1932

Abstract

The solar–to–chemical energy conversion of Earth-abundant resources like water or greenhouse gas pollutants like CO promises an alternate energy source that is clean, renewable, and environmentally friendly. The eventual large-scale application of such photo-based energy conversion devices can be realized through the discovery of novel photocatalytic materials that are efficient, selective, and robust. In the past decade, the Materials Genome Initiative has led to a major leap in the development of materials databases, both computational and experimental. Hundreds of photocatalysts have recently been discovered for various chemical reactions, such as water splitting and carbon dioxide reduction, employing these databases and/or data informatics, machine learning, and high-throughput computational and experimental methods. In this article, we review these data-driven photocatalyst discoveries, emphasizing the methods and techniques developed in the last few years to determine the (photo)electrochemical stability of photocatalysts, leading to the discovery of photocatalysts that remain robust and durable under operational conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-100957
2023-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-031620-100957.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-100957&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fujishima A, Honda K. 1972. Nature 238:53583738
    [Google Scholar]
  2. 2.
    Katz JE, Gingrich TR, Santori EA, Lewis NS. 2009. Energy Environ. Sci. 2:10312
    [Google Scholar]
  3. 3.
    Sivula K, Van De Krol R. 2016. Nat. Rev. Mater. 1:215010
    [Google Scholar]
  4. 4.
    Cui Z, Zeng D, Tang T, Liu J, Xie C. 2010. J. Hazard. Mater. 183:1–321117
    [Google Scholar]
  5. 5.
    Maschmeyer T, Che M 2010. Angew. Chem. Int. Ed. 49:9153639
    [Google Scholar]
  6. 6.
    Zhao ZG, Miyauchi M. 2008. Angew. Chem. Int. Ed. 47:37705155
    [Google Scholar]
  7. 7.
    Zhou L, Wang W, Xu H, Sun S, Shang M. 2009. Chem. Eur. J. 15:7177682
    [Google Scholar]
  8. 8.
    Ikeda M, Kusumoto Y, Somekawa S, Ngweniform P, Ahmmad B. 2006. J. Photochem. Photobiol. A 184:330612
    [Google Scholar]
  9. 9.
    Jaramillo TF, Baeck SH, Kleiman-Shwarsctein A, McFarland EW. 2004. Macromol. Rapid Commun. 25:1297301
    [Google Scholar]
  10. 10.
    Qiu Y, Yang M, Fan H, Zuo Y, Shao Y et al. 2011. CrystEngComm 13:6184350
    [Google Scholar]
  11. 11.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. 2013. Angew. Chem. Int. Ed. 52:297372408
    [Google Scholar]
  12. 12.
    Shinde A, Suram SK, Yan Q, Zhou L, Singh AK et al. 2017. ACS Energy Lett. 2:10230712
    [Google Scholar]
  13. 13.
    Yan Q, Yu J, Suram SK, Zhou L, Shinde A et al. 2017. PNAS 114:12304043
    [Google Scholar]
  14. 14.
    Xiong Y, Campbell QT, Fanghanel J, Badding CK, Wang H et al. 2021. Energy Environ. Sci. 14:4233548
    [Google Scholar]
  15. 15.
    Wang Z, Zhang H, Li J. 2021. Nano Energy 81:105655
    [Google Scholar]
  16. 16.
    Singh AK, Montoya JH, Gregoire JM, Persson KA. 2019. Nat. Commun. 10:443
    [Google Scholar]
  17. 17.
    Singh AK, Mathew K, Zhuang HL, Hennig RG. 2015. J. Phys. Chem. Lett. 6:6108798
    [Google Scholar]
  18. 18.
    Sawada K, Nakajima T 2018. APL Mater. 6:101103
    [Google Scholar]
  19. 19.
    Jain A, Wang Z, Nørskov JK. 2019. ACS Energy Lett. 4:6141011
    [Google Scholar]
  20. 20.
    Zhou L, Shinde A, Guevarra D, Richter MH, Stein HS et al. 2020. J. Mater. Chem. A 8:8423943
    [Google Scholar]
  21. 21.
    Torrisi SB, Singh AK, Montoya JH, Biswas T, Persson KA. 2020. npj 2D Mater. Appl. 4:24
    [Google Scholar]
  22. 22.
    Hydrog. Fuel Cell Technol. Off. 2014. Multi-year research, development, and demonstration plan Res. Rep., Off. Energy Effic. Renew. Energy Washington, DC: https://www.energy.gov/eere/fuelcells/downloads/hydrogen-and-fuel-cell-technologies-office-multi-year-research-development
    [Google Scholar]
  23. 23.
    Zhou M, Lou XW, Xie Y. 2013. Nano Today 8:6598618
    [Google Scholar]
  24. 24.
    Abe R 2010. J. Photochem. Photobiol. C 11:4179209
    [Google Scholar]
  25. 25.
    Ni M, Leung MKH, Leung DYC, Sumathy K. 2007. Renew. Sustain. Energy Rev. 11:340125
    [Google Scholar]
  26. 26.
    Basic Energy Sci. Roundtable Liq. Solar Fuels Panel. 2019. Report of the Basic Energy Sciences Roundtable on Liquid Solar Fuels Final Rep., Off. Sci. Basic Energy Sci., US Dep. Energy Washington, DC: https://science.osti.gov/-/media/bes/pdf/reports/2020/Liquid_Solar_Fuels_Report.pdf?la=en&hash=06D037C1887D2FF8B872035E4C51FFDDEC11D4C8
    [Google Scholar]
  27. 27.
    Siahrostami S, Villegas SJ, Bagherzadeh Mostaghimi AH, Back S, Farimani AB et al. 2020. ACS Catal. 10:147495511
    [Google Scholar]
  28. 28.
    Rajan AG, Martirez JMP, Carter EA. 2020. ACS Catal. 10:1911177234
    [Google Scholar]
  29. 29.
    Zhou L, Shinde A, Guevarra D, Haber JA, Persson KA et al. 2020. ACS Energy Lett. 5:5141321
    [Google Scholar]
  30. 30.
    Hoye RL, Schulz P, Schelhas LT, Holder AM, Stone KH et al. 2017. Chem. Mater. 29:5196488
    [Google Scholar]
  31. 31.
    Stein HS, Gregoire JM. 2019. Chem. Sci. 10:42964049
    [Google Scholar]
  32. 32.
    Jain A, Montoya J, Dwaraknath S, Zimmermann NE, Dagdelen J et al. 2020. Handbook of Materials Modeling: Methods, Theory and Modeling W Andreoni, S Yip 175184. Cham, Switz: Springer
    [Google Scholar]
  33. 33.
    Pan J, Yan Q 2018. J. Semicond. 39:071001
    [Google Scholar]
  34. 34.
    Holby EF, Wang G, Zelenay P. 2020. ACS Catal. 10:241452739
    [Google Scholar]
  35. 35.
    White A. 2012. MRS Bull. 37:871516
    [Google Scholar]
  36. 36.
    Jain A, Ong SP, Hautier G, Chen W, Richards WD et al. 2013. APL Mater. 1:011002
    [Google Scholar]
  37. 37.
    Curtarolo S, Setyawan W, Wang S, Xue J, Yang K et al. 2012. Comput. Mater. Sci. 58:22735
    [Google Scholar]
  38. 38.
    Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. 2013. JOM 65:1115019
    [Google Scholar]
  39. 39.
    Verduzco Gastelum JC, Strachan A. 2021. Citrine tools for materials informatics Software Package, nanoHub. https://doi/org/10.21981/DRKB-XX94
    [Google Scholar]
  40. 40.
    Gražulis S, Chateigner D, Downs RT, Yokochi A, Quirós M et al. 2009. J. Appl. Crystallogr. 42:472629
    [Google Scholar]
  41. 41.
    Winther KT, Hoffmann MJ, Boes JR, Mamun O, Bajdich M, Bligaard T. 2019. Sci. Data 6:75
    [Google Scholar]
  42. 42.
    Blaiszik B, Chard K, Pruyne J, Ananthakrishnan R, Tuecke S, Foster I. 2016. JOM 68:8204552
    [Google Scholar]
  43. 43.
    Kim S, Chen J, Cheng T, Gindulyte A, He J et al. 2019. Nucleic Acids Res. 47:D1D1102D1109
    [Google Scholar]
  44. 44.
    Luo J, Zhang S, Sun M, Yang L, Luo S, Crittenden JC. 2019. ACS Nano 13:9981140
    [Google Scholar]
  45. 45.
    EPA (Environ. Prot. Agency). 2022. Overview of greenhouse gases Environ. Top., EPA Washington, DC: https://www.epa.gov/ghgemissions/overview-greenhouse-gases
    [Google Scholar]
  46. 46.
    Benson EE, Kubiak CP, Sathrum AJ, Smieja JM. 2009. Chem. Soc. Rev. 38:8999
    [Google Scholar]
  47. 47.
    Jin H, Zhang H, Li J, Wang T, Wan L et al. 2019. J. Phys. Chem. Lett. 10:17521118
    [Google Scholar]
  48. 48.
    Barrett J. 2003. Inorganic Chemistry in Aqueous Solution Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  49. 49.
    Xiang C, Weber AZ, Ardo S, Berger A, Chen Y et al. 2016. Angew. Chem. Int. Ed. 55:421297488
    [Google Scholar]
  50. 50.
    Ringe S, Hormann NG, Oberhofer H, Reuter K. 2022. Chem. Rev. 122:1210777820. https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.1c00675
    [Google Scholar]
  51. 51.
    Schwarz K, Sundararaman R. 2020. Surf. Sci. Rep. 75:2100492
    [Google Scholar]
  52. 52.
    Singh AK, Zhou L, Shinde A, Suram SK, Montoya JH et al. 2017. Chem. Mater. 29:231015967
    [Google Scholar]
  53. 53.
    Pourbaix M. 1974. Atlas of Electrochemical Equilibria in Aqueous Solutions Houston, TX: Natl. Assoc. Corros. Eng.
    [Google Scholar]
  54. 54.
    Back S, Na J, Ulissi ZW 2021. ACS Catal. 11:5248391
    [Google Scholar]
  55. 55.
    Karmodak N, Andreussi O. 2020. ACS Energy Lett. 5:388591
    [Google Scholar]
  56. 56.
    Zhou L, Shinde A, Montoya JH, Singh A, Gul S et al. 2018. ACS Catal. 8:121093848
    [Google Scholar]
  57. 57.
    Gunasooriya GTKK, Nørskov JK. 2020. ACS Energy Lett. 5:12377887
    [Google Scholar]
  58. 58.
    Wang Z, Zheng YR, Chorkendorff I, Nørskov JK. 2020. ACS Energy Lett. 5:929058
    [Google Scholar]
  59. 59.
    Persson KA, Waldwick B, Lazic P, Ceder G. 2012. Phys. Rev. B 85:235438
    [Google Scholar]
  60. 60.
    Koyama M, Zhang Z, Wang M, Ponge D, Raabe D et al. 2017. Science 355:6329105557
    [Google Scholar]
  61. 61.
    Kazemi F, Saberi A, Malek-Ahmadi S, Sohrabi S, Rezaie H, Tahriri M. 2011. Ceram. Silik. 55:2630
    [Google Scholar]
  62. 62.
    Luo G, Yang S, Jenness GR, Song Z, Kuech TF, Morgan D. 2016. NPG Asia Mater. 9:e345
    [Google Scholar]
  63. 63.
    Belsky A, Hellenbrandt M, Karen VL, Luksch P. 2002. Acta Crystallogr. B 58:336469
    [Google Scholar]
  64. 64.
    Sun W, Dacek ST, Ong SP, Hautier G, Jain A et al. 2016. Sci. Adv. 2:11e1600225
    [Google Scholar]
  65. 65.
    Kumari S, Gutkowski R, Junqueira JRC, Kostka A, Hengge K et al. 2018. ACS Comb. Sci. 20:954453
    [Google Scholar]
  66. 66.
    Wygant BR, Kawashima K, Mullins CB. 2018. ACS Energy Lett. 3:12295666
    [Google Scholar]
  67. 67.
    Hubert MA, Patel AM, Gallo A, Liu Y, Valle E et al. 2020. ACS Catal. 10:201218296
    [Google Scholar]
  68. 68.
    Stevens MB, Kreider ME, Patel AM, Wang Z, Liu Y et al. 2020. ACS Appl. Energy Mater. 3:121243346
    [Google Scholar]
  69. 69.
    Mai H, Le TC, Hisatomi T, Chen D, Domen K et al. 2021. iScience 24:9103068
    [Google Scholar]
  70. 70.
    Kumar R, Singh AK. 2021. npj Comput. Mater. 7:197
    [Google Scholar]
  71. 71.
    Tao Q, Lu T, Sheng Y, Li L, Lu W, Li M. 2021. J. Energy Chem. 60:35159
    [Google Scholar]
  72. 72.
    Agarwal A, Goverapet Srinivasan S, Rai B 2021. Front. Mater. 8:292
    [Google Scholar]
  73. 73.
    Mazheika A, Wang YG, Valero R, Viñes F, Illas F et al. 2022. Nat. Commun. 13:419
    [Google Scholar]
  74. 74.
    Li X, Maffettone PM, Che Y, Liu T, Chen L, Cooper AI 2021. Chem. Sci. 12:321074254
    [Google Scholar]
  75. 75.
    Ding J, Bao J, Sun S, Luo Z, Gao C. 2009. J. Comb. Chem. 11:452326
    [Google Scholar]
  76. 76.
    Seyler M, Stoewe K, Maier WF. 2007. Appl. Catal. B Environ. 76:1–214657
    [Google Scholar]
  77. 77.
    Lettmann C, Hinrichs H, Maier WF. 2001. Angew. Chem. Int. Ed. 40:17316064
    [Google Scholar]
  78. 78.
    Parr RG. 1983. Annu. Rev. Phys. Chem. 34:63156
    [Google Scholar]
  79. 79.
    Chase MW Jr. 1998. NIST-JANAF Themochemical Tables. J. Phys. Chem. Ref. Data Monogr. 9. Woodbury, NY: Am. Chem. Soc./AIP. , 4th ed..
    [Google Scholar]
  80. 80.
    Kulik HJ. 2015. J. Chem. Phys. 142:240901
    [Google Scholar]
  81. 81.
    Garza AJ, Scuseria GE. 2016. J. Phys. Chem. Lett. 7:20416570
    [Google Scholar]
  82. 82.
    Gerber IC, Angyán JG. 2005. Chem. Phys. Lett. 415:1–31005
    [Google Scholar]
  83. 83.
    Onida G, Reining L, Rubio A. 2002. Rev. Mod. Phys. 74:260159
    [Google Scholar]
  84. 84.
    Wu Y, Lazic P, Hautier G, Persson K, Ceder G. 2013. Energy Environ. Sci. 6:15768
    [Google Scholar]
  85. 85.
    Castelli IE, Hüser F, Pandey M, Li H, Thygesen KS et al. 2015. Adv. Energy Mater. 5:21400915
    [Google Scholar]
  86. 86.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B et al. 2011. J. Mach. Learn. Res. 12:282530
    [Google Scholar]
  87. 87.
    Bonaccorso G. 2017. Machine Learning Algorithms: A Reference Guide to Popular Algorithms for Data Science and Machine Learning Birmingham, UK: Packt
    [Google Scholar]
  88. 88.
    Masood H, Toe CY, Teoh WY, Sethu V, Amal R 2019. ACS Catal. 9:121177487
    [Google Scholar]
  89. 89.
    Zhang Q, Chang D, Zhai X, Lu W. 2018. Chemom. Intel. Lab. Syst. 177:2634
    [Google Scholar]
  90. 90.
    Biswas T, Singh AK. 2021. npj Comput. Mater. 7:189
    [Google Scholar]
  91. 91.
    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A et al. 2018. Nat. Nanotechnol. 13:324652
    [Google Scholar]
  92. 92.
    Back S, Tran K, Ulissi ZW. 2020. ACS Appl. Mater. Interfaces 12:343825665
    [Google Scholar]
  93. 93.
    McCafferty E. 2010. Introduction to Corrosion Science New York: Springer
    [Google Scholar]
  94. 94.
    Hansen HA, Rossmeisl J, Nørskov JK. 2008. Phys. Chem. Chem. Phys. 10:25372230
    [Google Scholar]
  95. 95.
    Mathew K, Singh AK, Gabriel JJ, Choudhary K, Sinnott SB et al. 2016. Comput. Mater. Sci. 122:18390
    [Google Scholar]
  96. 96.
    Boland TM, Singh AK. 2022. Comput. Mater. Sci. 207:111238
    [Google Scholar]
  97. 97.
    Ong SP, Richards WD, Jain A, Hautier G, Kocher M et al. 2013. Comput. Mater. Sci. 68:31419
    [Google Scholar]
  98. 98.
    Wang Z, Guo X, Montoya J, Nørskov JK. 2020. npj Comput. Mater. 6:160
    [Google Scholar]
  99. 99.
    Huang LF, Rondinelli JM. 2019. npj Mater. Degrad. 3:14
    [Google Scholar]
  100. 100.
    Ayodele BV, Alsaffar MA, Mustapa SI, Cheng CK, Witoon T. 2021. Process Saf. Environ. Prot. 145:12032
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031620-100957
Loading
/content/journals/10.1146/annurev-conmatphys-031620-100957
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error