraction of vanillin through hydrotropy. Asian J. Chem. 25: 231–236, https://doi.org/10.14233/ajchem.2013.12915.Search in Google Scholar

Diat, O., Klossek, M.L., Touraud, D., Deme, B., Grillo, I., Kunz, W., and Zemb, T. (2013). Octanol-rich and water-rich domains in dynamic equilibrium in the pre-ouzo region of ternary systems containing a hydrotrope. J. Appl. Crystallogr. 46: 1665–1669, https://doi.org/10.1107/s002188981302606x.Search in Google Scholar

Dick, F.D. (2006). Solvent neurotoxicity. Occup. Environ. Med. 63: 221–226, https://doi.org/10.1136/oem.2005.022400.Search in Google Scholar PubMed PubMed Central

Durand, M., Stoppa, A., Molinier, V., Touraud, D., and Aubry, J.M. (2012). Toward the rationalization of facilitated hydrotropy: investigation with the ternary dimethyl isosorbide/benzyl alcohol/water system. J. Solution Chem. 41: 555–565, https://doi.org/10.1007/s10953-012-9814-7.Search in Google Scholar

Durand, M., Zhu, Y., Molinier, V., Féron, T., and Aubry, J.M. (2009). Solubilizing and hydrotropic properties of isosorbide monoalkyl‐and dimethyl‐ethers. J. Surfactants Deterg. 12: 371–378, https://doi.org/10.1007/s11743-009-1128-4.Search in Google Scholar

EEA (2013). Towards a green economy in Europe. EU environmental policy targets and objectives 2010–2050, In: EEA Report No 8/2013, Vol. 2103, pp. 1–48.Search in Google Scholar

El Maangar, A., Degot, P., Huber, V., Causse, J., Berthault, P., Touraud, D., Kunz, W., and Zemb, T. (2020). Pre-nucleation cluster formation upon ethyl acetate addition to an aqueous solution of an anionic hydrotrope. J. Mol. Liq. 310: 113240, https://doi.org/10.1016/j.molliq.2020.113240.Search in Google Scholar

El-Houssieny, B., El-Dein, E., and El-Messiry, H. (2014). Enhancement of solubility of dexibuprofen applying mixed hydrotropic solubilization technique. Drug Discov Ther 8: 178–184, https://doi.org/10.5582/ddt.2014.01019.Search in Google Scholar PubMed

Fathanah, A., Setyawan, D., and Sari, R. (2019). Improving solubility and dissolution of meloxicam by solid dispersion using hydroxypropyl methylcellulose 2910 3 cps and nicotinamide. J. Basic Clin. Physiol. Pharmacol. 30: 1–8, https://doi.org/10.1515/jbcpp-2019-0249.Search in Google Scholar PubMed

Friberg, S.E. (1997). Hydrotropes. Curr. Opin. Colloid Interface Sci. 2: 490–494, https://doi.org/10.1016/s1359-0294(97)80096-9.Search in Google Scholar

Gaikar, V. and Raman, G. (2002). Extraction of piperine from piper nigrum (black pepper) by hydrotropic solubilization. Ind. Eng. Chem. Res. 41: 2966–2976, https://doi.org/10.1021/ie0107845.Search in Google Scholar

Gaikar, V. and Sharma, M. (1986). Extractive separation with hydrotrope. Solvent Extr. Ion Exch. 4: 839–846, https://doi.org/10.1080/07366298608917896.Search in Google Scholar

Gaikar, V.G. and Sharma, M.M. (1993). Separations with hydrotropes. Sep. Technol. 3: 2–11, https://doi.org/10.1016/0956-9618(93)80001-8.Search in Google Scholar

Gaikwad, P. and Kamble, S. (2020). Microwave enhanced green and convenient synthesis of 2-amino-4H-chromenes in aqueous hydrotropic medium. Curr. Opin. Green Sustain. 3: 100014, https://doi.org/10.1016/j.crgsc.2020.100014.Search in Google Scholar

Ghule, S.N. and Desai, M.A. (2021). Intensified extraction of valuable compounds from clove buds using ultrasound assisted hydrotropic extraction. J. Appl. Res. Med. Aromat. Plants. 25: 100325, https://doi.org/10.1016/j.jarmap.2021.100325.Search in Google Scholar

Häckl, K. and Kunz, W. (2018). Some aspects of green solvents. C. R. Chimie. 21: 572–580.10.1016/j.crci.2018.03.010Search in Google Scholar

Hahn, M., Krickl, S., Buchecker, T., Jošt, G., Touraud, D., Bauduin, P., Pfitzner, A., Klamt, A., and Kunz, W. (2019). Ab initio prediction of structuring/mesoscale inhomogeneities in surfactant-free microemulsions and hydrogen-bonding-free microemulsions. Phys. Chem. Chem. Phys. 21: 8054–8066, https://doi.org/10.1039/c8cp07544a.Search in Google Scholar PubMed

Hamza, Y. and Paruta, A. (1985). Enhanced solubility of hydrotrope by various hydrotropic agents. Drug Dev. Ind. Pharm. 11: 1577–1596, https://doi.org/10.3109/03639048509057687.Search in Google Scholar

Harjo, B., Wibowo, C., and Ng, K.M. (2004). Development of natural product manufacturing processes phytochemicals. Chem. Eng. Res. Des. 82: 1010–1028, https://doi.org/10.1205/0263876041580695.Search in Google Scholar

Hodgdon, T.K. and Kaler, E.W. (2007). Hydrotropic solution. Curr. Opin. Colloid Interface Sci. 12: 121–128, https://doi.org/10.1016/j.cocis.2007.06.004.Search in Google Scholar

Hopkins Hatzopoulos, M., Eastoe, J., Dowding, P.J., Rogers, S.E., Heenan, R., and Dyer, R. (2011). Are hydrotropes distinct from surfactants? Langmuir 27: 12346–12353, https://doi.org/10.1021/la2025846.Search in Google Scholar PubMed

Huh, K., Lee, S., Cho, Y., Lee, J., Jeong, J., and Park, K. (2005). Hydrotropic polymer micelle system for delivery of paclitaxel. J. Contr. Release 101: 59–68, https://doi.org/10.1016/j.jconrel.2004.07.003.Search in Google Scholar PubMed

Huh, K., Min, H., Lee, S., Lee, H., Kim, S., and Park, K. (2008). A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel. J. Contr. Release 126: 122–129, https://doi.org/10.1016/j.jconrel.2007.11.008.Search in Google Scholar PubMed PubMed Central

Ikeda, M. (1992). Public health problems of organic solvents. Toxicol. Lett. 64-65: 191–201, https://doi.org/10.1016/0378-4274(92)90189-q.Search in Google Scholar PubMed

Isken, S. and Heipieper, H. (2003). Toxicity of organic solvents to microorganisms. New York: Willy Press.10.1002/0471263397.env264Search in Google Scholar

Jadhav, A., Kumbhar, A., Rode, V., and Salunkhe, R. (2016). Ligand-free Pd catalyzed cross-coupling reactions in an aqueous hydrotropic medium. Green Chem. 18: 1898–1911, https://doi.org/10.1039/c5gc02314a.Search in Google Scholar

Jain, A. (2008). Solubilization of indomethacin using hydrotropes for aqueous injection. Eur. J. Pharm. Biopharm. 68: 701–714, https://doi.org/10.1016/j.ejpb.2007.06.013.Search in Google Scholar PubMed

Jain, P.L., Patel, S.R., and Desai, M.A. (2020). Enrichment of patchouli alcohol in patchouli oil by aiding sonication in hydrotropic extraction. Ind. Crop. Prod. 158: 113011, https://doi.org/10.1016/j.indcrop.2020.113011.Search in Google Scholar

Jayakumar, C., Morais, A., Arunodhaya, N., and Gandhi, N. (2012). Solubility enhancement of theophylline drug using different solubilization techniques. Int. J. Pharmaceut. Clin. Sci. 2: 7–10.Search in Google Scholar

Ji, H. and Lv, P. (2020). Mechanistic insights into the lignin dissolution behaviors of a recyclable acid hydrotrope, deep eutectic solvent (DES), and ionic liquid (IL). Green Chem. 22: 1378–1387, https://doi.org/10.1039/c9gc02760b.Search in Google Scholar

Ji, H., Wang, L., Pang, Z., Zhu, W., Yang, G., and Dong, C. (2020). Using a recyclable acid hydrotrope and subsequent short-term ultrasonic pretreatment to facilitate high-value lignin extraction and high-titer ethanol production. Cellulose 27: 7561–7573, https://doi.org/10.1007/s10570-020-03285-5.Search in Google Scholar

Kamat, S., Salunkhe, R., Choudhari, P., Dhavale, R., Mane, A., and Lohar, T. (2018). Efficient synthesis of chromeno [2,3-c] pyrazolyl(s) in hydrotropic solution and their anti-infective potential. Res. Chem. Intermed. 44: 1351–1356, https://doi.org/10.1007/s11164-017-3171-5.Search in Google Scholar

Kamble, R., Sharma, S., and Mehta, P. (2017). Norfloxacin mixed solvency based solid dispersions: an in-vitro and in-vivo investigation. J Taibah Univ Sci 11: 512–522, https://doi.org/10.1016/j.jtusci.2016.11.003.Search in Google Scholar

Kamble, S., Kumbhar, A., Jadhav, S., and Salunkhe, R. (2014). Microwave assisted attractive and rapid process for synthesis of octahydroquinazolinone in aqueous hydrotropic solutions. Proc Mat Sci 6: 1850–1856, https://doi.org/10.1016/j.mspro.2014.07.215.Search in Google Scholar

Kamble, S., Kumbhar, A., Rashinkar, G., Barge, M., and Salunkhe, R. (2012). Ultrasound promoted efficient and green synthesis of b-amino carbonyl compounds in aqueous hydrotropic medium. Ultrason. Sonochem. 19: 812–815, https://doi.org/10.1016/j.ultsonch.2011.12.001.Search in Google Scholar PubMed

Kamble, S., Kumbharb, A., Jadhav, S., and Salunkhe, R. (2015). Aza-Micheal reaction in glycerol as a sustainable hydrotropic medium. Mater. Today 2: 1792–1798, https://doi.org/10.1016/j.matpr.2015.07.022.Search in Google Scholar

Kamble, S., Rashinkar, G., Kumbhar, A., and Salunkhe, R. (2012). Hydrotrope induced synthesis of 1,8-dioxooctahydroxanthenes in aqueous medium. Green Chem. Lett. Rev. 5: 101–107, https://doi.org/10.1080/17518253.2011.584217.Search in Google Scholar

Karthyani, S., Pandey, A., and Devendra, L.P. (2017). Delignification of cotton stalks using sodium cumene sulfonate for bioethanol production. Biofuels 11: 431–440, https://doi.org/10.1080/17597269.2017.1370884.Search in Google Scholar

Khadilkar, B.M., Gaikar, V.G., and Chitnavis, A.A. (1995). Aqueous solution as a safer medium for microwave enhanced Hantzsch dihydropyridine ester synthesis. Tetrahedron Lett. 36: 8083–8086, https://doi.org/10.1016/0040-4039(95)01680-g.Search in Google Scholar

Kim, J., Kim, S., Papp, M., Park, K., and Rodolfo, P. (2010). Hydrotropic solubilization of poorly water-soluble drugs. J. Pharmacol. Sci. 99: 3953–3969, https://doi.org/10.1002/jps.22241.Search in Google Scholar PubMed

Kirchhoff, M.M. (2005). Promoting sustainability through green chemistry. Resour. Conserv. Recycl. 44: 237–243, https://doi.org/10.1016/j.resconrec.2005.01.003.Search in Google Scholar

Klossek, M.L., Touraud, D., and Kunz, W. (2013). Eco-solvents–cluster-formation, surfactantless microemulsions and facilitated hydrotropy. Phys. Chem. Chem. Phys. 15: 10971–10977, https://doi.org/10.1039/c3cp50636c.Search in Google Scholar PubMed

Klossek, M.L., Touraud, D., Zemb, T., and Kunz, W. (2012). Structure and solubility in surfactant‐free microemulsions. ChemPhysChem 13: 4116–4119, https://doi.org/10.1002/cphc.201200667.Search in Google Scholar PubMed

Koparkar, Y.P. and Gaikar, V.G. (2004). Hydrotropic separation of mixtures of o-/p-hydroxyacetophenones. Separ. Sci. Technol. 39: 3879–3895, https://doi.org/10.1081/ss-200041547.Search in Google Scholar

Kumar, S., Nahid, P., and Kabir-ud-din (2005). Additive induced association in unconventional systems: a case of the hydrotrope. J. Surfactants Deterg. 8: 109–114, https://doi.org/10.1007/s11743-005-0338-2.Search in Google Scholar

Kunz, W., Holmberg, K., and Zemb, T. (2016). Hydrotropes. Curr. Opin. Colloid Interface Sci. 22: 99–107, https://doi.org/10.1016/j.cocis.2016.03.005.Search in Google Scholar

Latha, C. (2006). Selective extraction of embelin from Emelia ribes by hydrotropes. Separ. Sci. Technol. 41: 3721–3729, https://doi.org/10.1080/01496390600957207.Search in Google Scholar

Lebeuf, R., Illous, E., Dussenne, C., Molinier, V., Da Silva, E., Lemaire, M., and Aubry, J. (2016). Solvo-surfactant properties of dialkyl glycerol ethers: application as eco-friendly extractants of plant material through a novel hydrotropic cloud point extraction (HCPE) process. ACS Sustain. Chem. Eng. 4: 4815–4823, https://doi.org/10.1021/acssuschemeng.6b01101.Search in Google Scholar

Lee, J., Lee, S., Acharya, G., Chang, C., and Park, K. (2003). Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharm. Res. (N. Y.) 20: 1022–1030, https://doi.org/10.1023/a:1024458206032.10.1023/A:1024458206032Search in Google Scholar

Leedham Elvidge, E.C., Oram, D.E., Laube, J.C., Baker, A.K., Montzka, S.A., Humphrey, S., O’Sullivan, D.A., and Brenninkmeijer, C.A.M. (2015). Increasing concentrations of dichloromethane, CH2Cl2, inferred from CARIBIC air samples collected 1998–2012. Atmos. Chem. Phys. 15: 1939–1958, https://doi.org/10.5194/acp-15-1939-2015.Search in Google Scholar

Leonelli, C. and Mason, T.J. (2010). Microwave and ultrasonic processing: now a realistic option for industry. Chem. Eng. Process 49: 885–900, https://doi.org/10.1016/j.cep.2010.05.006.Search in Google Scholar

Li, P., Ji, H., Shan, L., Dong, Y., Long, Z., Zou, Z., and Pang, Z. (2020). Insights into delignification behavior using aqueous p-toluenesulfonic acid treatment: comparison with different biomass species. Cellulose 27: 10345–10358, https://doi.org/10.1007/s10570-020-03481-3.Search in Google Scholar

Ma, Q., Zhu, J., Gleisner, R., Yang, R., and Zhu, J.Y. (2018). Valorization of wheat straw using a recyclable hydrotrope at low temperatures (≤ 90° C). ACS Sustain. Chem. Eng. 6: 14480–14489, https://doi.org/10.1021/acssuschemeng.8b03135.Search in Google Scholar

Madan, J., Kamate, V., Dua, K., and Awasthi, R. (2017). Improving the solubility of nevirapine using hydrotropy and mixed hydrotropy based solid dispersion approach. Polim. Med. 47: 83–90, https://doi.org/10.17219/pim/77093.Search in Google Scholar PubMed

Madan, J., Pawar, K., and Dua, K. (2015). Solubility enhancement studies on lurasidone hydrochloride using mixed hydrotropy. Int. J. Pharm. Invest. 5: 114–120, https://doi.org/10.4103/2230-973x.153390.Search in Google Scholar

Mahapatra, A., Gaikar, V.G., and Sharma, M.M. (1988). New strategies in extractive distillation: use of aqueous solutions of hydrotrope and organic base as solvent for organic acids. Separ. Sci. Technol. 23: 429–436, https://doi.org/10.1080/01496398808060714.Search in Google Scholar

Maheshwari, R. and Indurkhya, A. (2010a). Formulation and evaluation of aceclofenac injection made by mixed hydrotropic solubilization technique. Iran. J. Pharm. Res. (IJPR) 9: 233–242.Search in Google Scholar

Maheshwari, R. and Indurkhya, A. (2010b). Novel application of mixed hydrotropic solubilization technique in the formulation and evaluation of hydrotropic solid dispersion of aceclofenac. Asian J. Pharm. 4: 235–239, doi:https://doi.org/10.4103/0973-8398.72124.Search in Google Scholar

Mazaud, A., Lebeuf, R., Laguerre, M., and Nardello-Rataj, V. (2020). Hydrotropic extraction of carnosic acid from rosemary with short-chain alkyl polyethylene glycol ethers. ACS Sustain. Chem. Eng. 8: 15268–15277, https://doi.org/10.1021/acssuschemeng.0c05078.Search in Google Scholar

McKee, R.H. (1946). Use of hydrotropic solution in industry. Ind. Eng. Chem. 38: 382–384, https://doi.org/10.1021/ie50436a012.Search in Google Scholar

Mishra, S. and Gaikar, V. (2006). Aqueous hydrotropic solution as an efficient solubilizing agent for andrographolide from Andrographis paniculata leaves. Separ. Sci. Technol. 41: 1115–1134, https://doi.org/10.1080/01496390600633675.Search in Google Scholar

Mishra, S. and Gaikar, V. (2009). Hydrotropic extraction process for recovery of forskolin from Coleus forskohlii roots. Ind. Eng. Chem. Res. 48: 8083–8090, https://doi.org/10.1021/ie801728d.Search in Google Scholar

Mishra, S. and Gaikar, V. (2004). Recovery of diosgenin from dioscorea rhizomes using aqueous hydrotropic solutions of sodium cumene sulfonate. Ind. Eng. Chem. Res. 43: 5339–5346, https://doi.org/10.1021/ie034091v.Search in Google Scholar

Moity, L., Shi, Y., Molinier, V., Dayoub, W., Lemaire, M., and Aubry, J.M. (2013). Hydrotropic properties of alkyl and aryl glycerol monoethers. J. Phys. Chem. B 117: 9262–9272, https://doi.org/10.1021/jp403347u.Search in Google Scholar PubMed

Nagarajan, J., Wah Heng, W., Galanakis, C.M., Nagasundara Ramanan, R., Raghunandan, M.E., Sun, J., Ismail, A., Beng-Ti, T., and Prasad, K.N. (2016). Extraction of phytochemicals using hydrotropic solvents. Separ. Sci. Technol. 51: 1151–1165, https://doi.org/10.1080/01496395.2016.1143842.Search in Google Scholar

Naqvi, A., Ahmad, M., Minhas, M.U., Khan, K.U., Batool, F., and Rizwan, A. (2019). Preparation and evaluation of pharmaceutical co-crystals for solubility enhancement of atorvastatin calcium. Polym. Bull. 77: 6191–6211, https://doi.org/10.1007/s00289-019-02997-4.Search in Google Scholar

Natarajan, R., Chinnakannu, J., and Gandhi, N. (2009). Effective separation of petro products through hydrotropy. Chem. Eng. Technol. 32: 129–133, https://doi.org/10.1002/ceat.200800098.Search in Google Scholar

Neuberg, C. (1916). Hydrotropy. Biochem. Z. 76: 107.Search in Google Scholar

Nicoli, S., Zani, F., Bilzi, S., Bettini, R., and Santi, P. (2008). Association of nicotinamide with parabens: effect on solubility, partition and transdermal permeation. Eur. J. Pharm. Biopharm. 69: 613–621, https://doi.org/10.1016/j.ejpb.2007.12.008.Search in Google Scholar PubMed

Novikov, A.A., Semenov, A.P., Kuchierskaya, A.A., Kopitsyn, D.S., Vinokurov, V.A., and Anisimov, M.A. (2019). Generic nature of interfacial phenomena in solutions of nonionic hydrotropes. Langmuir 35: 13480–13487, https://doi.org/10.1021/acs.langmuir.9b02004.Search in Google Scholar PubMed

Novikov, A.A., Semenov, A.P., Monje-Galvan, V., Kuryakov, V.N., Klauda, J.B., and Anisimov, M.A. (2017). Dual action of hydrotropes at the water/oil interface. J. Phys. Chem. C 121: 16423–16431, https://doi.org/10.1021/acs.jpcc.7b05156.Search in Google Scholar

Okamoto, R. and Onuki, A. (2018). Theory of nonionic hydrophobic solutes in mixture solvent: solvent-mediated interaction and solute-induced phase separation. J. Chem. Phys. 149: 014501, https://doi.org/10.1063/1.5037673.Search in Google Scholar PubMed

Olsson, J., Persson, M., Galbe, M., Wallberg, O., and Jönsson, A.S. (In press). An extensive parameter study of hydrotropic extraction of steam-pretreated birch. Biomass Conv. Bioref., https://doi.org/10.1007/s13399-021-01425-w.Search in Google Scholar

Patel, A.D. and Desai, M.A. (2020). Aggregation behavior and thermodynamic studies of hydrotropes: a review. Tenside Surfactants Deterg. 57: 192–202, https://doi.org/10.3139/113.110686.Search in Google Scholar

Patil, A., Barge, M., Rashinkar, G., and Salunkhe, R. (2015). Aqueous hydrotrope: an efficient and reusable medium for a green one-pot, diversity-oriented synthesis of quinazolinone derivatives. Mol. Divers. 19: 435–445, https://doi.org/10.1007/s11030-015-9580-8.Search in Google Scholar PubMed

Patil, A., Mane, A., Kamat, S., Lohar, T., and Salunkhe, R. (2019). Aqueous hydrotropic solution: green reaction medium for synthesis of pyridopyrimidine carbonitrile and spiro-oxindole dihydroquinazolinone derivatives. Res. Chem. Intermed. 45: 3441–3452, https://doi.org/10.1007/s11164-019-03801-8.Search in Google Scholar

Patil, A. and Salunkhe, R. (2017). Hydrotrope promoted in situ azidonation followed by copper catalyzed regioselective synthesis of β-hydroxytriazoles. Res. Chem. Intermed. 43: 4175–4187, https://doi.org/10.1007/s11164-017-2871-1.Search in Google Scholar

Patil, M.R., Ganorkar, S.B., Patil, A.S., Shirkhedkar, A.A., and Surana, S.J. (2021). Hydrotropic solubilization in pharmaceutical analysis: origin, evolution, cumulative trend and precise applications. Crit. Rev. Anal. Chem. 51: 278–288, https://doi.org/10.1080/10408347.2020.1718484.Search in Google Scholar PubMed

Prakash, D., Panneerselvam, P., Madhusudanan, S., and Aditya, V. (2014). Hydrotropic extraction of xanthones from mangosteen pericarp. Adv. Mater. Res. 984–985: 372–376, https://doi.org/10.4028/www.scientific.net/amr.984-985.372.Search in Google Scholar

Prévost, S., Krickl, S., Marčelja, S., Kunz, W., Zemb, T., and Grillo, I. (2021). Spontaneous ouzo emulsions coexist with pre-ouzo ultraflexible microemulsions. Langmuir 37: 3817–3827.10.1021/acs.langmuir.0c02935Search in Google Scholar PubMed

Quintin, D., Garcia-Gomez, P., Ayuso, M., and Sanmartin, A.M. (2019). Active biocompounds to improve food nutritional value. Trends Food Sci. Technol. 84: 19–21, https://doi.org/10.1016/j.tifs.2018.03.024.Search in Google Scholar

Raynaud-Lacroze, P.O. and Tavare, N.S. (1993). Separation of 2-naphthols: hydrotropy and precipitation. Ind. Eng. Chem. Res. 32: 685–691, https://doi.org/10.1021/ie00016a015.Search in Google Scholar

Robertson, A.E., Phan, D.H., Macaluso, J.E., Kuryakov, V.N., Jouravleva, E.V., Bertrand, C.E., Yudin, I.K., and Anisimov, M.A. (2016). Mesoscale solubilization and critical phenomena in binary and quasi-binary solutions of hydrotropes. Fluid Phase Equil. 407: 243–254, https://doi.org/10.1016/j.fluid.2015.06.030.Search in Google Scholar

Sadvilkar, V.G., Khadilkar, B.M., and Gaikar, V.G. (1995). Aqueous solutions of hydrotropes as effective reaction media for the synthesis of 4-aryl- 1,4-dihydropyridines. J. Chem. Technol. Biotechnol. 63: 33–36, https://doi.org/10.1002/jctb.280630105.Search in Google Scholar

Sadvilkar, V.G., Samant, S.D., and Gaikar, V.G. (1995). Claisen-Schmidt reaction in hydrotropic medium. J. Chem. Technol. Biotechnol. 62: 405–410, https://doi.org/10.1002/jctb.280620415.Search in Google Scholar

Saleh, A.M., Badwan, A.A., and El-Khordagui, L.K. (1983). A study of hydrotropic salts, cyclohexanol and water system. Int. J. Pharm. 17: 115–119, https://doi.org/10.1016/0378-5173(83)90024-8.Search in Google Scholar

Saleh, A.M. and El-Khordagui, L.K. (1985). Hydrotropic agents: a new definition. J. Pharm. Sci. 24: 231–238, https://doi.org/10.1016/0378-5173(85)90023-7.Search in Google Scholar

Sanghvi, R., Evans, D., and Yalkowsky, S.H. (2007). Stacking complexation by nicotinamide: a useful way of enhancing drug solubility. Int. J. Pharm. 336: 35–41, https://doi.org/10.1016/j.ijpharm.2006.11.025.Search in Google Scholar PubMed

Schuur, B., Brouwer, T., Smink, D., and Sprakel, L.M. (2019). Green solvents for sustainable separation processes. Curr. Opin. Green Sustain. Chem. 18: 57–65, https://doi.org/10.1016/j.cogsc.2018.12.009.Search in Google Scholar

Semple, S. (2004). Dermal exposure to chemicals in the workplace: just how important is skin absorption? Occup. Environ. Med. 61: 376–382, https://doi.org/10.1136/oem.2003.010645.Search in Google Scholar PubMed PubMed Central

Setschenow, J. (1889). On the constitution of salt solutions due to their behavior towards carbonic acid. J. Phys. Chem. 4: 117–125, https://doi.org/10.1515/zpch-1889-0409.Search in Google Scholar

Sharma, R. and Gaikar, V. (2012). Hydrotropic extraction of reserpine from Rauwolfia vomitoria roots. Separ. Sci. Technol. 47: 827–833, https://doi.org/10.1080/01496395.2011.635623.Search in Google Scholar

Sheldon, R.A. (2007). The E factor: fifteen years on. Green Chem. 9: 1273–1283, https://doi.org/10.1039/b713736m.Search in Google Scholar

Sheldon, R.A. (2017). The E factor 25 Years on: the rise of green chemistry and sustainability. Green Chem. 19: 18–43, https://doi.org/10.1039/c6gc02157c.Search in Google Scholar

Shimizu, S., Booth, J., and Abbott, S. (2013). Hydrotropy: binding models vs statistical thermodynamics. Phys. Chem. Chem. Phys. 15: 20625–20632, https://doi.org/10.1039/c3cp53791a.Search in Google Scholar PubMed

Shimizu, S. and Kanasaki, Y.N. (2019). Effect of solute aggregation on solubilization. J. Mol. Liq. 274: 209–214, https://doi.org/10.1016/j.molliq.2018.10.102.Search in Google Scholar

Shimizu, S. and Matubayasi, N. (2014). Hydrotropy: monomer-micelle equilibrium and minimum hydrotrope concentration. J. Phys. Chem. B 118: 10515–10524, https://doi.org/10.1021/jp505869m.Search in Google Scholar PubMed

Shimizu, S. and Matubayasi, N. (2016). The origin of cooperative solubilization by hydrotropy. Phys. Chem. Chem. Phys. 18: 25621–25628, https://doi.org/10.1039/c6cp04823d.Search in Google Scholar PubMed

Shimizu, S. and Matubayasi, N. (2017a). Hydrotropy and scattering: pre-ouzo as an extended near-spinodal region. Phys. Chem. Chem. Phys. 19: 26734–26742, https://doi.org/10.1039/c7cp04990k.Search in Google Scholar PubMed

Shimizu, S. and Matubayasi, N. (2017b). Unifying hydrotropy under Gibbs phase rule. Phys. Chem. Chem. Phys. 19: 23597–23605, https://doi.org/10.1039/c7cp02132a.Search in Google Scholar PubMed

Shimizu, S. and Matubayasi, N. (2018). Statistical thermodynamic foundation for mesoscale aggregation in ternary mixtures. Phys. Chem. Chem. Phys. 20: 13777–13784, https://doi.org/10.1039/c8cp01207e.Search in Google Scholar PubMed

Shimizu, S. and Matubayasi, N. (2021). Cooperativity in micellar solubilization. Phys. Chem. Chem. Phys. 23: 8705–8716, https://doi.org/10.1039/d0cp06479c.Search in Google Scholar PubMed

Simamora, P., Alvarez, J.M., and Yalkowsky, S.H. (2001). Solubilization of rapamycin. Int. J. Pharm. 213: 25–29, https://doi.org/10.1016/s0378-5173(00)00617-7.Search in Google Scholar PubMed

Sintra, T., Shimizu, K., Ventura, S., Shimizu, S., Lopes, J., and Coutinho, J. (2018). Enhanced dissolution of ibuprofen using ionic liquids as catanionic hydrotropes. Phys. Chem. Chem. Phys. 20: 2094–2103, https://doi.org/10.1039/c7cp07569c.Search in Google Scholar PubMed

Solanki, K.P., Desai, M.A., and Parikh, J.K. (2020). Improved hydrodistillation process using amphiphilic compounds for extraction of essential oil from java citronella grass. Chem. Pap. 74: 145–156, https://doi.org/10.1007/s11696-019-00861-3.Search in Google Scholar

Srinivas, V. and Balasubramanian, D. (1998). When does the switch from hydrotropy to micellar behavior occur? Langmuir 14: 6658–6661, https://doi.org/10.1021/la980598c.Search in Google Scholar

Stanton, K., Tibazarwa, C., Certa, H., Greggs, W., Hillebold, D., Jovanovich, L., Woltering, D., and Sedlak, R. (2010). Environmental risk assessment of hydrotropes in the United States, Europe, and Australia. Integrated Environ. Assess. Manag. 6: 155–163, https://doi.org/10.1897/IEAM_2009-019.1.Search in Google Scholar PubMed

Su, C., Hirth, K., Liu, Z., Cao, Y., and Zhu, J.Y. (2021a). Acid hydrotropic fractionation of switchgrass at atmospheric pressure using maleic acid in comparison with p-TsOH: advantages of lignin esterification. Ind. Crop. Prod. 159: 113017, https://doi.org/10.1016/j.indcrop.2020.113017.Search in Google Scholar

Su, C., Hirth, K., Liu, Z., Cao, Y., and Zhu, J.Y. (2021b). Maleic acid hydrotropic fractionation of wheat straw to facilitate value‐added multi‐product biorefinery at atmospheric pressure. GCB Bioenergy. 13: 1407–1424. https://doi.org/10.1111/gcbb.12866.Search in Google Scholar

Subramanian, D. and Anisimov, M.A. (2011). Resolving the mystery of aqueous solutions of tertiary butyl alcohol. J. Phys. Chem. B 115: 9179–9183, https://doi.org/10.1021/jp2041795.Search in Google Scholar PubMed

Subramanian, D. and Anisimov, M.A. (2014). Phase behavior and mesoscale solubilization in aqueous solutions of hydrotropes. Fluid Phase Equil. 362: 170–176, https://doi.org/10.1016/j.fluid.2013.09.064.Search in Google Scholar

Subramanian, D., Boughter, C.T., Klauda, J.B., Hammouda, B., and Anisimov, M.A. (2013). Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules. Faraday Discuss 167: 217–238, https://doi.org/10.1039/c3fd00070b.Search in Google Scholar PubMed

Subramanian, D., Ivanov, D.A., Yudin, I.K., Anisimov, M.A., and Sengers, J.V. (2011). Mesoscale inhomogeneities in aqueous solutions of 3-methylpyridine and tertiary butyl alcohol. J. Chem. Eng. Data 56: 1238–1248, https://doi.org/10.1021/je101125e.Search in Google Scholar

Subramanian, D., Klauda, J.B., Collings, P.J., and Anisimov, M.A. (2014). Mesoscale phenomena in ternary solutions of tertiary butyl alcohol, water, and propylene oxide. J. Phys. Chem. B 118: 5994–6006, https://doi.org/10.1021/jp4125183.Search in Google Scholar PubMed

Takahashi, K., Komai, M., Kinoshita, N., Nakamura, E., Hou, X., Nakase, T., and Kawase, M. (2011). Application of hydrotropy to transdermal formulations: hydrotropic solubilization of polyol fatty acid monoesters in water and enhancement effect on skin permeation of 5-FU. J. Pharm. Pharmacol. 63: 1008–1014, https://doi.org/10.1111/j.2042-7158.2011.01308.x.Search in Google Scholar PubMed

Thakker, M., Parikh, J., and Desai, M. (2018). Ultrasound assisted hydrotropic extraction: a greener approach for the isolation of geraniol from the leaves of Cymbopogon martini. ACS Sustain. Chem. Eng. 6: 3215–3224, https://doi.org/10.1021/acssuschemeng.7b03374.Search in Google Scholar

United Nations General Assembly (2015). Transforming our world: the 2030 agenda for sustainable development.Search in Google Scholar

Wagle, V.B., Kothari, P.S., and Gaikar, V.G. (2007). Effect of temperature on aggregation behavior of aqueous solutions of sodium cumene sulfonate. J. Mol. Liq. 133: 68–76, https://doi.org/10.1016/j.molliq.2006.07.006.Search in Google Scholar

Winsor, P.A. (1948). Hydrotropy. solubilization and related emulsification process. Trans. Faraday Soc. 54: 376, https://doi.org/10.1039/tf9484400376.Search in Google Scholar

Woolfson, A., McCafferty, D., and Launchbury, A. (1986). Stabilisation of hydrotropic temazepam parenteral formulations by lyophilisation. Int. J. Pharm. 34: 17–22, https://doi.org/10.1016/0378-5173(86)90004-9.Search in Google Scholar

Wu, X., Zhang, T., Liu, N., Zhao, Y., Tian, G., and Wang, Z. (2020). Sequential extraction of hemicelluloses and lignin for wood fractionation using acid hydrotrope at mild conditions. Ind. Crop. Prod. 145: 112086, https://doi.org/10.1016/j.indcrop.2020.112086.Search in Google Scholar

Wypych, G. (2001). Handbook of solvents. New York: Chemtech Publishing.Search in Google Scholar

Zemb, T. and Kunz, W. (2016). Weak aggregation: State of the art, expectations and open questions. Curr. Opin. Colloid Interface Sci. 22: 113–119, https://doi.org/10.1016/j.cocis.2016.04.002.Search in Google Scholar

Zemb, T.N., Klossek, M., Lopian, T., Marcus, J., Schöettl, S., Horinek, D., Prevost, S.F., Touraud, D., Diat, O., Marčelja, S, et al.. (2016). How to explain microemulsions formed by solvent mixtures without conventional surfactants. Proc. Natl. Acad. Sci. Unit. States Am. 113: 4260–4265, https://doi.org/10.1073/pnas.1515708113.Search in Google Scholar PubMed PubMed Central

Zhu, J., Chen, L., and Cai, C. (2021). Acid hydrotropic fractionation of lignocelluloses for sustainable biorefinery: advantages, opportunities, and research needs. ChemSusChem. 14: 3031–3046, doi:https://doi.org/10.1002/cssc.202100915.Search in Google Scholar PubMed

Zhu, J., Chen, L., Gleisner, R., and Zhu, J.Y. (2019). Co-production of bioethanol and furfural from poplar wood via low temperature (≤ 90 °C) acid hydrotropic fractionation (AHF). Fuel 254: 115572, https://doi.org/10.1016/j.fuel.2019.05.155.Search in Google Scholar

Received: 2021-03-05
Revised: 2021-12-14
Accepted: 2021-12-14
Published Online: 2022-03-14
Published in Print: 2023-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2021-0012/html
Scroll to top button