1932

Abstract

Tensor networks provide extremely powerful tools for the study of complex classical and quantum many-body problems. Over the past two decades, the increment in the number of techniques and applications has been relentless, and especially the last ten years have seen an explosion of new ideas and results that may be overwhelming for the newcomer. This short review introduces the basic ideas, the best established methods, and some of the most significant algorithmic developments that are expanding the boundaries of the tensor network potential. The goal of this review is to help the reader not only appreciate the many possibilities offered by tensor networks but also find their way through state-of-the-art codes, their applicability, and some avenues of ongoing progress.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040721-022705
2023-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-040721-022705.html?itemId=/content/journals/10.1146/annurev-conmatphys-040721-022705&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Baxter RJ. 1968. J. Math. Phys. 9:4650–54
    [Google Scholar]
  2. 2.
    Affleck I, Kennedy T, Lieb EH, Tasaki H. 1987. Phys. Rev. Lett. 59:7799–802
    [Google Scholar]
  3. 3.
    Okunishi K, Nishino T, Ueda H. 2022. J. Phys. Soc. Jpn 91062001
    [Google Scholar]
  4. 4.
    Klümper A, Schadschneider A, Zittartz J. 1993. Europhys. Lett. (EPL) 24:4293–97
    [Google Scholar]
  5. 5.
    Fannes M, Nachtergaele B, Werner RF. 1992. Commun. Math. Phys. 144:3443–90
    [Google Scholar]
  6. 6.
    White SR. 1992. Phys. Rev. Lett. 69:192863–66
    [Google Scholar]
  7. 7.
    Östlund S, Rommer S. 1995. Phys. Rev. Lett. 75:193537–40
    [Google Scholar]
  8. 8.
    Dukelsky J, Martín-Delgado MA, Nishino T, Sierra G. 1998. Europhys. Lett. (EPL) 43:4457–62
    [Google Scholar]
  9. 9.
    Nishino T, Okunishi K. 1995. J. Phys. Soc. Jpn. 64:114084–87
    [Google Scholar]
  10. 10.
    Nishino T, Okunishi K. 1996. J. Phys. Soc. Jpn. 65:4891–94
    [Google Scholar]
  11. 11.
    Nishino T, Okunishi K. 1998. J. Phys. Soc. Jpn. 67:93066–72
    [Google Scholar]
  12. 12.
    Hallberg K 2004. Theoretical Methods for Strongly Correlated Electrons D Sénéchal, A-M Tremblay, C Bourbonnais 3–37 New York: Springer
    [Google Scholar]
  13. 13.
    Schollwöck U. 2005. Rev. Mod. Phys. 77:1259–315
    [Google Scholar]
  14. 14.
    Vidal G. 2003. Phys. Rev. Lett. 91:14147902
    [Google Scholar]
  15. 15.
    Verstraete F, Porras D, Cirac JI. 2004. Phys. Rev. Lett. 93:22227205
    [Google Scholar]
  16. 16.
    McCulloch IP. 2007. J. Stat. Mech. 2007:10P10014
    [Google Scholar]
  17. 17.
    Vidal G. 2004. Phys. Rev. Lett. 93:4040502
    [Google Scholar]
  18. 18.
    Daley AJ, Kollath C, Schollwöck U, Vidal G. 2004. J. Stat. Mech. 2004:04P04005
    [Google Scholar]
  19. 19.
    White SR, Feiguin AE. 2004. Phys. Rev. Lett. 93:7076401
    [Google Scholar]
  20. 20.
    Verstraete F, García-Ripoll JJ, Cirac JI. 2004. Phys. Rev. Lett. 93:20207204
    [Google Scholar]
  21. 21.
    Zwolak M, Vidal G. 2004. Phys. Rev. Lett. 93:20207205
    [Google Scholar]
  22. 22.
    Feiguin AE, White SR. 2005. Phys. Rev. B 72:22220401
    [Google Scholar]
  23. 23.
    Verstraete F, Cirac JI. 2004. arXiv:cond-mat/0407066
  24. 24.
    Cirac JI, Pérez-García D, Schuch N, Verstraete F. 2021. Rev. Mod. Phys. 93:4045003
    [Google Scholar]
  25. 25.
    Verstraete F, Murg V, Cirac J. 2008. Adv. Phys. 57:2143–224
    [Google Scholar]
  26. 26.
    Schollwöck U. 2011. Ann. Phys. 326:196–192 January 2011 Special Issue
    [Google Scholar]
  27. 27.
    Orús R. 2014. Ann. Phys. 349:117–58
    [Google Scholar]
  28. 28.
    Bridgeman JC, Chubb CT. 2017. J. Phys. A: Math. Theor. 50:22223001
    [Google Scholar]
  29. 29.
    Ran SJ, Tirrito E, Peng C, Chen X, Tagliacozzo L et al. 2020. Tensor network contractions. Lecture Notes in Physics. Springer International Publishing
  30. 30.
    Silvi P, Tschirsich F, Gerster M, Jünemann J, Jaschke D et al. 2019. SciPost. Phys. Lect. Notes 8:1106
    [Google Scholar]
  31. 31.
    Eisert J, Cramer M, Plenio MB. 2010. Rev. Mod. Phys. 82:1277–306
    [Google Scholar]
  32. 32.
    Hastings MB. 2007. J. Stat. Mech. 2007:08P08024
    [Google Scholar]
  33. 33.
    Wolf MM, Verstraete F, Hastings MB, Cirac JI. 2008. Phys. Rev. Lett. 100:7070502
    [Google Scholar]
  34. 34.
    Calabrese P, Cardy J. 2004. J. Stat. Mech. 2004:06P06002
    [Google Scholar]
  35. 35.
    Wolf MM. 2006. Phys. Rev. Lett. 96:1010404
    [Google Scholar]
  36. 36.
    Pérez-García D, Verstraete F, Wolf MM, Cirac JI. 2007. Quantum Inf. Comput. 7:401–30
    [Google Scholar]
  37. 37.
    Schuch N, Cirac I, Pérez-García D. 2010. Ann. Phys. 325:102153–92
    [Google Scholar]
  38. 38.
    Schuch N, Wolf MM, Verstraete F, Cirac JI. 2007. Phys. Rev. Lett. 98:14140506
    [Google Scholar]
  39. 39.
    Verstraete F, Wolf MM, Pérez-García D, Cirac JI. 2006. Phys. Rev. Lett. 96:22220601
    [Google Scholar]
  40. 40.
    Shi YY, Duan LM, Vidal G. 2006. Phys. Rev. A 74:2022320
    [Google Scholar]
  41. 41.
    Cirac JI, Verstraete F. 2009. J. Phys. A: Math. Theor. 42:50504004
    [Google Scholar]
  42. 42.
    Silvi P, Giovannetti V, Montangero S, Rizzi M, Cirac JI, Fazio R. 2010. Phys. Rev. A 81:6062335
    [Google Scholar]
  43. 43.
    Tagliacozzo L, Evenbly G, Vidal G. 2009. Phys. Rev. B 80:23235127
    [Google Scholar]
  44. 44.
    Vidal G. 2007. Phys. Rev. Lett. 99:22220405
    [Google Scholar]
  45. 45.
    Vidal G. 2008. Phys. Rev. Lett. 101:11110501
    [Google Scholar]
  46. 46.
    Evenbly G, Vidal G. 2009. Phys. Rev. B 79:14144108
    [Google Scholar]
  47. 47.
    Pfeifer RNC, Evenbly G, Vidal G. 2009. Phys. Rev. A 79:4040301
    [Google Scholar]
  48. 48.
    Montangero S, Rizzi M, Giovannetti V, Fazio R. 2009. Phys. Rev. B 80:11113103
    [Google Scholar]
  49. 49.
    Barthel T, Kliesch M, Eisert J. 2010. Phys. Rev. Lett. 105:1010502
    [Google Scholar]
  50. 50.
    Evenbly G, Vidal G. 2014. Phys. Rev. Lett. 112:24240502
    [Google Scholar]
  51. 51.
    Pirvu B, Murg V, Cirac JI, Verstraete F. 2010. New J. Phys. 12:2025012
    [Google Scholar]
  52. 52.
    de las Cuevas G, Schuch N, Pérez-García D, Cirac JI. 2013. New J. Phys. 15:12123021
    [Google Scholar]
  53. 53.
    Pfeifer RNC, Haegeman J, Verstraete F. 2014. Phys. Rev. E 90:3033315
    [Google Scholar]
  54. 54.
    Gray J, Kourtis S 2021. Quantum 5:410
    [Google Scholar]
  55. 55.
    Hubig C, McCulloch IP, Schollwöck U. 2017. Phys. Rev. B 95:3035129
    [Google Scholar]
  56. 56.
    Pollmann F, Mukerjee S, Turner AM, Moore JE. 2009. Phys. Rev. Lett. 102:25255701
    [Google Scholar]
  57. 57.
    Pirvu B, Vidal G, Verstraete F, Tagliacozzo L. 2012. Phys. Rev. B 86:7075117
    [Google Scholar]
  58. 58.
    Cui J, Cirac JI, Bañuls MC. 2015. Phys. Rev. Lett. 114:22220601
    [Google Scholar]
  59. 59.
    Zaletel MP, Mong RSK, Karrasch C, Moore JE, Pollmann F. 2015. Phys. Rev. B 91:16165112
    [Google Scholar]
  60. 60.
    White SR. 2009. Phys. Rev. Lett. 102:19190601
    [Google Scholar]
  61. 61.
    García-Ripoll JJ. 2006. New J. Phys. 8:12305
    [Google Scholar]
  62. 62.
    Huckle T, Waldherr K. 2012. PAMM 12:1641–42
    [Google Scholar]
  63. 63.
    Vidal G. 2007. Phys. Rev. Lett. 98:7070201
    [Google Scholar]
  64. 64.
    Dubail J. 2017. J. Phys. A: Math. Theor. 50:23234001
    [Google Scholar]
  65. 65.
    Hastings MB. 2006. Phys. Rev. B 73:8085115
    [Google Scholar]
  66. 66.
    Molnar A, Schuch N, Verstraete F, Cirac JI. 2015. Phys. Rev. B 91:4045138
    [Google Scholar]
  67. 67.
    Calabrese P, Cardy J. 2005. J. Stat. Mech.: Theory Exp. 2005:04P04010
    [Google Scholar]
  68. 68.
    Osborne TJ. 2006. Phys. Rev. Lett. 97:15157202
    [Google Scholar]
  69. 69.
    Schuch N, Wolf MM, Verstraete F, Cirac JI. 2008. Phys. Rev. Lett. 100:3030504
    [Google Scholar]
  70. 70.
    Paeckel S, Köhler T, Swoboda A, Manmana SR, Schollwöck U, Hubig C. 2019. Ann. Phys. 411:167998
    [Google Scholar]
  71. 71.
    Stoudenmire E, White SR. 2012. Annu. Rev. Condens. Matter Phys. 3:11128
    [Google Scholar]
  72. 72.
    Cataldi G, Abedi A, Magnifico G, Notarnicola S, Pozza ND et al. 2021. Quantum 5:556
    [Google Scholar]
  73. 73.
    Yan S, Huse DA, White SR. 2011. Science 332:60341173–76
    [Google Scholar]
  74. 74.
    Depenbrock S, McCulloch IP, Schollwöck U. 2012. Phys. Rev. Lett. 109:6067201
    [Google Scholar]
  75. 75.
    Murg V, Verstraete F, Cirac JI. 2007. Phys. Rev. A 75:3033605
    [Google Scholar]
  76. 76.
    Jordan J, Orús R, Vidal G, Verstraete F, Cirac JI. 2008. Phys. Rev. Lett. 101:25250602
    [Google Scholar]
  77. 77.
    Lubasch M, Cirac JI, Bañuls MC. 2014. New J. Phys. 16:3033014
    [Google Scholar]
  78. 78.
    Jiang HC, Weng ZY, Xiang T. 2008. Phys. Rev. Lett. 101:9090603
    [Google Scholar]
  79. 79.
    Gu ZC, Levin M, Wen XG. 2008. Phys. Rev. B 78:20205116
    [Google Scholar]
  80. 80.
    Orús R, Vidal G. 2009. Phys. Rev. B 80:9094403
    [Google Scholar]
  81. 81.
    Corboz P, Orús R, Bauer B, Vidal G. 2010. Phys. Rev. B 81:16165104
    [Google Scholar]
  82. 82.
    Lubasch M, Cirac JI, Bañuls MC. 2014. Phys. Rev. B 90:6064425
    [Google Scholar]
  83. 83.
    Phien HN, Bengua JA, Tuan HD, Corboz P, Orús R. 2015. Phys. Rev. B 92:3035142
    [Google Scholar]
  84. 84.
    Evenbly G. 2018. Phys. Rev. B 98:8085155
    [Google Scholar]
  85. 85.
    Osorio Iregui J, Troyer M, Corboz P. 2017. Phys. Rev. B 96:11115113
    [Google Scholar]
  86. 86.
    Corboz P. 2016. Phys. Rev. B 94:3035133
    [Google Scholar]
  87. 87.
    Vanderstraeten L, Haegeman J, Corboz P, Verstraete F. 2016. Phys. Rev. B 94:15155123
    [Google Scholar]
  88. 88.
    Rader M, Läuchli AM. 2018. Phys. Rev. X 8:3031030
    [Google Scholar]
  89. 89.
    Corboz P, Czarnik P, Kapteijns G, Tagliacozzo L. 2018. Phys. Rev. X 8:3031031
    [Google Scholar]
  90. 90.
    Vanhecke B, Hasik J, Verstraete F, Vanderstraeten L. 2021. arXiv:2102.03143
  91. 91.
    Zheng BX, Chung CM, Corboz P, Ehlers G, Qin MP et al. 2017. Science 358:63671155–60
    [Google Scholar]
  92. 92.
    Vlaar PCG, Corboz P. 2021. Phys. Rev. B 103:20205137
    [Google Scholar]
  93. 93.
    Czarnik P, Dziarmaga J, Corboz P. 2019. Phys. Rev. B 99:3035115
    [Google Scholar]
  94. 94.
    Kshetrimayum A, Weimer H, Orús R. 2017. Nat. Commun. 8:11291
    [Google Scholar]
  95. 95.
    Kilda D, Biella A, Schiro M, Fazio R, Keeling J. 2021. SciPost Phys. Core 4:15
    [Google Scholar]
  96. 96.
    Mc Keever C, Szymańska MH 2021. Phys. Rev. X 11:2021035
    [Google Scholar]
  97. 97.
    Hubig C, Cirac JI. 2019. SciPost Phys. 6:331
    [Google Scholar]
  98. 98.
    Bañuls MC, Pérez-García D, Wolf MM, Verstraete F, Cirac JI. 2008. Phys. Rev. A 77:5052306
    [Google Scholar]
  99. 99.
    Zaletel MP, Pollmann F. 2020. Phys. Rev. Lett. 124:3037201
    [Google Scholar]
  100. 100.
    Kraus CV, Schuch N, Verstraete F, Cirac JI. 2010. Phys. Rev. A 81:5052338
    [Google Scholar]
  101. 101.
    Magnifico G, Felser T, Silvi P, Montangero S. 2021. Nat. Commun. 12:13600
    [Google Scholar]
  102. 102.
    Felser T, Notarnicola S, Montangero S. 2021. Phys. Rev. Lett. 126:17170603
    [Google Scholar]
  103. 103.
    McCulloch IP, Gulácsi M. 2002. Europhys. Lett. (EPL) 57:6852–58
    [Google Scholar]
  104. 104.
    Singh S, Pfeifer RNC, Vidal G. 2010. Phys. Rev. A 82:5050301
    [Google Scholar]
  105. 105.
    Singh S, Pfeifer RNC, Vidal G. 2011. Phys. Rev. B 83:11115125
    [Google Scholar]
  106. 106.
    Bauer B, Corboz P, Orús R, Troyer M. 2011. Phys. Rev. B 83:12125106
    [Google Scholar]
  107. 107.
    Singh S, Vidal G. 2012. Phys. Rev. B 86:19195114
    [Google Scholar]
  108. 108.
    Weichselbaum A. 2012. Ann. Phys. 327:122972–3047
    [Google Scholar]
  109. 109.
    Bruognolo B, Li JW, von Delft J, Weichselbaum A. 2021. SciPost Phys. Lect. Notes 25:160
    [Google Scholar]
  110. 110.
    Hubig C. 2018. SciPost Phys. 5:547
    [Google Scholar]
  111. 111.
    Singh S, Vidal G. 2013. Phys. Rev. B 88:11115147
    [Google Scholar]
  112. 112.
    Tagliacozzo L, Celi A, Lewenstein M. 2014. Phys. Rev. X 4:4041024
    [Google Scholar]
  113. 113.
    Zohar E, Burrello M. 2016. New J. Phys. 18:4043008
    [Google Scholar]
  114. 114.
    Haegeman J, Van Acoleyen K, Schuch N, Cirac JI, Verstraete F. 2015. Phys. Rev. X 5:1011024
    [Google Scholar]
  115. 115.
    Verstraete F, Cirac JI. 2005. J. Stat. Mech.: Theory Exp. 2005:09P09012
    [Google Scholar]
  116. 116.
    Corboz P, Vidal G. 2009. Phys. Rev. B 80:16165129
    [Google Scholar]
  117. 117.
    Pineda C, Barthel T, Eisert J 2010. Phys. Rev. A 81:5050303
    [Google Scholar]
  118. 118.
    Rizzi M, Montangero S, Vidal G. 2008. Phys. Rev. A 77:5052328
    [Google Scholar]
  119. 119.
    Wall ML, Carr LD. 2012. New J. Phys. 14:12125015
    [Google Scholar]
  120. 120.
    Holzner A, Weichselbaum A, McCulloch IP, Schollwöck U, von Delft J 2011. Phys. Rev. B 83:19195115
    [Google Scholar]
  121. 121.
    Haegeman J, Cirac JI, Osborne TJ, Pižorn I, Verschelde H, Verstraete F. 2011. Phys. Rev. Lett. 107:7070601
    [Google Scholar]
  122. 122.
    Haegeman J, Lubich C, Oseledets I, Vandereycken B, Verstraete F. 2016. Phys. Rev. B 94:16165116
    [Google Scholar]
  123. 123.
    Haegeman J, Osborne TJ, Verstraete F. 2013. Phys. Rev. B 88:7075133
    [Google Scholar]
  124. 124.
    Vanderstraeten L, Haegeman J, Verstraete F. 2019. SciPost Phys. Lect. Notes 7:177
    [Google Scholar]
  125. 125.
    Kloss B, Reichman DR, Lev YB. 2020. SciPost Phys. 9:570
    [Google Scholar]
  126. 126.
    Bauernfeind D, Aichhorn M. 2020. SciPost Phys. 8:224
    [Google Scholar]
  127. 127.
    Hauru M, Damme MV, Haegeman J. 2021. SciPost Phys. 10:240
    [Google Scholar]
  128. 128.
    Hartmann MJ, Prior J, Clark SR, Plenio MB. 2009. Phys. Rev. Lett. 102:5057202
    [Google Scholar]
  129. 129.
    Bañuls MC, Hastings MB, Verstraete F, Cirac JI. 2009. Phys. Rev. Lett. 102:24240603
    [Google Scholar]
  130. 130.
    Müller-Hermes A, Cirac JI, Bañuls MC. 2012. New J. Phys. 14:7075003
    [Google Scholar]
  131. 131.
    Frías-Pérez M, Bañuls MC. 2022. Phys. Rev. B 106115117
    [Google Scholar]
  132. 132.
    Lerose A, Sonner M, Abanin DA. 2022. arXiv:2201.04150
  133. 133.
    White CD, Zaletel M, Mong RSK, Refael G. 2018. Phys. Rev. B 97:3035127
    [Google Scholar]
  134. 134.
    Surace J, Piani M, Tagliacozzo L. 2019. Phys. Rev. B 99:23235115
    [Google Scholar]
  135. 135.
    Rakovszky T, von Keyserlingk CW, Pollmann F 2022. Phys. Rev. B 105:7075131
    [Google Scholar]
  136. 136.
    Yu X, Pekker D, Clark BK. 2017. Phys. Rev. Lett. 118:1017201
    [Google Scholar]
  137. 137.
    Khemani V, Pollmann F, Sondhi SL. 2016. Phys. Rev. Lett. 116:24247204
    [Google Scholar]
  138. 138.
    Lim SP, Sheng DN. 2016. Phys. Rev. B 94:4045111
    [Google Scholar]
  139. 139.
    Nishino T, Hieida Y, Okunishi K, Maeshima N, Akutsu Y, Gendiar A. 2001. Prog. Theor. Phys. 105:3409–17
    [Google Scholar]
  140. 140.
    Levin M, Nave CP. 2007. Phys. Rev. Lett. 99:12120601
    [Google Scholar]
  141. 141.
    Xie ZY, Jiang HC, Chen QN, Weng ZY, Xiang T. 2009. Phys. Rev. Lett. 103:16160601
    [Google Scholar]
  142. 142.
    Xie ZY, Chen J, Qin MP, Zhu JW, Yang LP, Xiang T. 2012. Phys. Rev. B 86:045139
    [Google Scholar]
  143. 143.
    Evenbly G, Vidal G. 2015. Phys. Rev. Lett. 115:18180405
    [Google Scholar]
  144. 144.
    Yang S, Gu ZC, Wen XG. 2017. Phys. Rev. Lett. 118:110504
    [Google Scholar]
  145. 145.
    Hauru M, Delcamp C, Mizera S. 2018. Phys. Rev. B 97:4045111
    [Google Scholar]
  146. 146.
    Gu ZC, Verstraete F, Wen XG. 2010. arXiv:1004.2563
  147. 147.
    Gu ZC. 2013. Phys. Rev. B 88:11115139
    [Google Scholar]
  148. 148.
    Bañuls MC, Cichy K. 2020. Rep. Prog. Phys. 83:2024401
    [Google Scholar]
  149. 149.
    Meurice Y, Sakai R, Unmuth-Yockey J. 2022. Rev. Mod. Phys 94:025005
    [Google Scholar]
  150. 150.
    Sandvik AW, Vidal G. 2007. Phys. Rev. Lett. 99:22220602
    [Google Scholar]
  151. 151.
    Wang L, Pižorn I, Verstraete F. 2011. Phys. Rev. B 83:13134421
    [Google Scholar]
  152. 152.
    Ueda K, Otani R, Nishio Y, Gendiar A, Nishino T. 2005. J. Phys. Soc. Jpn. 74:Suppl111–14
    [Google Scholar]
  153. 153.
    Ferris AJ, Vidal G. 2012. Phys. Rev. B 85:16165146
    [Google Scholar]
  154. 154.
    Rams MM, Mohseni M, Eppens D, Jałowiecki K, Gardas B. 2021. Phys. Rev. E 104:2025308
    [Google Scholar]
  155. 155.
    Frías-Pérez M, Mariën M, Pérez-García D, Bañuls MC, Iblisdir S 2022. arXiv:2104.13264
  156. 156.
    Stoudenmire E, Schwab DJ 2016. Advances in Neural Information Processing Systems D Lee, M Sugiyama, U Luxburg, I Guyon, R Garnett , vol. 29 Curran Associates, Inc.
    [Google Scholar]
  157. 157.
    Han ZY, Wang J, Fan H, Wang L, Zhang P. 2018. Phys. Rev. X 8:3031012
    [Google Scholar]
  158. 158.
    Liao HJ, Liu JG, Wang L, Xiang T. 2019. Phys. Rev. X 9:3031041
    [Google Scholar]
  159. 159.
    Verstraete F, Cirac JI. 2010. Phys. Rev. Lett. 104:19190405
    [Google Scholar]
  160. 160.
    Haegeman J, Osborne TJ, Verschelde H, Verstraete F. 2013. Phys. Rev. Lett. 110:10100402
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040721-022705
Loading
/content/journals/10.1146/annurev-conmatphys-040721-022705
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error