1932

Abstract

The modern scope of fermiology encompasses not just the classical geometry of Fermi surfaces but also the geometry of quantum wave functions over the Fermi surface. This enlarged scope is motivated by the advent of topological metals—metals whose Fermi surfaces are characterized by a robustly nontrivial Berry phase. We review the extent to which topological metals can be diagnosed from magnetic-field-induced quantum oscillations of transport and thermodynamic quantities. A holistic analysis of the oscillatory wave form is proposed, in which different characteristics of the wave form (e.g., phase offset, high-harmonic amplitudes, temperature-dependent frequency) encode different aspects of a topologically nontrivial Fermi surface. Which characteristic to focus on depends on () the orientation of the magnetic field relative to certain crystallographic axes, () the symmetry class of the topological metal, and () the separation of Fermi-surface pockets in quasimomentum space. Closely proximate pockets arise when (1) spin–split pockets are nearly overlapping due to a weak spin–orbit force or when (2) two pockets touch at an isolated point, which can be a topological band-touching point or a saddlepoint in the energy-momentum dispersion. The emergence of a pseudospin degree of freedom (in case 1) and the implications of magnetic breakdown (in case 2) are reviewed, with emphasis on new aspects originating from the (nonabelian) Berry connection of the Fermi surface. Future extensions of topofermiology are suggested in the directions of interaction-induced Fermi-liquid instabilities and two-dimensional electron liquids.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040721-021331
2023-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-040721-021331.html?itemId=/content/journals/10.1146/annurev-conmatphys-040721-021331&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lifshitz IM, Kaganov MI 1980. Electrons at the Fermi Surface M Springfield Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  2. 2.
    Kaganov MI, Lifshits IM. 1979. Sov. Phys. Usp. 22:904
    [Google Scholar]
  3. 3.
    Lifshitz IM, Azbel MYa, Kaganov MI. 1971. Electron Theory of Metals Transl. A Tybulewicz, 1973 New York/London: Springer (From Russian)
    [Google Scholar]
  4. 4.
    Bazaliy YB, Bakai OS, Bar'yakhtar VG, Loktev VM, Yu L 2019. Ukr. J. Phys. 64:12115456
    [Google Scholar]
  5. 5.
    Berry MV. 1984. Proc. R. Soc. A 392:4557
    [Google Scholar]
  6. 6.
    Alexandradinata A, Wang C, Duan W, Glazman L. 2018. Phys. Rev. X 8:011027
    [Google Scholar]
  7. 7.
    Haldane FDM 1994. Proceedings of the International School of Physics (Enrico Fermi), Course CXXI (Perspectives in Many-Particle Physics) RA Broglia, JR Schrieffer 529. Amsterdam, Neth.: North-Holland
    [Google Scholar]
  8. 8.
    Else DV, Thorngren R, Senthil T. 2021. Phys. Rev. X 11:2021005
    [Google Scholar]
  9. 9.
    Alexandradinata A, Glazman L. 2018. Phys. Rev. B 97:14144422
    [Google Scholar]
  10. 10.
    Guo C, Alexandradinata A, Putzke C, Estry A, Tu T et al. 2021. Nat. Commun. 12:6213
    [Google Scholar]
  11. 11.
    Kosevich AM. 2004. Low Temp. Phys. 30:297117
    [Google Scholar]
  12. 12.
    Nielsen H, Ninomiya M. 1983. Phys. Lett. B 130:638996
    [Google Scholar]
  13. 13.
    Wan X, Turner A, Vishwanath A, Savrasov SY. 2011. Phys. Rev. B 83:205101
    [Google Scholar]
  14. 14.
    Halasz GB, Balents L. 2012. Phys. Rev. B 85:035103
    [Google Scholar]
  15. 15.
    Fang C, Gilbert MJ, Dai X, Bernevig BA. 2012. Phys. Rev. Lett. 108:266802
    [Google Scholar]
  16. 16.
    Bradlyn B, Cano J, Wang Z, Vergniory MG, Felser C et al. 2016. Science 353:6299aaf5037
    [Google Scholar]
  17. 17.
    Zhang T, Song Z, Alexandradinata A, Weng H, Fang C et al. 2018. Phys. Rev. Lett. 120:016401
    [Google Scholar]
  18. 18.
    Hamilton W. 1837. Trans. R. Irish Acad. 17:1144
    [Google Scholar]
  19. 19.
    Berry M, Jeffrey M 2007. Progress in Optics, Vol. 50 E Wolf 1350. Amsterdam, Neth: Elsevier
    [Google Scholar]
  20. 20.
    Berry MV, Dennis MR. 2003. Proc. R. Soc. A Math. Phys. Eng. Sci. 459:2033126192
    [Google Scholar]
  21. 21.
    Herzberg G, Longuet-Higgins HC. 1963. Discuss. Faraday Soc. 35:7782
    [Google Scholar]
  22. 22.
    Mead CA, Truhlar DG. 1979. J. Chem. Phys. 70:5228496
    [Google Scholar]
  23. 23.
    Cederbaum LS, Friedman RS, Ryaboy VM, Moiseyev N. 2003. Phys. Rev. Lett. 90:013001
    [Google Scholar]
  24. 24.
    Farhan A, Canto L, Rasmussen J, Ring P. 1996. Nuclear Phys. A 597:3387407
    [Google Scholar]
  25. 25.
    Ferretti A, Lami A, Villani G. 1999. J. Chem. Phys. 111:391622
    [Google Scholar]
  26. 26.
    Hořava P. 2005. Phys. Rev. Lett. 95:016405
    [Google Scholar]
  27. 27.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI et al. 2005. Nature 438:7065197200
    [Google Scholar]
  28. 28.
    Soluyanov AA, Gresch D, Wang Z, Wu Q, Troyer M et al. 2015. Nature 527:757949598
    [Google Scholar]
  29. 29.
    Kane CL, Mele EJ. 2005. Phys. Rev. Lett. 95:226801
    [Google Scholar]
  30. 30.
    Fu L, Kane CL, Mele EJ. 2007. Phys. Rev. Lett. 98:10106803
    [Google Scholar]
  31. 31.
    Moore JE, Balents L. 2007. Phys. Rev. B 75:12121306
    [Google Scholar]
  32. 32.
    Roy R. 2009. Phys. Rev. B 79:19195322
    [Google Scholar]
  33. 33.
    Peskin ME, Schroeder DV. 1995. Introduction to Quantum Field Theory Boca Raton, FL: CRC Press
    [Google Scholar]
  34. 34.
    Wang Z, Weng H, Wu Q, Dai X, Fang Z. 2013. Phys. Rev. B 88:12125427
    [Google Scholar]
  35. 35.
    Son DT, Spivak BZ. 2013. Phys. Rev. B 88:10104412
    [Google Scholar]
  36. 36.
    Xiong J, Kushwaha SK, Liang T, Krizan JW, Hirschberger M et al. 2015. Science 350:625941316
    [Google Scholar]
  37. 37.
    Skinner B, Fu L. 2018. Sci. Adv. 4:5eaat2621
    [Google Scholar]
  38. 38.
    Li Y, Haldane FDM. 2018. Phys. Rev. Lett. 120:6067003
    [Google Scholar]
  39. 39.
    Zhang T, Jiang Y, Song Z, Huang H, He Y et al. 2019. Nature 566:774547579
    [Google Scholar]
  40. 40.
    Tang F, Po HC, Vishwanath A, Wan X. 2019. Nature 566:774548689
    [Google Scholar]
  41. 41.
    Vergniory MG, Elcoro L, Felser C, Regnault N, Bernevig BA, Wang Z. 2019. Nature 566:774548085
    [Google Scholar]
  42. 42.
    Shoenberg D. 1984. Magnetic Oscillations in Metals Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  43. 43.
    de Haas WJ, van Alphen PM 1930. Proc. Neth. Roy. Acad. Sci. 33:110618
    [Google Scholar]
  44. 44.
    Shubnikov LW, de Haas WJ 1930. Proc. Neth. Roy. Acad. Sci. 33:13033
    [Google Scholar]
  45. 45.
    Luttinger JM. 1961. Phys. Rev. 121:5125158
    [Google Scholar]
  46. 46.
    Peierls R. 1933. Z. Phys. 80:1176391
    [Google Scholar]
  47. 47.
    Luttinger JM. 1951. Phys. Rev. 84:481417
    [Google Scholar]
  48. 48.
    Kohn W. 1959. Phys. Rev. 115:6146078
    [Google Scholar]
  49. 49.
    Blount EI. 1962. Phys. Rev. 126:5163653
    [Google Scholar]
  50. 50.
    Wannier GH, Fredkin DR. 1962. Phys. Rev. 125:6191015
    [Google Scholar]
  51. 51.
    Roth L. 1962. J. Phys. Chem. Solids 23:543346
    [Google Scholar]
  52. 52.
    Zil'berman G. 1957. J. Exp. Theor. Phys. 5:2208
    [Google Scholar]
  53. 53.
    Fischbeck HJ. 1970. Phys. Status Solidi (B) 38:1162
    [Google Scholar]
  54. 54.
    Keller JB. 1958. Ann. Phys. 4:218088
    [Google Scholar]
  55. 55.
    Onsager L. 1952. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43:34410068
    [Google Scholar]
  56. 56.
    Lifshitz LM, Kosevich A. 1954. Dokl. Akad. Nauk SSSR 96:96366
    [Google Scholar]
  57. 57.
    Lifshitz LM, Kosevich A. 1956. J. Exp. Theor. Phys. 2:463645
    [Google Scholar]
  58. 58.
    Akhiezer AI. 1994. Phys. Today 47:63542
    [Google Scholar]
  59. 59.
    Wang CM, Lu HZ, Shen SQ. 2016. Phys. Rev. Lett. 117:7077201
    [Google Scholar]
  60. 60.
    Dingle RB 1952. Proc. R. Soc. A Math. Phys. Sci. 211:110751725
    [Google Scholar]
  61. 61.
    Dhillon JS, Shoenberg D. 1955. Philos. Trans. R. Soc. A, Math. Phys. Sci. 248:937121
    [Google Scholar]
  62. 62.
    Ashcroft NW, Mermin ND. 1976. Solid State Physics Boston: Thomson Learning
    [Google Scholar]
  63. 63.
    Heine V 1970. Solid State Physics, Vol. 24 H Ehrenreich, F Seitz, D Turnbull 136. New York: Academic
    [Google Scholar]
  64. 64.
    Cohen MH, Blount EI. 1960. Philos. Mag. 5:5011526
    [Google Scholar]
  65. 65.
    Lifshitz EM, Pitaevskii LP. 1980. Statistical Physics Part 2 Amsterdam, Neth: Elsevier
    [Google Scholar]
  66. 66.
    Zak J. 1968. Phys. Rev. 168:368695
    [Google Scholar]
  67. 67.
    Nenciu G. 1991. Rev. Mod. Phys. 63:191127
    [Google Scholar]
  68. 68.
    Chang MC, Niu Q. 1996. Phys. Rev. B 53:11701023
    [Google Scholar]
  69. 69.
    Blount EI 1962. Solid State Physics, Vol. 13 F Seitz, D Turnbull 30573. New York: Academic
    [Google Scholar]
  70. 70.
    Roth LM. 1966. Phys. Rev. 145:243448
    [Google Scholar]
  71. 71.
    Terashima T, Hirose HT, Graf D, Ma Y, Mu G et al. 2018. Phys. Rev. X 8:011014
    [Google Scholar]
  72. 72.
    Cvetkovic V, Vafek O. 2013. Phys. Rev. B 88:13134510
    [Google Scholar]
  73. 73.
    Shirley JH. 1965. Phys. Rev. 138:4B97987
    [Google Scholar]
  74. 74.
    Mikitik GP, Sharlai YV. 1998. J. Exp. Theor. Phys. 87:474755
    [Google Scholar]
  75. 75.
    Sun S, Song Z, Weng H, Dai X. 2020. Phys. Rev. B 101:12125118
    [Google Scholar]
  76. 76.
    Wang J, Niu J, Yan B, Li X, Bi R et al. 2018. PNAS 115:37914550
    [Google Scholar]
  77. 77.
    Gaikwad A, Sun S, Wang P, Zhang L, Cano J et al. 2022. arXiv:2201.04049
  78. 78.
    Nielsen H, Ninomiya M. 1981. Nuclear Phys. B 185:2040
    [Google Scholar]
  79. 79.
    Nielsen H, Ninomiya M. 1981. Nuclear Phys. B 193:17394
    [Google Scholar]
  80. 80.
    von Neumann J, Wigner E. 1929. Phys. Z. 30:46770
    [Google Scholar]
  81. 81.
    Lax M. 1974. Symmetry Principles in Solid State and Molecular Physics Hoboken, NJ: Wiley-Intersci.
    [Google Scholar]
  82. 82.
    Schindler C, Gorbunov D, Zherlitsyn S, Galeski S, Schmidt M et al. 2020. Phys. Rev. B 102:16165156
    [Google Scholar]
  83. 83.
    Weng H, Fang C, Fang Z, Bernevig BA, Dai X. 2015. Phys. Rev. X 5:011029
    [Google Scholar]
  84. 84.
    Huang SM, Xu SY, Belopolski I, Lee CC, Chang G et al. 2015. Nat. Commun. 6:7373
    [Google Scholar]
  85. 85.
    Klotz J, Wu SC, Shekhar C, Sun Y, Schmidt M et al. 2016. Phys. Rev. B 93:12121105
    [Google Scholar]
  86. 86.
    Sodemann I, Zhu Z, Fu L. 2017. Phys. Rev. X 7:4041068
    [Google Scholar]
  87. 87.
    Schrödinger E. 1926. Ann. Phys. 385:1343790
    [Google Scholar]
  88. 88.
    Burkov AA, Hook MD, Balents L. 2011. Phys. Rev. B 84:235126
    [Google Scholar]
  89. 89.
    Fang C, Weng H, Dai X, Fang Z. 2016. Chin. Phys. B 25:11117106
    [Google Scholar]
  90. 90.
    Mikitik GP, Sharlai YV. 2004. Phys. Rev. Lett. 93:106403
    [Google Scholar]
  91. 91.
    Goodrich RG, Maslov DL, Hebard AF, Sarrao JL, Hall D, Fisk Z. 2002. Phys. Rev. Lett. 89:2026401
    [Google Scholar]
  92. 92.
    Young SM, Zaheer S, Teo JCY, Kane CL, Mele EJ, Rappe AM. 2012. Phys. Rev. Lett. 108:14140405
    [Google Scholar]
  93. 93.
    Wang Z, Sun Y, Chen XQ, Franchini C, Xu G et al. 2012. Phys. Rev. B 85:19195320
    [Google Scholar]
  94. 94.
    Gresch D, Autès G, Yazyev OV, Troyer M, Vanderbilt D et al. 2017. Phys. Rev. B 95:7075146
    [Google Scholar]
  95. 95.
    Li G, Yan B, Wang Z, Held K. 2017. Phys. Rev. B 95:3035102
    [Google Scholar]
  96. 96.
    Küppersbusch C, Fritz L. 2017. Phys. Rev. B 96:20205410
    [Google Scholar]
  97. 97.
    Fortin JY, Audouard A. 2015. Eur. Phys. J. B 88:9225
    [Google Scholar]
  98. 98.
    Barron T, Collins J, White G. 1980. Adv. Phys. 29:4609730
    [Google Scholar]
  99. 99.
    Berlincourt TG, Steele MC. 1954. Phys. Rev. 95:6142128
    [Google Scholar]
  100. 100.
    O'Sullivan WJ, Schirber JE 1966. Phys. Rev. 151:248494
    [Google Scholar]
  101. 101.
    Lonzarich GG, Cooper NS. 1983. J. Phys. F Metal Phys. 13:11224152
    [Google Scholar]
  102. 102.
    Terashima T, Uji S, Wang T, Mu G 2022. NPJ Quantum Mater. 7:25
    [Google Scholar]
  103. 103.
    Wang C, Duan W, Glazman L, Alexandradinata A. 2019. Phys. Rev. B 100:014442
    [Google Scholar]
  104. 104.
    Eisenstein JP, Störmer HL, Narayanamurti V, Gossard AC, Wiegmann W. 1984. Phys. Rev. Lett. 53:27257982
    [Google Scholar]
  105. 105.
    Das B, Miller DC, Datta S, Reifenberger R, Hong WP et al. 1989. Phys. Rev. B 39:2141114
    [Google Scholar]
  106. 106.
    Hu CM, Nitta J, Akazaki T, Takayanagi H, Osaka J et al. 1999. Phys. Rev. B 60:11773639
    [Google Scholar]
  107. 107.
    Wilde MA, Reuter D, Heyn C, Wieck AD, Grundler D. 2009. Phys. Rev. B 79:12125330
    [Google Scholar]
  108. 108.
    Roth LM, Groves SH, Wyatt PW. 1967. Phys. Rev. Lett. 19:1057680
    [Google Scholar]
  109. 109.
    Terashima T, Kimata M, Uji S, Sugawara T, Kimura N et al. 2008. Phys. Rev. B 78:20205107
    [Google Scholar]
  110. 110.
    Ōnuki Y, Nakamura A, Uejo T, Teruya A, Hedo M et al. 2014. J. Phys. Soc. Jpn. 83:6061018
    [Google Scholar]
  111. 111.
    Maurya A, Harima H, Nakamura A, Shimizu Y, Homma Y et al. 2018. J. Phys. Soc. Jpn. 87:4044703
    [Google Scholar]
  112. 112.
    Mineev VP, Samokhin KV. 2005. Phys. Rev. B 72:21212504
    [Google Scholar]
  113. 113.
    Gao Y, Niu Q. 2017. PNAS 114:287295300
    [Google Scholar]
  114. 114.
    Fuchs JN, Piéchon F, Montambaux G. 2018. SciPost Phys. 4:5024
    [Google Scholar]
  115. 115.
    Vinter B, Overhauser AW. 1980. Phys. Rev. Lett. 44:14750
    [Google Scholar]
  116. 116.
    Priestley MG. 1963. Proc. R. Soc. A 216:258
    [Google Scholar]
  117. 117.
    Cohen MH, Falicov LM. 1961. Phys. Rev. Lett. 7:623133
    [Google Scholar]
  118. 118.
    Azbel MY. 1961. J. Exp. Theor. Phys. 12:589197
    [Google Scholar]
  119. 119.
    Falicov LM, Stachowiak H. 1966. Phys. Rev. 147:250515
    [Google Scholar]
  120. 120.
    Pippard AB. 1962. Proc. R. Soc. A Math. Phys. Eng. Sci. 270:1340113
    [Google Scholar]
  121. 121.
    Pippard AB. 1964. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 256:107231755
    [Google Scholar]
  122. 122.
    Slutskin A. 1968. J. Exp. Theor. Phys. 26:247482
    [Google Scholar]
  123. 123.
    Chambers WG. 1966. Phys. Rev. 149:2493504
    [Google Scholar]
  124. 124.
    Kaganov M, Slutskin A. 1983. Phys. Rep. 98:4189271
    [Google Scholar]
  125. 125.
    Alexandradinata A, Glazman L. 2017. Phys. Rev. Lett. 119:25256601
    [Google Scholar]
  126. 126.
    Zener C, Fowler RH. 1932. Proc. R. Soc. A 137:833696702
    [Google Scholar]
  127. 127.
    Landau LD, Lifshitz EM. 2007. Quantum Mechanics Singapore: Elsevier
    [Google Scholar]
  128. 128.
    Kemble EC. 1935. Phys. Rev. 48:654961
    [Google Scholar]
  129. 129.
    Pezzini S, Van Delft M, Schoop L, Lotsch B, Carrington A et al. 2018. Nat. Phys. 14:217883
    [Google Scholar]
  130. 130.
    O'Brien TE, Diez M, Beenakker CWJ. 2016. Phys. Rev. Lett. 116:23236401
    [Google Scholar]
  131. 131.
    Lv BQ, Weng HM, Fu BB, Wang XP, Miao H et al. 2015. Phys. Rev. X 5:3031013
    [Google Scholar]
  132. 132.
    Xu SY, Belopolski I, Alidoust N, Neupane M, Bian G et al. 2015. Science 349:624861317
    [Google Scholar]
  133. 133.
    de Juan F, Grushin AG, Morimoto T, Moore JE. 2017. Nat. Commun. 8:15995
    [Google Scholar]
  134. 134.
    Wang C, Zhang Z, Zhou L, Weng H, Fang C, Alexandradinata A. 2022. Phys. Rev. B 105:4045141
    [Google Scholar]
  135. 135.
    Bergholtz EJ, Liu Z, Trescher M, Moessner R, Udagawa M. 2015. Phys. Rev. Lett. 114:016806
    [Google Scholar]
  136. 136.
    Muechler L, Alexandradinata A, Neupert T, Car R. 2016. Phys. Rev. X 6:4041069
    [Google Scholar]
  137. 137.
    Wittig C. 2005. J. Phys. Chem. B 109:17842830
    [Google Scholar]
  138. 138.
    Van Hove L. 1953. Phys. Rev. 89:6118993
    [Google Scholar]
  139. 139.
    Morse M. 1942. Am. Math. Mon. 49:635864
    [Google Scholar]
  140. 140.
    Hsieh TH, Lin H, Liu J, Duan W, Bansil A, Fu L. 2012. Nat. Comm. 3:982
    [Google Scholar]
  141. 141.
    Chen Y, Xie Y, Yang SA, Pan H, Zhang F et al. 2015. Nano Lett. 15:10697478
    [Google Scholar]
  142. 142.
    Bzdušek T, Wu Q, Rüegg A, Sigrist M, Soluyanov AA. 2016. Nature 538:76237578
    [Google Scholar]
  143. 143.
    Chiu CK, Schnyder AP. 2014. Phys. Rev. B 90:20205136
    [Google Scholar]
  144. 144.
    Yang BJ, Bojesen TA, Morimoto T, Furusaki A. 2017. Phys. Rev. B 95:7075135
    [Google Scholar]
  145. 145.
    Alexandradinata A, Höller J. 2018. Phys. Rev. B 98:18184305
    [Google Scholar]
  146. 146.
    Gurevich VL, Skobov VG, Firsov YA. 1961. Sov. Phys. J. Exp. Theor. Phys. 13:355255
    [Google Scholar]
  147. 147.
    Skobov VG. 1961. Sov. Phys. J. Exp. Theor. Phys. 13:5101417
    [Google Scholar]
  148. 148.
    Toxen AM, Tansal S. 1965. Phys. Rev. 137:1AA21120
    [Google Scholar]
  149. 149.
    Sawada Y, Burstein E, Testardi L. 1966. J. Phys. Soc. Jpn. 21:760
    [Google Scholar]
  150. 150.
    Foldy LL, Wouthuysen SA. 1950. Phys. Rev. 78:2936
    [Google Scholar]
  151. 151.
    Blount EI. 1962. Phys. Rev. 128:5245458
    [Google Scholar]
  152. 152.
    Hirsch JE. 1990. Phys. Rev. B 41:10682027
    [Google Scholar]
  153. 153.
    Wu C, Zhang SC. 2004. Phys. Rev. Lett. 93:3036403
    [Google Scholar]
  154. 154.
    Alexandradinata A, Hirsch JE. 2010. Phys. Rev. B 82:19195131
    [Google Scholar]
  155. 155.
    Fu L. 2015. Phys. Rev. Lett. 115:2026401
    [Google Scholar]
  156. 156.
    Matsubayashi Y, Sugii K, Hirose HT, Hirai D, Sugiura S et al. 2018. J. Phys. Soc. Jpn. 87:5053702
    [Google Scholar]
  157. 157.
    Hirose HT, Terashima T, Hirai D, Matsubayashi Y, Kikugawa N et al. 2022. Phys. Rev. B 105:3035116
    [Google Scholar]
  158. 158.
    Gooth J, Bradlyn B, Honnali S, Schindler C, Kumar N et al. 2019. Nature 575:778231519
    [Google Scholar]
  159. 159.
    Bobrow E, Sun C, Li Y. 2020. Phys. Rev. Res. 2:012078
    [Google Scholar]
  160. 160.
    Gaudet J, Yang HY, Baidya S, Lu B, Xu G et al. 2021. Nat. Mater. 20:12165056
    [Google Scholar]
  161. 161.
    Yuan NFQ, Fu L. 2021. PNAS 118:3e2019063118
    [Google Scholar]
  162. 162.
    Huang H, Zhou S, Duan W. 2016. Phys. Rev. B 94:12121117
    [Google Scholar]
  163. 163.
    Chang TR, Xu SY, Sanchez DS, Tsai WF, Huang SM et al. 2017. Phys. Rev. Lett. 119:2026404
    [Google Scholar]
  164. 164.
    Yuan NFQ, Isobe H, Fu L. 2019. Nat. Commun. 10:5769
    [Google Scholar]
  165. 165.
    Pokrovsky VL, Sinitsyn NA. 2000. arXiv:cond-mat/0012303
  166. 166.
    Curnoe S, Stamp PCE. 1998. Phys. Rev. Lett. 80:15331215
    [Google Scholar]
  167. 167.
    Champel T, Mineev VP. 2001. Philos. Mag. B 81:5574
    [Google Scholar]
  168. 168.
    Champel T. 2001. Phys. Rev. B 64:054407
    [Google Scholar]
  169. 169.
    Kuntsevich AY, Shupletsov AV, Minkov GM. 2018. Phys. Rev. B 97:19195431
    [Google Scholar]
  170. 170.
    Ando T, Uemura Y. 1974. J. Phys. Soc. Jpn. 37:4104452
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040721-021331
Loading
/content/journals/10.1146/annurev-conmatphys-040721-021331
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error