1932

Abstract

The overall effect of temperature gradients is stressed for the Earth's core and surface, but also for the Sun's surface. Using Rayleigh–Bénard convection in helium and mercury, we measured all of the scaling properties of the period-doubling cascade and quasiperiodicity. Hard turbulence scaling properties are presented in an experiment using helium gas at low temperature. A scaling law is measured and also an exponential distribution for temperature fluctuations is observed. We present a study of a Rayleigh–Bénard convection cell with an open top and a floater. One of the simplest limit cycles is observed for the floater position. It follows a model proposed by Wilson for continent motion. Using the Soret effect, we study how temperature differences lead to strong accumulation of DNA suspensions. Also using polyethylene glycol concentration gradients, we measured local DNA and RNA accumulation. Finally, using thermal convection, we build one of the smallest PCR machines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040721-023358
2023-03-10
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-040721-023358.html?itemId=/content/journals/10.1146/annurev-conmatphys-040721-023358&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Libchaber A. 2019. Annu. Rev. Condens. Matter Phys. 10:275–93
    [Google Scholar]
  2. 2.
    Strahler AN. 1998. Plate Tectonics Cambridge, MA: Geo Books Pub.
    [Google Scholar]
  3. 3.
    Wegener A. 1912. Geol. Rundsch. 3:276–92
    [Google Scholar]
  4. 4.
    Wilson JT. 1966. Nature 211:5050676–81
    [Google Scholar]
  5. 5.
    Fortey RA. 2004. Am. Sci. 92:5446–53
    [Google Scholar]
  6. 6.
    Burgess SD, Bowring SA. 2015. Sci. Adv. 1:7e1500470
    [Google Scholar]
  7. 7.
    Carnot S. 1824. Reflections on the Motive Power of Fire and on Machines Fitted to Develop that Power, Vol. 108 Paris: Bachelier
    [Google Scholar]
  8. 8.
    Barry RG, Chorley RJ 1971. Atmospheric Weather and Climate London: Methuen
    [Google Scholar]
  9. 9.
    Hansen CJ, Kawaler SD, Trimble V. 2004. Stellar Energy Sources New York: Springer
    [Google Scholar]
  10. 10.
    Alberts B, Alexander J, Julian L, Martin R, Keith R, Pete W 2008. Molecular Biology of the Cell New York: Garland Sci.
    [Google Scholar]
  11. 11.
    Poincaré H. 1892. Les Méthodes Nouvelles de la Mécanique Céleste, Vol. 3 Invariants Integraux, Solutions Periodiques du Deuxieme Genre, Solutions Doublement Asymptotiques Paris: Gauthier-Villars et fils
    [Google Scholar]
  12. 12.
    Lyapunov A. 1892. The General Problem of the Stability of Motion Kharkov, Ukraine: Kharkov Math. Soc.
    [Google Scholar]
  13. 13.
    Landau LD, Lifshitz EM. 1960. Physique Théorique, Vol. I, Mécanique Transl. C Ligny, 1960 Moscou: Editions en Langue étrangères
    [Google Scholar]
  14. 14.
    Arneodo A, Coullet P, Tresser C, Libchaber A, Maurer J, D'Humières D. 1983. Phys. D: Nonlinear Phenom. 6:3385–92
    [Google Scholar]
  15. 15.
    Turing AM. 1952. Philos. Trans. R. Soc. Lond. 237:37B23737–72
    [Google Scholar]
  16. 16.
    Lorenz EN. 1963. J. Atmos. Sci. 20:2130–41
    [Google Scholar]
  17. 17.
    Gollub JP, Swinney HL. 1975. Phys. Rev. Lett. 35:14927–30
    [Google Scholar]
  18. 18.
    Ahlers G. 1974. Phys. Rev. Lett. 33:201185
    [Google Scholar]
  19. 19.
    Bergé P, Pomeau Y, Vidal C. 1987. Order Within Chaos New York: Wiley-VCH
    [Google Scholar]
  20. 20.
    Feigenbaum MJ. 1978. J. Stat. Phys. 19:125–52
    [Google Scholar]
  21. 21.
    D'Humieres D, Beasley MR, Huberman BA, Libchaber A. 1982. Phys. Rev. A 26:63483–96
    [Google Scholar]
  22. 22.
    Collet P, Eckmann J-P. 1980. Iterated Maps on the Interval as Dynamical Systems. Modern Birkhäuser Classics Boston, MA: Birkhäuser
    [Google Scholar]
  23. 23.
    Josephson BD. 1974. Rev. Mod. Phys. 46:2251–54
    [Google Scholar]
  24. 24.
    Maurer J, Libchaber A. 1980. J. Phys. Lett. 41:21515–18
    [Google Scholar]
  25. 25.
    Busse FH, Clever RM. 1979. J. Fluid Mech. 91:2319–35
    [Google Scholar]
  26. 26.
    Le Gal P, Pocheau A, Croquette V 1985. Phys. Rev. Lett. 54:232501
    [Google Scholar]
  27. 27.
    Libchaber A, Maurer J. 1980. J. Phys. Colloques 41:C3–51C3-56
    [Google Scholar]
  28. 28.
    Feigenbaum MJ. 1979. Phys. Lett. A 74:6375–78
    [Google Scholar]
  29. 29.
    Libchaber A, Laroche C, Fauve S. 1982. J. Phys. Lett. 43:7211–16
    [Google Scholar]
  30. 30.
    Libchaber A, Fauve S, Laroche C. 1983. Phys. D: Nonlinear Phenom. 7:73–84
    [Google Scholar]
  31. 31.
    Gleick J. 1988. Chaos: Making a New Science New York: Penguin Books
    [Google Scholar]
  32. 32.
    Glazier JA, Libchaber A. 1988. IEEE Trans. Circ. Syst. 35:7790–809
    [Google Scholar]
  33. 33.
    Jensen MH, Kadanoff LP, Libchaber A, Procaccia I, Stavans J. 1985. Phys. Rev. Lett. 55:252798–801
    [Google Scholar]
  34. 34.
    Glazier JA, Jensen MH, Libchaber A, Stavans J. 1986. Phys. Rev. A 34:21621–24
    [Google Scholar]
  35. 35.
    Stavans J. 1987. Phys. Rev. A 35:104314–28
    [Google Scholar]
  36. 36.
    Stavans J, Heslot F, Libchaber A. 1985. Phys. Rev. Lett. 55:6596–99 Erratum 1985. Phys. Rev. Lett. 55:111239
    [Google Scholar]
  37. 37.
    Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI. 1986. Phys. Rev. A 33:21141–51
    [Google Scholar]
  38. 38.
    Threlfall DC. 1975. J. Fluid Mech. 67:117–28
    [Google Scholar]
  39. 39.
    Heslot F, Castaing B, Libchaber A. 1987. Phys. Rev. A 36:125870–73
    [Google Scholar]
  40. 40.
    Sano M, Wu XZ, Libchaber A. 1989. Phys. Rev. A 40:116421–30
    [Google Scholar]
  41. 41.
    Castaing B, Gunaratne G, Heslot F, Kadanoff L, Libchaber A et al. 1989. J. Fluid Mech. 204:1–30
    [Google Scholar]
  42. 42.
    Malkus WVR, Chandrasekhar S. 1954. Proc. R. Soc. A. 225:1161196–212
    [Google Scholar]
  43. 43.
    Zhang J, Childress S, Libchaber A. 1997. Phys. Fluids 9:41034–42
    [Google Scholar]
  44. 44.
    Zocchi G, Moses E, Libchaber A 1990. Phys. A Stat. Mech. Appl. 166:3387–407
    [Google Scholar]
  45. 45.
    Belmonte A, Tilgner A, Libchaber A. 1994. Phys. Rev. E 50:1269–79
    [Google Scholar]
  46. 46.
    Tilgner A, Belmonte A, Libchaber A. 1993. Phys. Rev. E 47:4R2253–56
    [Google Scholar]
  47. 47.
    Zhang J, Libchaber A. 2000. Phys. Rev. Lett. 84:194361–64
    [Google Scholar]
  48. 48.
    Oxburgh E, Turcotte D. 1978. Rep. Prog. Phys. 41:81249–312
    [Google Scholar]
  49. 49.
    McKenzie D, Roberts J, Weiss N. 1974. J. Fluid Mech. 62:465–538
    [Google Scholar]
  50. 50.
    Lowman JP, Jarvis GT. 1993. Geophys. Res. Lett. 20:192087–90
    [Google Scholar]
  51. 51.
    Soret C. 1879. Arch. Sci. Phys. Nat. Geneve 2:48–64
    [Google Scholar]
  52. 52.
    Jülicher F, Prost J. 2009. Eur. Phys. J. E 29:127–36
    [Google Scholar]
  53. 53.
    Piazza R, Parola A. 2008. J. Phys. Condens. Matter 20:15153102
    [Google Scholar]
  54. 54.
    Braun D, Libchaber A. 2004. Phys. Biol. 1:1–2P1–8
    [Google Scholar]
  55. 55.
    Maeda YT, Buguin A, Libchaber A. 2011. Phys. Rev. Lett. 107:3038301
    [Google Scholar]
  56. 56.
    Braun D, Goddard NL, Libchaber A. 2003. Phys. Rev. Lett. 91:15158103
    [Google Scholar]
  57. 57.
    Kolmogorov AN. 1941. C. R. Acad. Sci. 30:301–5
    [Google Scholar]
  58. 58.
    Clarke S. 1717. A Collection of Papers, Which Passed Between the Late Learned Mr. Leibnitz, and Dr. Clarke, in the Years 1715 and 1716 London: Printed for James Knapton
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040721-023358
Loading
/content/journals/10.1146/annurev-conmatphys-040721-023358
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error