1932

Abstract

The spin Seebeck effect (SSE) refers to the generation of a spin current as a result of a temperature gradient in a magnetic material, which can be detected electrically via the inverse spin Hall effect in a metallic contact. Since the discovery of the SSE in 2008, intensive studies on the SSE have been conducted to elucidate its origin. SSEs appear in a wide range of magnetic materials including ferro-, ferri-, and antiferromagnets and also paramagnets with classical or quantum spin fluctuation. SSE voltage reflects fundamental properties of a magnet, such as elementary excitation, static magnetic order, spin correlation, and spin transport. In this article, we review recent progress on the SSE in various systems, with particular emphasis on its emerging role as a probe of these magnetic properties in solids. We also briefly discuss the recently discovered nuclear SSE.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040721-014957
2023-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-040721-014957.html?itemId=/content/journals/10.1146/annurev-conmatphys-040721-014957&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Uchida K, Ishida M, Kikkawa T, Kirihara A, Murakami T, Saitoh E. 2014. J. Phys. Condens. Matter 26:343202. Erratum. 2014. J. Phys. Condens. Matter 26:389601
    [Google Scholar]
  2. 2.
    Uchida K, Adachi H, Kikkawa T, Kirihara A, Ishida M et al. 2016. Proc. IEEE 104:1946–73. Erratum. 2016. Proc. IEEE 104:1499
    [Google Scholar]
  3. 3.
    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W et al. 2008. Nature 455:778–81
    [Google Scholar]
  4. 4.
    Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S et al. 2010. Nat. Mater. 9:894–97
    [Google Scholar]
  5. 5.
    Jaworski CM, Yang J, Mack S, Awschalom DD, Heremans JP, Myers RC. 2010. Nat. Mater. 9:898–903
    [Google Scholar]
  6. 6.
    Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E. 2010. Appl. Phys. Lett. 97:172505
    [Google Scholar]
  7. 7.
    Cornelissen LJ, Liu J, Duine RA, Ben Youssef J, van Wees BJ 2015. Nat. Phys. 11:1022–26
    [Google Scholar]
  8. 8.
    Bauer GEW, Saitoh E, van Wees BJ. 2012. Nat. Mater. 11:391–99
    [Google Scholar]
  9. 9.
    Boona SR, Myers RC, Heremans JP. 2014. Energy Environ. Sci. 7:885–910
    [Google Scholar]
  10. 10.
    Yu H, Brechet SD, Ansermet J-P. 2017. Phys. Lett. A 381:825–37
    [Google Scholar]
  11. 11.
    Maekawa S, Saitoh E, Valenzuela SO, Kimura T, eds. 2017. Spin Current Oxford, UK: Oxford Univ. Press. , 2nd ed..
    [Google Scholar]
  12. 12.
    Kikkawa T, Uchida K, Daimon S, Shiomi Y, Adachi H et al. 2013. Phys. Rev. B 88:214403
    [Google Scholar]
  13. 13.
    Bougiatioti P, Klewe C, Meier C, Manos O, Kuschel O et al. 2017. Phys. Rev. Lett. 119:227205
    [Google Scholar]
  14. 14.
    De A, Ghosh A, Mandal R, Ogale S, Nair S. 2020. Phys. Rev. Lett. 124:017203
    [Google Scholar]
  15. 15.
    Mallick K, Wagh AA, Ionescu A, Barnes CHW, Anil Kumar PS 2019. Phys. Rev. B 100:224403
    [Google Scholar]
  16. 16.
    Ito N, Kikkawa T, Barker J, Hirobe D, Shiomi Y, Saitoh E. 2019. Phys. Rev. B 100:060402(R)
    [Google Scholar]
  17. 17.
    Gupta V, Cham TM, Stiehl GM, Bose A, Mittelstaedt JA et al. 2020. Nano Lett. 20:7482–88
    [Google Scholar]
  18. 18.
    Cramer J, Guo E-J, Geprägs S, Kehlberger A, Ivanov YP et al. 2017. Nano Lett. 17:3334–3340
    [Google Scholar]
  19. 19.
    Avci CO, Quindeau A, Mann M, Pai C-F, Ross CA, Beach GSD. 2017. Phys. Rev. B 95:115428
    [Google Scholar]
  20. 20.
    Ortiz VH, Gomez MJ, Liu Y, Aldosary M, Shi J, Wilson RB. 2021. Phys. Rev. Mater. 5:074401
    [Google Scholar]
  21. 21.
    Iwasaki Y, Takeuchi I, Stanev V, Kusne AG, Ishida M et al. 2019. Sci. Rep. 9:2751
    [Google Scholar]
  22. 22.
    Ramos R, Hioki T, Hashimoto Y, Kikkawa T, Frey P et al. 2019. Nat. Commun. 10:5162
    [Google Scholar]
  23. 23.
    Arboleda JD, Olmos OA, Aguirre MH, Ramos R, Anadon A, Ibarra MR. 2016. Appl. Phys. Lett. 108:232401
    [Google Scholar]
  24. 24.
    Jiménez-Cavero P, Lucas I, Anadón AA, Ramos R, Niizeki T et al. 2017. APL Mater. 5:026103
    [Google Scholar]
  25. 25.
    Shiomi Y, Lustikova J, Saitoh E. 2017. Sci. Rep. 7:5358
    [Google Scholar]
  26. 26.
    Wang H, Hou D, Kikkawa T, Ramos R, Shen K et al. 2018. Appl. Phys. Lett. 112:142406
    [Google Scholar]
  27. 27.
    Kosaki H, Umeda M, Saitoh E, Shiomi Y. 2021. J. Phys. Soc. Jpn. 90:083702
    [Google Scholar]
  28. 28.
    Hirschner J, Maryško M, Hejtmánek J, Uhrecký R, Soroka M et al. 2017. Phys. Rev. B 96:064428
    [Google Scholar]
  29. 29.
    Knížek K, Pashchenko M, Levinský P, Kaman O, Houdková J et al. 2018. J. Appl. Phys. 124:213904
    [Google Scholar]
  30. 30.
    Oh I, Park J, Choe D, Jo J, Jeong H et al. 2021. Nat. Commun. 12:1057
    [Google Scholar]
  31. 31.
    Anadón A, Martin E, Homkar S, Meunier B, Verges M et al. 2022. arXiv:2206.13426
  32. 32.
    Holanda J, Maior DS, Alves Santos O, Vilela-Leão LH, Mendes JBS et al. 2017. Appl. Phys. Lett. 111:172405
    [Google Scholar]
  33. 33.
    Ribeiro PRT, Machado FLA, Gamino M, Azevedo A, Rezende SM. 2019. Phys. Rev. B 99:094432
    [Google Scholar]
  34. 34.
    Gray I, Moriyama T, Sivadas N, Stiehl GM, Heron JT et al. 2019. Phys. Rev. X 9:041016
    [Google Scholar]
  35. 35.
    Hoogeboom GR, van Wees BJ. 2020. Phys. Rev. B 102:214415
    [Google Scholar]
  36. 36.
    Li J, Shi Z, Ortiz VH, Aldosary M, Chen C et al. 2019. Phys. Rev. Lett. 122:217204
    [Google Scholar]
  37. 37.
    Yuan W, Li J, Shi J. 2020. Appl. Phys. Lett. 117:100501
    [Google Scholar]
  38. 38.
    Ross A, Lebrun R, Evers M, Deák A, Szunyogh L et al. 2021. Phys. Rev. B 103:224433
    [Google Scholar]
  39. 39.
    Kikkawa T, Reitz D, Ito H, Makiuchi T, Sugimoto T et al. 2021. Nat. Commun. 12:4356
    [Google Scholar]
  40. 40.
    Shiomi Y, Takashima R, Okuyama D, Gitgeatpong G, Piyawongwatthana P et al. 2017. Phys. Rev. B 96:180414(R)
    [Google Scholar]
  41. 41.
    Hong D, Liu C, Pearson JE, Hoffmann A, Fong DD, Bhattacharya A. 2019. Appl. Phys. Lett. 114:242403
    [Google Scholar]
  42. 42.
    Das A, Eswara Phanindra V, Watson AJ, Banerjee T. 2021. Appl. Phys. Lett. 118:052407
    [Google Scholar]
  43. 43.
    Hoogeboom GR, Kuschel T, Bauer GEW, Mostovoy MV, Kimel AV, van Wees BJ. 2021. Phys. Rev. B 103:134406
    [Google Scholar]
  44. 44.
    Lin W, He J, Ma B, Matzelle M, Xu J et al. 2022. Nat. Phys. 18:800–5
    [Google Scholar]
  45. 45.
    Xu J, He J, Zhou J-S, Qu D, Huang S-Y, Chien CL. 2022. Phys. Rev. Lett. 129:117202
    [Google Scholar]
  46. 46.
    Feringa F, Bauer GEW, van Wees BJ. 2022. Phys. Rev. B 105:214408
    [Google Scholar]
  47. 47.
    Aqeel A, Vlietstra N, Roy A, Mostovoy M, van Wees BJ, Palstra TTM 2016. Phys. Rev. B 94:134418
    [Google Scholar]
  48. 48.
    Akopyan A, Prasai N, Trump BA, Marcus GG, McQueen TM, Cohn JL. 2020. Phys. Rev. B 101:100407(R)
    [Google Scholar]
  49. 49.
    Hirobe D, Sato M, Kawamata T, Shiomi Y, Uchida K et al. 2017. Nat. Phys. 13:30–34
    [Google Scholar]
  50. 50.
    Hirobe D, Kawamata T, Oyanagi K, Koike Y, Saitoh E. 2018. J. Appl. Phys. 123:123903
    [Google Scholar]
  51. 51.
    Chen Y, Sato M, Tang Y, Shiomi Y, Oyanagi K et al. 2021. Nat. Commun. 12:5199
    [Google Scholar]
  52. 52.
    Xing W, Cai R, Moriyama K, Nara K, Yao Y et al. 2022. Appl. Phys. Lett. 120:042402
    [Google Scholar]
  53. 53.
    Hirobe D, Sato M, Hagihala M, Shiomi Y, Masuda T, Saitoh E. 2019. Phys. Rev. Lett. 123:117202
    [Google Scholar]
  54. 54.
    Uchida K, Kikkawa T, Miura A, Shiomi J, Saitoh E. 2014. Phys. Rev. X 4:041023
    [Google Scholar]
  55. 55.
    Kikkawa T, Uchida K, Daimon S, Qiu Z, Shiomi Y, Saitoh E. 2015. Phys. Rev. B 92:064413
    [Google Scholar]
  56. 56.
    Jin H, Boona SR, Yang Z, Myers RC, Heremans JP. 2015. Phys. Rev. B 92:054436
    [Google Scholar]
  57. 57.
    Guo E-J, Cramer J, Kehlberger A, Ferguson CA, MacLaren DA et al. 2016. Phys. Rev. X 6:031012
    [Google Scholar]
  58. 58.
    Iguchi R, Uchida K, Daimon S, Saitoh E. 2017. Phys. Rev. B 95:174401
    [Google Scholar]
  59. 59.
    Weiler M, Althammer M, Czeschka FD, Huebl H, Wagner MS et al. 2012. Phys. Rev. Lett. 108:106602
    [Google Scholar]
  60. 60.
    Aqeel A, Vera-Marun IJ, van Wees BJ, Palstra TTM 2014. J. Appl. Phys. 116:153705
    [Google Scholar]
  61. 61.
    Uchida K, Ohe J, Kikkawa T, Daimon S, Hou D et al. 2015. Phys. Rev. B 92:014415
    [Google Scholar]
  62. 62.
    Kikkawa T, Uchida K, Daimon S, Saitoh E. 2016. J. Phys. Soc. Jpn. 85:065003
    [Google Scholar]
  63. 63.
    Kikkawa T, Shen K, Flebus B, Duine RA, Uchida K et al. 2016. Phys. Rev. Lett. 117:207203
    [Google Scholar]
  64. 64.
    Kalappattil V, Das R, Phan M-H, Srikanth H. 2017. Sci. Rep. 7:13316
    [Google Scholar]
  65. 65.
    Wu P-H, Chan Y-T, Hung T-C, Zhang Y-H, Qu D et al. 2020. Phys. Rev. B 102:174426
    [Google Scholar]
  66. 66.
    Kehlberger A, Ritzmann U, Hinzke D, Guo EJ, Cramer J et al. 2015. Phys. Rev. Lett. 115:096602
    [Google Scholar]
  67. 67.
    Miura A, Kikkawa T, Iguchi R, Uchida K, Saitoh E, Shiomi J. 2017. Phys. Rev. Mater. 1:014601
    [Google Scholar]
  68. 68.
    Prakash A, Flebus B, Brangham J, Yang F, Tserkovnyak Y, Heremans JP. 2018. Phys. Rev. B 97:020408(R)
    [Google Scholar]
  69. 69.
    Daimon S, Uchida K, Ujiie N, Hattori Y, Tsuboi R, Saitoh E. 2020. Appl. Phys. Express 13:103001
    [Google Scholar]
  70. 70.
    Wu H, Huang L, Fang C, Yang BS, Wan CH et al. 2018. Phys. Rev. Lett. 120:097205
    [Google Scholar]
  71. 71.
    Nozue T, Kikkawa T, Watamura T, Niizeki T, Ramos R et al. 2018. Appl. Phys. Lett. 113:262402
    [Google Scholar]
  72. 72.
    Roschewsky N, Schreier M, Kamra A, Schade F, Ganzhorn K et al. 2014. Appl. Phys. Lett. 104:202410
    [Google Scholar]
  73. 73.
    Agrawal M, Vasyuchka VI, Serga AA, Kirihara A, Pirro P et al. 2014. Phys. Rev. B 89:224414
    [Google Scholar]
  74. 74.
    Kimling J, Choi GM, Brangham JT, Matalla-Wagner T, Huebner T et al. 2017. Phys. Rev. Lett. 118:057201
    [Google Scholar]
  75. 75.
    Bartell JM, Jermain CL, Aradhya SV, Brangham JT, Yang F et al. 2017. Phys. Rev. Appl. 7:044004
    [Google Scholar]
  76. 76.
    Hioki T, Iguchi R, Qiu Z, Hou D, Uchida K, Saitoh E. 2017. Appl. Phys. Express 10:073002
    [Google Scholar]
  77. 77.
    Seifert TS, Jaiswal S, Barker J, Weber ST, Razdolski I et al. 2018. Nat. Commun. 9:2899
    [Google Scholar]
  78. 78.
    Jamison JS, Yang Z, Giles BL, Brangham JT, Wu G et al. 2019. Phys. Rev. B 100:134402
    [Google Scholar]
  79. 79.
    Flipse J, Dejene FK, Wagenaar D, Bauer GEW, Ben Youssef J, van Wees BJ 2014. Phys. Rev. Lett. 113:027601
    [Google Scholar]
  80. 80.
    Daimon S, Iguchi R, Hioki T, Saitoh E, Uchida K. 2016. Nat. Commun. 7:13754
    [Google Scholar]
  81. 81.
    Sola A, Basso V, Kuepferling M, Dubs C, Pasquale M. 2019. Sci. Rep. 9:2047
    [Google Scholar]
  82. 82.
    Agrawal M, Vasyuchka VI, Serga AA, Karenowska AD, Melkov GA, Hillebrands B. 2013. Phys. Rev. Lett. 111:107204
    [Google Scholar]
  83. 83.
    Cornelissen LJ, Peters KJH, Bauer GEW, Duine RA, van Wees BJ. 2016. Phys. Rev. B 94:014412
    [Google Scholar]
  84. 84.
    An K, Olsson KS, Weathers A, Sullivan S, Chen X et al. 2016. Phys. Rev. Lett. 117:107202
    [Google Scholar]
  85. 85.
    Olsson KS, An K, Fiete GA, Zhou J, Shi L, Li X. 2020. Phys. Rev. X 10:021029
    [Google Scholar]
  86. 86.
    Xiao J, Bauer GEW, Uchida K, Saitoh E, Maekawa S. 2010. Phys. Rev. B 81:214418
    [Google Scholar]
  87. 87.
    Bender SA, Duine RA, Tserkovnyak Y. 2012. Phys. Rev. Lett. 108:246601
    [Google Scholar]
  88. 88.
    Barker J, Bauer GEW. 2016. Phys. Rev. Lett. 117:217201
    [Google Scholar]
  89. 89.
    Adachi H, Ohe J, Takahashi S, Maekawa S. 2011. Phys. Rev. B 83:094410
    [Google Scholar]
  90. 90.
    Adachi H, Uchida K, Saitoh E, Maekawa S. 2013. Rep. Prog. Phys. 76:036501
    [Google Scholar]
  91. 91.
    Duine RA, Brataas A, Bender SA, Tserkovnyak Y 2017. Universal Themes of Bose-Einstein Condensation N Proukakis, D Snoke, P Littlewood 505–24 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  92. 92.
    Tserkovnyak Y, Brataas A, Bauer GEW. 2002. Phys. Rev. B 66:224403
    [Google Scholar]
  93. 93.
    Chen Y-T, Takahashi S, Nakayama H, Althammer M, Goennenwein STB et al. 2016. J. Phys. Condens. Matter 28:103004
    [Google Scholar]
  94. 94.
    Zhang SSL, Zhang S. 2012. Phys. Rev. B 86:214424
    [Google Scholar]
  95. 95.
    Rezende SM, Rodríguez-Suárez RL, Cunha RO, Rodrigues AR, Machado FLA et al. 2014. Phys. Rev. B 89:014416
    [Google Scholar]
  96. 96.
    Rezende SM. 2020. Fundamentals of Magnonics Cham, Switz: Springer Nature Switz. AG
    [Google Scholar]
  97. 97.
    Anadón A, Ramos R, Lucas I, Algarabel PA, Morellón L et al. 2016. Appl. Phys. Lett. 109:012404
    [Google Scholar]
  98. 98.
    Venkat G, Cox CDW, Voneshen D, Caruana AJ, Piovano A et al. 2020. Phys. Rev. Mater. 4:075402
    [Google Scholar]
  99. 99.
    Ramos R, Kikkawa T, Aguirre MH, Lucas I, Anadón A et al. 2015. Phys. Rev. B 92:220407(R)
    [Google Scholar]
  100. 100.
    Shan J, Cornelissen LJ, Liu J, Ben Youssef J, Liang L, van Wees BJ 2017. Phys. Rev. B 96:184427
    [Google Scholar]
  101. 101.
    Cornelissen LJ, Shan J, van Wees BJ. 2016. Phys. Rev. B 94:180402(R)
    [Google Scholar]
  102. 102.
    Giles BL, Yang Z, Jamison JS, Myers RC. 2015. Phys. Rev. B 92:224415
    [Google Scholar]
  103. 103.
    Giles BL, Yang Z, Jamison J, Gomez-Perez JM, Vélez S et al. 2017. Phys. Rev. B 96:180412(R)
    [Google Scholar]
  104. 104.
    An K, Kohno R, Thiery N, Reitz D, Vila L et al. 2021. Phys. Rev. B 103:174432
    [Google Scholar]
  105. 105.
    Cornelissen LJ, van Wees BJ. 2016. Phys. Rev. B 93:020403(R)
    [Google Scholar]
  106. 106.
    Shan J, Cornelissen LJ, Vlietstra N, Ben Youssef J, Kuschel T et al. 2016. Phys. Rev. B 94:174437
    [Google Scholar]
  107. 107.
    Zhou XJ, Shi GY, Han JH, Yang QH, Rao YH et al. 2017. Appl. Phys. Lett. 110:062407
    [Google Scholar]
  108. 108.
    Ganzhorn K, Wimmer T, Cramer J, Schlitz R, Geprägs S et al. 2017. AIP Adv. 7:085102
    [Google Scholar]
  109. 109.
    Cornelissen LJ, Oyanagi K, Kikkawa T, Qiu Z, Kuschel T et al. 2017. Phys. Rev. B 96:104441
    [Google Scholar]
  110. 110.
    Oyanagi K, Kikkawa T, Saitoh E 2020. AIP Adv. 10:015031
    [Google Scholar]
  111. 111.
    Gomez-Perez JM, Vélez S, Hueso LE, Casanova F. 2020. Phys. Rev. B 101:184420
    [Google Scholar]
  112. 112.
    Ganzhorn K, Wimmer T, Barker J, Bauer GEW, Qiu Z et al. 2017. arXiv:1705.02871
  113. 113.
    Avci CO, Rosenberg E, Huang M, Bauer J, Ross CA, Beach GSD. 2020. Phys. Rev. Lett. 124:027701
    [Google Scholar]
  114. 114.
    Shan J, Singh AV, Liang L, Cornelissen LJ, Galazka Z et al. 2018. Appl. Phys. Lett. 113:162403
    [Google Scholar]
  115. 115.
    Li R, Li P, Yi D, Riddiford LJ, Chai Y et al. 2022. Nano Lett. 22:1167–73
    [Google Scholar]
  116. 116.
    Yuan W, Zhu Q, Su T, Yao Y, Xing W et al. 2018. Sci. Adv. 4:eaat1098
    [Google Scholar]
  117. 117.
    Muduli P, Schlitz R, Kosub T, Hübner R, Erbe A et al. 2021. APL Mater. 9:021122
    [Google Scholar]
  118. 118.
    Lebrun R, Ross A, Bender SA, Qaiumzadeh A, Baldrati L et al. 2018. Nature 561:222–25
    [Google Scholar]
  119. 119.
    Das S, Ross A, Ma XX, Becker S, Schmitt C et al. 2022. Nat. Commun 136140
    [Google Scholar]
  120. 120.
    Parsonnet E, Caretta L, Nagarajan V, Zhang H, Taghinejad H et al. 2022. Phys. Rev. Lett. 129:087601
    [Google Scholar]
  121. 121.
    Luo R, Zhao X, Chen L, Legvold TJ, Navarro H et al. 2022. Appl. Phys. Lett. 121:102404
    [Google Scholar]
  122. 122.
    Xing W, Qiu L, Wang X, Yao Y, Ma Y et al. 2019. Phys. Rev. X 9:011026
    [Google Scholar]
  123. 123.
    Chen G, Qi S, Liu J, Chen D, Wang J et al. 2021. Nat. Commun. 12:6279
    [Google Scholar]
  124. 124.
    Liu T, Peiro J, de Wal DK, Leutenantsmeyer JC, Guimarães MHD, van Wees BJ. 2020. Phys. Rev. B 101:205407
    [Google Scholar]
  125. 125.
    Althammer M. 2021. Phys. Status Solidi Rapid Res. Lett 15:2100130
    [Google Scholar]
  126. 126.
    Li Z, Krieft J, Singh AV, Regmi S, Rastogi A et al. 2019. Appl. Phys. Lett. 114:232404
    [Google Scholar]
  127. 127.
    Chanda A, Holzmann C, Schulz N, Seyd J, Albrecht M et al. 2022. Adv. Funct. Mater. 32:21091
    [Google Scholar]
  128. 128.
    Sola A, Barton C, Basso V, Dubs C, Pasquale M, Kazakova O 2020. Phys. Rev. Appl. 14:034056
    [Google Scholar]
  129. 129.
    Yahiro R, Kikkawa T, Ramos R, Oyanagi K, Hioki T et al. 2020. Phys. Rev. B 101:024407
    [Google Scholar]
  130. 130.
    Yagmur A, Iguchi R, Geprägs S, Erb A, Daimon S et al. 2018. J. Phys. D Appl. Phys. 51:194002
    [Google Scholar]
  131. 131.
    Qiu Z, Hou D, Barker J, Yamamoto K, Gomonay O, Saitoh E. 2018. Nat. Mat. 77:577–80
    [Google Scholar]
  132. 132.
    Li J, Wilson CB, Cheng R, Lohmann M, Kavand M et al. 2020. Nature 578:70–74
    [Google Scholar]
  133. 133.
    Reitz D, Li J, Yuan W, Shi J, Tserkovnyak Y. 2020. Phys. Rev. B 102:020408(R)
    [Google Scholar]
  134. 134.
    Luo L, Liu C, Saglam H, Li Y, Zhang W et al. 2021. Phys. Rev. B 103:L020401
    [Google Scholar]
  135. 135.
    Liu C, Luo L, Hong D, Zhang SSL, Saglam H et al. 2021. Sci. Adv. 7:eabg1669
    [Google Scholar]
  136. 136.
    Wu SM, Pearson JE, Bhattacharya A. 2015. Phys. Rev. Lett. 114:186602
    [Google Scholar]
  137. 137.
    Liu C, Wu SM, Pearson JE, Jiang JS, d'Ambrumenil N, Bhattacharya A 2018. Phys. Rev. B 98:060415(R)
    [Google Scholar]
  138. 138.
    Oyanagi K, Takahashi S, Cornelissen LJ, Shan J, Daimon S et al. 2019. Nat. Commun. 10:4740
    [Google Scholar]
  139. 139.
    Yamamoto Y, Ichioka M, Adachi H. 2019. Phys. Rev. B 100:064419
    [Google Scholar]
  140. 140.
    Lin W, Chen K, Zhang S, Chien CL. 2016. Phys. Rev. Lett. 116:186601
    [Google Scholar]
  141. 141.
    Chen K, Lin W, Chien CL, Zhang S. 2016. Phys. Rev. B 94:054413
    [Google Scholar]
  142. 142.
    Prakash A, Brangham J, Yang F, Heremans JP 2016. Phys. Rev. B 94:014427
    [Google Scholar]
  143. 143.
    Williams TJ, Aczel AA, Lumsden MD, Nagler SE. 2015. Phys. Rev. B 92:144404
    [Google Scholar]
  144. 144.
    Spachmann S, Elghandour A, Selter S, Büchner B, Aswartham S, Klingeler R. 2022. Phys. Rev. Res. 4:L022040
    [Google Scholar]
  145. 145.
    Nambu Y, Barker J, Okino Y, Kikkawa T, Shiomi Y et al. 2020. Phys. Rev. Lett. 125:027201
    [Google Scholar]
  146. 146.
    Barker J, Atxitia U. 2021. J. Phys. Soc. Jpn. 90:081001
    [Google Scholar]
  147. 147.
    Geprägs S, Kehlberger A, Coletta FD, Qiu Z, Guo EJ et al. 2016. Nat. Commun. 7:10452
    [Google Scholar]
  148. 148.
    Barker J, Bauer GEW. 2019. Phys. Rev. B 100:140401(R)
    [Google Scholar]
  149. 149.
    Schreier M, Bauer GEW, Vasyuchka VI, Flipse J, Uchida K et al. 2015. J. Phys. D Appl. Phys. 48:025001
    [Google Scholar]
  150. 150.
    Seki S, Ideue T, Kubota M, Kozuka Y, Takagi R et al. 2015. Phys. Rev. Lett. 115:266601
    [Google Scholar]
  151. 151.
    Wu SM, Zhang W, Amit KC, Borisov P, Pearson JE et al. 2016. Phys. Rev. Lett. 116:097204
    [Google Scholar]
  152. 152.
    Flebus B, Shen K, Kikkawa T, Uchida K, Qiu Z et al. 2017. Phys. Rev. B 95:144420
    [Google Scholar]
  153. 153.
    Streib S, Vidal-Silva N, Shen K, Bauer GEW. 2019. Phys. Rev. B 99:184442
    [Google Scholar]
  154. 154.
    Shi Z, Xi Q, Li J, Li Y, Aldosary M et al. 2021. Phys. Rev. Lett. 127:277203
    [Google Scholar]
  155. 155.
    Xing W, Ma Y, Yao Y, Cai R, Ji Y et al. 2020. Phys. Rev. B 102:184416
    [Google Scholar]
  156. 156.
    Yang B, Xia SY, Zhao H, Liu G, Du J et al. 2021. Phys. Rev. B 103:054411
    [Google Scholar]
  157. 157.
    Li J, Simensen HT, Reitz D, Sun Q, Yuan W et al. 2020. Phys. Rev. Lett. 25:217201
    [Google Scholar]
  158. 158.
    Yamamoto Y, Ichioka M, Adachi H. 2022. Phys. Rev. B 105:104417
    [Google Scholar]
  159. 159.
    Schmidt R, Wilken F, Nunner TS, Brouwer PW. 2018. Phys. Rev. B 98:134421
    [Google Scholar]
  160. 160.
    Schmidt R, Brouwer PW. 2021. Phys. Rev. B 103:014412
    [Google Scholar]
  161. 161.
    Sato M, Morisaku Y. 2020. Phys. Rev. B 102:060401(R)
    [Google Scholar]
  162. 162.
    Shiomi Y, Lustikova J, Watanabe S, Hirobe D, Takahashi S, Saitoh E. 2019. Nat. Phys. 15:22–26
    [Google Scholar]
  163. 163.
    Matsuo M, Ohnuma Y, Kato T, Maekawa S. 2018. Phys. Rev. Lett. 120:037201
    [Google Scholar]
  164. 164.
    Nasu J, Naka M. 2021. Phys. Rev. B 103:L121104
    [Google Scholar]
  165. 165.
    Takikawa D, Yamada MG, Fujimoto S. 2022. Phys. Rev. B 105:115137
    [Google Scholar]
  166. 166.
    Rameshti BZ, Duine RA. 2019. Phys. Rev. B 99:060402(R)
    [Google Scholar]
  167. 167.
    Daimon S, Tsunekawa K, Kawakami S, Kikkawa T, Ramos R et al. 2022. Nat. Commun. 13:3160
    [Google Scholar]
  168. 168.
    Iwasaki Y, Sawada R, Stanev V, Ishida M, Kirihara A et al. 2019. npj Comput. Mater. 5:103
    [Google Scholar]
  169. 169.
    Gibertini M, Koperski M, Morpurgo AF, Novoselov KS. 2019. Nat. Nanotech. 14:408–19
    [Google Scholar]
  170. 170.
    Mak KF, Shan J, Ralph DC. 2019. Nat. Rev. Phys. 1:646–61
    [Google Scholar]
  171. 171.
    Lee S-K, Lee W-Y, Kikkawa T, Le CT, Kang M-S et al. 2020. Adv. Funct. Mater. 30:2003192
    [Google Scholar]
  172. 172.
    Chumak AV, Kabos P, Wu M, Abert C, Adelmann C et al. 2022. IEEE Trans. Magn. 58:60800172
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040721-014957
Loading
/content/journals/10.1146/annurev-conmatphys-040721-014957
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error