Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 15, 2022

The application of conventional or magnetic materials to support immobilization of amylolytic enzymes for batch and continuous operation of starch hydrolysis processes

  • Lilis Hermida and Joni Agustian EMAIL logo

Abstract

In the production of ethanol, starches are converted into reducing sugars by liquefaction and saccharification processes, which mainly use soluble amylases. These processes are considered wasteful operations as operations to recover the enzymes are not practical economically so immobilizations of amylases to perform both processes appear to be a promising way to obtain more stable and reusable enzymes, to lower costs of enzymatic conversions, and to reduce enzymes degradation/contamination. Although many reviews on enzyme immobilizations are found, they only discuss immobilizations of α-amylase immobilizations on nanoparticles, but other amylases and support types are not well informed or poorly stated. As the knowledge of the developed supports for most amylase immobilizations being used in starch hydrolysis is important, a review describing about their preparations, characteristics, and applications is herewith presented. Based on the results, two major groups were discovered in the last 20 years, which include conventional and magnetic-based supports. Furthermore, several strategies for preparation and immobilization processes, which are more advanced than the previous generation, were also revealed. Although most of the starch hydrolysis processes were conducted in batches, opportunities to develop continuous reactors are offered. However, the continuous operations are difficult to be employed by magnetic-based amylases.


Corresponding author: Joni Agustian, Department of Chemical Engineering, Universitas Lampung, Jl. Soemantri Brodjonegoro No. 1, Gedong Meneng, Rajabasa, Bandar Lampung, Lampung, 35145, Indonesia, E-mail:

Funding source: Directorate General of Higher Education, Ministry of Education, Culture, Research and Technology Republic of Indonesia http://dx.doi.org/10.13039/501100023174,"Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi"

Award Identifier / Grant number: 0267/E5/AK.04/2022

Funding source: Ministry of Higher Education, Republic of Indonesia

Award Identifier / Grant number: The Competitive Basic Research Grant

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Both authors thank deeply for financial support provided in 2022 by Ministry of Higher Education Republic of Indonesia via The Competitive Basic Research Grant. This work was also supported by Directorate General of Higher Education, Ministry of Education, Culture, Research and Technology Republic of Indonesia (https://doi.org/10.13039/501100023174, “Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi”) under the grant “0267/E5/AK.04/2022”.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

Abdella, M.A.A., El-Sherbiny, G.M., El-Shamy, A.R., Atalla, S.M.M., and Ahmed, S.A. (2020). Statistical optimization of chemical modification of chitosan-magnetic nanoparticles beads to promote Bacillus subtilis MK1 α-amylase immobilization and its application. Bull. Natl. Res. Cent. 44: 1–13, https://doi.org/10.1186/s42269-020-00301-3.Search in Google Scholar

Abdel-Mageed, H.M., Radwan, R.A., Zakaria, N., Ezz, A., Nasser, H.A., Shamy, A.A.E., Abdelnaby, R.M., and Gohary, N.A.E. (2019). Bioconjugation as a smart immobilization approach for α-amylase enzyme using stimuli-responsive Eudragit-L100 polymer: a robust biocatalyst for applications in pharmaceutical industry. Artif. Cell Nanomed. Biotechnol. 47: 2361–2368.10.1080/21691401.2019.1626414Search in Google Scholar PubMed

Abdel-Naby, M.A., Hashem, A.M., Esawy, M.A., and Abdel-Fattah, A.F. (1998). Immobilization of Bacillus subtilis α-amylase and characterization of its enzymatic properties. Microbiol. Res. 153: 1–7.10.1016/S0944-5013(99)80044-5Search in Google Scholar

Abraham, T.E., Joseph, J.R., Bindhu, L.B.V., and Jayakumar, K.K. (2004). Crosslinked enzyme crystals of glucoamylase as a potent catalyst for biotransformations. Carbohydr. Res. 339: 1099–1104, https://doi.org/10.1016/j.carres.2004.01.011.Search in Google Scholar PubMed

Agustian, J. and Hermida, L. (2018). Saccharification kinetics at optimized conditions of tapioca by glucoamylase immobilised on mesostructured cellular foam silica. Eurasian Chem. Technol. J. 20: 311–318, https://doi.org/10.18321/ectj764.Search in Google Scholar

Agustian, J. and Hermida, L. (2019a). Capability of immobilised glucoamylase on mesostructured cellular foam silica to hydrolyse tapioca starch. Math. Sci. Eng. 509: 012058, https://doi.org/10.1088/1757-899x/509/1/012058.Search in Google Scholar

Agustian, J. and Hermida, L. (2019b). Mesostructured cellular foam MCF- (9.2T-3D) silica as support for free α-amylase in liquefaction of tapioca starch. Math. Sci. Eng. 509: 012059, https://doi.org/10.1088/1757-899x/509/1/012059.Search in Google Scholar

Agustian, J. and Hermida, L. (2019c). The optimised statistical model for enzymatic hydrolysis of tapioca by glucoamylase immobilised on mesostructured cellular foam silica. Bull. Chem. React. Eng. Catal. 14: 380–390, https://doi.org/10.9767/bcrec.14.2.3078.380-390.Search in Google Scholar

Agustian, J., Kamaruddin, A.H., and Bhatia, S. (2011). Enzymatic membrane reactors: the determining factors in two separate phase operations. J. Chem. Technol. Biotechnol. 86: 1032–1048, https://doi.org/10.1002/jctb.2575.Search in Google Scholar

Ahmad, R. and Sardar, M. (2015). Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem. Anal. Biochem. 4: 1–8.Search in Google Scholar

Ahmad, R., Khatoon, N., and Sardar, M. (2013). Biosynthesis, characterization and application of TiO2 nanoparticles in biocatalysis and protein folding. J. Protein Proteonomics 4: 115–121.Search in Google Scholar

Ahmad, R., Mishra, A., and Sardar, M. (2014). Simultaneous immobilization and refolding of heat-treated enzymes on TiO2 nanoparticles. Adv. Sci. Eng. Med. 6: 1–5, https://doi.org/10.1166/asem.2014.1644.Search in Google Scholar

Ahmed, N.A., Shamy, A.R.E., and Awad, H.M. (2020). Optimization and immobilization of amylase produced by Aspergillus terreus using pomegranate peel waste. Bull. Natl. Res. Cent. 44: 1–12, https://doi.org/10.1186/s42269-020-00363-3.Search in Google Scholar

Ajitha, S. and Sugunan, S. (2010). Tuning mesoporous molecular sieve SBA-15 for the immobilization of α-amylase. J. Porous Mater. 17: 341–349, https://doi.org/10.1007/s10934-009-9298-z.Search in Google Scholar

Aksoy, S., Tumturk, H., and Hasirci, N. (1998). Stability of α-amylase immobilized on poly(methyl methacrylate-acrylic acid) microspheres. J. Biotechnol. 60: 37–46, https://doi.org/10.1016/s0168-1656(97)00179-x.Search in Google Scholar PubMed

Alagöz, D., Yildirim, D., Guvenmez, H.K., Sihay, D., and Tukel, S. (2016). Covalent immobilization and characterization of a novel pullulanase from Fontibacillus sp. strain DSHK 107 onto Florisil® and nano-silica for pullulan hydrolysis. Appl. Biochem. Biotechnol. 179: 1262–1274, https://doi.org/10.1007/s12010-016-2063-2.Search in Google Scholar PubMed

Ali, G., Dulong, V., Gasmi, S.N., Rihouey, C., Picton, L., and Cerf, D.L. (2015). Covalent immobilization of pullulanase on alginate and study of its hydrolysis of pullulan. Biotechnol. Prog. 31: 883–889, https://doi.org/10.1002/btpr.2093.Search in Google Scholar PubMed

Ali, S., Hossain, Z., Mahmood, S., and Alam, R. (1990). Purification of glucoamylase from Aspergillus terreus. World J. Microbiol. Biotechnol. 6: 431–433, https://doi.org/10.1007/bf01202129.Search in Google Scholar PubMed

Almulaiky, Y.Q., Aqlan, F.M., Aldhahri, M., Baeshen, M., Khan, T.J., Khan, K.A., Afifi, M., Al-Farga, A., Warsi, M.K., Alkhaled, M., et al.. (2018). α-Amylase immobilization on amidoximated acrylic microfibres activated by cyanuric chloride. R. Soc. Open Sci. 5: 1–11, https://doi.org/10.1098/rsos.172164.Search in Google Scholar PubMed PubMed Central

Alonazi, M., Karray, A., Badjah-Hadj-Ahmed, A.Y., and Ben Bacha, A. (2021). Alpha-Amylase from Bacillus pacificus associated with Brown algae turbinaria ornata: cultural conditions, purification, and biochemical characterization. Processes 9: 1–13, https://doi.org/10.3390/pr9010016.Search in Google Scholar

Al-Amri, A., Al-Ghamdi, M.A., Khan, J.A., Altayeb, H.N., Alsulami, H., Sajjad, M., Baothman, O.A., and Nadeem, M.S. (2022). Escherichia coli expression and characterization of α-amylase from Geobacillus thermodenitrificans DSM-465. Braz. J. Biol. 82: e239449, https://doi.org/10.1590/1519-6984.239449.Search in Google Scholar PubMed

Al-Najada, A.R., Almulaiky, Y.Q., Aldhahri, M., El-Shishtawy, R.M., Mohamed, S.A., Baeshen, M., AL-Farga, A., Abdulaa, W.A., and Al-Harbi, S.A. (2019). Immobilisation of α-amylase on activated amidrazone acrylic fabric: a new approach for the enhancement of enzyme stability and reusability. Sci. Rep. 9: 1–9.10.1038/s41598-019-49206-wSearch in Google Scholar PubMed PubMed Central

Al-Qodah, Z., Al-Shannag, M., Al-Busoul, M., Penchev, I., and Orfali, W. (2017). Immobilized enzymes bioreactors utilizing a magnetic field: a review. Biochem. Eng. J. 121: 94–106, https://doi.org/10.1016/j.bej.2017.02.003.Search in Google Scholar

Amemura, A., Konishi, Y., and Harada, T. (1980). Molecular weight of the undegraded polypeptide chain of PSEUDOMONAS amyloderamosa isoamylase. Biochim. Biophys. Acta 611: 390–393, https://doi.org/10.1016/0005-2744(80)90077-7.Search in Google Scholar PubMed

An, N., Zhou, C.H., Zhuang, X.Y., Tong, D.S., and Yu, W.H. (2015). Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl. Clay Sci. 114: 283–296, https://doi.org/10.1016/j.clay.2015.05.029.Search in Google Scholar

Antony, N., Balachandran, S., and Mohanan, P.V. (2016). Immobilization of diastase α-amylase on nano zinc oxide. Food Chem. 211: 624–630, https://doi.org/10.1016/j.foodchem.2016.05.049.Search in Google Scholar PubMed

Araujo, A.M., Neves, M.T.Jr., Azevedo, W.M., Oliveira, G.G., Ferreira, D.L.Jr., Coelho, R.A.L., Figueiredo, E.A.P., and Carvalho, L.B.Jr. (1997). Polyvinyl alcohol-glutaraldehyde network as a support for protein immobilisation. Biotechnol. Tech. 11: 67–70.10.1023/A:1018404103626Search in Google Scholar

Arco, J.D., Alcántara, A.R., Fernández-Lafuente, R., and Fernández-Lucas, J. (2021). Magnetic micro-macro biocatalysts applied to industrial bioprocesses. Bioresour. Technol. 322: 124547, https://doi.org/10.1016/j.biortech.2020.124547.Search in Google Scholar PubMed

Arica, M.Y., Alaeddino, N.G., and Hasirci, V. (1998). Immobilization of glucoamylase onto activated pHEMA/EGDMA microspheres: properties and application to a packed-bed reactor. Enzym. Microb. Technol. 22: 152–157, https://doi.org/10.1016/s0141-0229(97)00139-7.Search in Google Scholar

Atiroglu, V., Atiroglu, A., and Ozacar, M. (2021). Immobilization of α-amylase enzyme on a protein @metal–organic framework nanocomposite: a new strategy to develop the reusability and stability of the enzyme. Food Chem. 349: 129127, https://doi.org/10.1016/j.foodchem.2021.129127.Search in Google Scholar PubMed

Ayla, A. and Basal, Z. (2014). Use of poly(HEMA-MAH)-Cu2+ microbeads for α-amylase immobilization. Hacettepe J. Biol. Chem. 42: 323–330.Search in Google Scholar

Azmi, A.S., Malek, M.I.A., and Puad, N.I.M. (2017). A review on acid and enzymatic hydrolyses of sago starch. Inter. Food Res. J. 24: 265–273.Search in Google Scholar

Bachler, M.J., Strandberg, G.W., and Smiley, K.L. (1970). Starch conversion by immobilized glucoamylase. Biotechnol. Bioeng. 12: 85–92, https://doi.org/10.1002/bit.260120108.Search in Google Scholar

Bailey, J.E. (1983). Immobilization of glucoamylase and glucose oxidase in activated carbon: effects of particle size and immobilization conditions on enzyme activity and effectiveness. Biotechnol. Bioeng. 25: 1923–1935, https://doi.org/10.1002/bit.260250803.Search in Google Scholar PubMed

Bal, E., Pinar, O., Kazan, D., Öztürk, H.U., and Sayar, A.A. (2016). Immobilization of α-amylase from Bacillus subtilis SDP1 isolated from the rhizosphere of Acacia cyanophlla Lindey. eJBio 12: 115–121.Search in Google Scholar

Balakumar, S., Arasaratnam, V., and Balasubramaniam, K. (1998). Improved performance of amberlite IRA-904 immobilized glucoamylase. Starch Staerke 50: 93–95, https://doi.org/10.1002/(sici)1521-379x(199803)50:2/3<93::aid-star93>3.0.co;2-8.10.1002/(SICI)1521-379X(199803)50:2/3<93::AID-STAR93>3.0.CO;2-8Search in Google Scholar

Basso, A. and Serban, S. (2019). Industrial applications of immobilized enzymes – a review. Mol. Catal. 479: 110607, https://doi.org/10.1016/j.mcat.2019.110607.Search in Google Scholar

Basturk, E., Demir, S., Danis, O., and Kahraman, M.V. (2012). Covalent immobilization of α-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes. J. Appl. Polym. Sci. 127: 349–355, https://doi.org/10.1002/app.37901.Search in Google Scholar

Bayramoglu, G., Yilmaz, M., and Arica, M.Y. (2004). Immobilization of a thermostable α-amylase onto reactive membranes: kinetics characterization and application to continuous starch hydrolysis. Food Chem. 84: 591–599, https://doi.org/10.1016/s0308-8146(03)00283-8.Search in Google Scholar

Bellino, M.G., Regazzoni, A.E., and Solerillia, G.J.A.A. (2010). Amylase-functionalized mesoporous silica thin films as robust biocatalyst platforms. ACS Appl. Mater. Interfaces 2: 360–365, https://doi.org/10.1021/am900645b.Search in Google Scholar

Beyler-Çiğil, A., Çakmakçi, E., Danış, O., Demir, S., and Kahraman, M.V. (2013). Alpha-amylase immobilization on modified polyimide material. Chem. Eng. Trans. 32: 1687–1692.Search in Google Scholar

Bilal, M., Zhao, Y., Rasheed, T., and Iqbal, H.M.N. (2018). Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int. J. Biol. Macromol. 120: 2530–2544, https://doi.org/10.1016/j.ijbiomac.2018.09.025.Search in Google Scholar

Bindu, V.U. and Mohanan, P.V. (2017). Enhanced stability of α-amylase via immobilization onto chitosan-TiO2 nanocomposite. Nanosci. Technol. 4: 1–9, https://doi.org/10.15226/2374-8141/4/2/00146.Search in Google Scholar

Bindu, V.U., Shanty, A.A., and Mohanan, P.V. (2018). Parameters affecting the improvement of properties and stabilities of immobilized α-amylase on chitosan-metal oxide composites. Inter. J. Biochem. Biophys. 6: 44–57, https://doi.org/10.13189/ijbb.2018.060203.Search in Google Scholar

Bozic, N., Ruiz, J., Lopez-Santin, J., and Vujcic, Z. (2011). Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochem. Eng. J. 53: 203–209, https://doi.org/10.1016/j.bej.2010.10.014.Search in Google Scholar

Brena, B., González-Pombo, P., and Batista-Viera, F. (2013). Immobilization of enzymes: a literature survey. In: Guisan, J.M. (Ed.), Immobilization of enzymes and cells, 3rd ed. Springer Science Business Media, New York.10.1007/978-1-62703-550-7_2Search in Google Scholar

Brena, B.M. and Batista-Viera, F. (2006). Immobilization of enzymes: a literature survey. In: Guisan, J.M. (Ed.), Biotechnology: immobilization of enzymes and cells, 2nd ed. Humana Press, New Jersey.10.1007/978-1-59745-053-9_2Search in Google Scholar

Brena, B.M., Ovsejevi, K., Luna, B., and Batista-Viera, F. (1993). Thiolation and reversible immobilization of sweet potato β-amylase on thiolsulfonate-agarose. J. Mol. Catal. 84: 381–390, https://doi.org/10.1016/0304-5102(93)85067-4.Search in Google Scholar

Bruna, F., Pereira, M.G., Polizeli, M.D.L.T., and Valim, J.B. (2015). Starch biocatalyst based on α-Amylase-Mg/Al-layered double hydroxide nanohybrids. ACS Appl. Mater. Interfaces 7: 18832–18842, https://doi.org/10.1021/acsami.5b05668.Search in Google Scholar PubMed

Bryjak, J. (2003). Glucoamylase, α-amylase and β-amylase immobilisation on acrylic carriers. Biochem. Eng. J. 16: 347–355, https://doi.org/10.1016/s1369-703x(03)00114-1.Search in Google Scholar

Bryjak, J., Aniulyte, J., and Liesiene, J. (2007). Evaluation of man-tailored cellulose-based carriers in glucoamylase immobilization. Carbohydr. Res. 342: 1105–1109, https://doi.org/10.1016/j.carres.2007.02.014.Search in Google Scholar PubMed

Caresani, J.R.F., Dallegrave, A., and dos Santos, J.H.Z. (2020). Amylases immobilization by sol–gel entrapment: application for starch hydrolysis. J. Sol. Gel Sci. Technol. 94: 229–240.10.1007/s10971-019-05136-7Search in Google Scholar

Carvalho De, C.C., Ziotti, L.S., Pereira, M.G., Furquim, A., Atílio, J., Lourdes, M., and De Moraes, T. (2014). Production and functional properties of free and immobilized glucoamylases of Penicillium citrinum. Jacobs J. Biotechnol. Bioeng. 2: 1–10.Search in Google Scholar

Chen, J., Sun, Y., and Chu, D. (1998). Immobilization of α-amylase to a composite temperature sensitive membrane for starch hydrolysis. Biotechnol. Prog. 14: 473–478, https://doi.org/10.1021/bp9800384.Search in Google Scholar PubMed

Chiang, J.P. and Lantero, O.J.Jr. (1987). Immobilisation of biocatalyst on granular diatomaceous earth. US Patent 4,713,333.Search in Google Scholar

Cho, K.M., Kim, E.J., Math, R.K., Islam, S.M.A., Hong, S.J., Kim, J.O., Shin, K.J., Lee, Y.H., Kim, H., and Yun, H.D. (2007). Cloning of isoamylase gene of Pectobacterium carotovorum subsp. Carotovorum LY34 and identification of essential residues of enzyme. J. Life Sci. 17: 1182–1190, https://doi.org/10.5352/jls.2007.17.9.1182.Search in Google Scholar

Chu-Ky, S., Pham, T.H., Bui, K.L.T., Nguyen, T.T., Pham, K.D., Nguyen, H.D.T., Luong, H.L., Tua, V.P., Nguyen, T.H., Hoa, P.H., et al.. (2016). Simultaneous liquefaction, saccharification and fermentation at very high gravity of rice at pilot scale for potable ethanol production and distillers dried grains composition. Food Bioprod. Process. 98: 79–85, https://doi.org/10.1016/j.fbp.2015.10.003.Search in Google Scholar

Cordeiro, A.L., Lenk, T., and Werner, C. (2011). Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films. J. Biotechnol. 154: 216–221, https://doi.org/10.1016/j.jbiotec.2011.04.008.Search in Google Scholar PubMed

Darnoko, D., Cheryant, M., and Artz, W.E. (1989). Saccharification of cassava starch in an ultrafiltration reactor. Enzym. Microb. Technol. 11: 154–159, https://doi.org/10.1016/0141-0229(89)90074-4.Search in Google Scholar

Darzi, H.H., Gilani, S., Farrokhi, M., Nouri, S.M.M., and Karimi, G. (2019). Textural and structural characterizations of mesoporous chitosan beads for immobilization of alpha-amylase: diffusivity and sustainability of biocatalyst. IJE Trans. B: Appl. 32: 207–216.10.5829/ije.2019.32.02b.04Search in Google Scholar

Das, R., Mishra, H., Srivastava, A., and Kayastha, A.M. (2017). Covalent immobilization of β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: a gateway to boost enzyme application. Chem. Eng. J. 328: 215–227, https://doi.org/10.1016/j.cej.2017.07.019.Search in Google Scholar

Datta, S., Christena, L.R., and Rajaram, Y.R.S. (2013). Enzyme immobilization: an overview on techniques and support materials. Biotech 33: 1–9, https://doi.org/10.1007/s13205-012-0071-7.Search in Google Scholar PubMed PubMed Central

Defaei, M., Taheri-Kafrani, A., Miroliaei, M., and Yaghmaei, P. (2018). Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: a robust nanobiocatalyst. Int. J. Biol. Macromol. 113: 354–360, https://doi.org/10.1016/j.ijbiomac.2018.02.147.Search in Google Scholar PubMed

Deleyn, F. and Stouffs, R. (1990). Immobilised α-amylase in the production of maltose syrups. Starch Staerke 42: 158–160, https://doi.org/10.1002/star.19900420408.Search in Google Scholar

Demir, S., Gok, S.B., and Kahraman, M.V. (2012). α-amylase immobilization on functionalized nano CaCO3 by covalent attachment. Starch Staerke 64: 3–9, https://doi.org/10.1002/star.201100058.Search in Google Scholar

Desai, R.P., Dave, D., Suthar, S.A., Shah, S., Ruparelia, N., and Kikani, B.A. (2021). Immobilization of α-amylase on GO-magnetite nanoparticles for the production of high maltose containing syrup. Int. J. Biol. Macromol. 169: 228–238, https://doi.org/10.1016/j.ijbiomac.2020.12.101.Search in Google Scholar PubMed

Dhavale, R.P., Parit, S.B., Sahoo, S.C., Kollu, P., Patil, P.S., Patil, P.B., and Chougale, A.D. (2018). α-Amylase immobilized on magnetic nanoparticles: reusable robust nano-biocatalyst for starch hydrolysis. Mater. Res. Express 5: 075403, https://doi.org/10.1088/2053-1591/aacef1.Search in Google Scholar

Dheeran, P., Kumar, S., Jaiswal, Y.K., and Adhikari, D.K. (2010). Characterization of hyperthermostable _-amylase from Geobacillus sp. IIPTN. Appl. Microbiol. Biotechnol. 86: 1857–1866, https://doi.org/10.1007/s00253-009-2430-9.Search in Google Scholar PubMed

Diaz, T., Batista-Viera, F., and Correo, C.De. (1995). Reversible immobilisation of chemically modified materials. Biotechnol. Tech. 9: 533–538, https://doi.org/10.1007/bf00159572.Search in Google Scholar

Edama, N.A., Sulaiman, A., Noraida, S., and Rahim, A. (2014). Enzymatic saccharification of tapioca processing wastes into biosugars through immobilization technology. Biofuel Res. J. 1: 2–6, https://doi.org/10.18331/brj2015.1.1.3.Search in Google Scholar

Egwim, E.C. and Oloyode, O.B. (2008). Immobilisation of α-amylase from Acha (Digiteria exilis) on different cellulose fibre materials. Asian J. Biochem. 3: 169–175.10.3923/ajb.2008.169.175Search in Google Scholar

Engasser, J.B., Caumon, J., and Marc, A. (1980). Hollow fiber enzyme reactors for maltose and starch hydrolysis. Chem. Eng. Sci. 35: 99–105, https://doi.org/10.1016/0009-2509(80)80075-3.Search in Google Scholar

Eş, I., Vieira, J.D.G., and Amaral, A.C. (2015). Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol. 99: 2065–2082, https://doi.org/10.1007/s00253-015-6390-y.Search in Google Scholar PubMed

Evans, C.E. and Oloyede, O.B. (2011). Assessment of gum Arabic and agar gum as binders for the immobilization of α-amylase. J. Biochem. Technol. 3: 222–224.Search in Google Scholar

Fang, S., Chang, J., Hwang, Y.L.E., Bok, J., and Choi, Y. (2016). Immobilization of α-amylase from Exiguobacterium sp. DAU5 on chitosan and chitosan-carbon bead: its properties. J. Appl. Biol. Chem. 59: 75–81, https://doi.org/10.3839/jabc.2016.014.Search in Google Scholar

Far, B.E., Ahmadi, Y., Khosroushahi, A.Y., and Dilmaghani, A. (2020). Microbial alpha-amylase production: progress, challenges and perspectives. Adv. Pharmaceut. Bull. 10: 350–358, https://doi.org/10.34172/apb.2020.043.Search in Google Scholar PubMed PubMed Central

Farooq, M.A., Ali, S., Hassan, A., Tahir, H.M., Mumtaz, S., and Mumtaz, S. (2021). Biosynthesis and industrial applications of α-amylase: a review. Arch. Microbiol. 203: 1281–1292, https://doi.org/10.1007/s00203-020-02128-y.Search in Google Scholar PubMed

Femi-Ola, T.O., Oshokoya, A.H., and Bamidele, O.S. (2013). Kinetic properties of beta-amylase from Bacillus subtilis. IOSR J. Environ. Sci. Toxicol. Food Technol. 2: 19–23, https://doi.org/10.9790/2402-0241923.Search in Google Scholar

Femi-Ola, T.O. and Olowe, B.M. (2011). Characterization of alpha amylase from Bacillus subtilis BS5 Isolated from amitermes evuncifer silvestri. Res. J. Microbiol. 6: 140–146, https://doi.org/10.3923/jm.2011.140.146.Search in Google Scholar

Franssen, M.C.R., Steunenberg, P., Scott, E.L., Zuilhofa, H., and Sanders, J.P.M. (2013). Immobilised enzymes in biorenewables production. Chem. Soc. Rev. 42: 6491–6533, https://doi.org/10.1039/c3cs00004d.Search in Google Scholar

Fujita, N., Kubo, A., Francisco, P.B.Jr., Nakakita, M., Harada, K., Minaka, N., and Nakamura, Y. (1999). Purification, characterization, and cDNA structure of isoamylase from developingendosperm of rice. Planta 208: 283–293, https://doi.org/10.1007/s004250050560.Search in Google Scholar

Gan, Z., Zhang, T., Liu, Y., and Wu, D. (2012). Temperature-triggered enzyme immobilization and release based on cross-linked gelatin nanoparticles. PLoS One 7: 47–54, https://doi.org/10.1371/journal.pone.0047154.Search in Google Scholar

Gangadharan, D., Nampoothiri, K.M., Sivaramakrishnan, S., and Pandey, A. (2009). Immobilized bacterial a-amylase for effective hydrolysis of raw and soluble starch. Food Res. Int. 42: 436–442.10.1016/j.foodres.2009.02.008Search in Google Scholar

Gaouar, O., Aymard, C., Zakhia, N., and Rios, G.M. (1997). Enzymatic hydrolysis of Cassava starch into maltose syrup in a continuous membrane reactor. J. Chem. Technol. Biotechnol. 69: 367–375, https://doi.org/10.1002/(sici)1097-4660(199707)69:3<367::aid-jctb721>3.0.co;2-p.10.1002/(SICI)1097-4660(199707)69:3<367::AID-JCTB721>3.0.CO;2-PSearch in Google Scholar

Gaoxiang, L.I., Jiayu, H., Xiufen, K., and Shizheng, Z. (1982). Glucoamylase covalently coupled to porous glass. Appl. Biochem. Biotechnol. 341: 325–341, https://doi.org/10.1007/bf02798318.Search in Google Scholar

Gashtasbi, F., Ahmadian, G., and Noghabi, K., A. (2014). New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization. Enzym. Microb. Technol. 64–65: 17–23, https://doi.org/10.1016/j.enzmictec.2014.05.006.Search in Google Scholar

George, R. and Sugunan, S. (2014). Kinetic and thermodynamic parameters of immobilized glucoamylase on different mesoporous silica for starch hydrolysis: a comparative study. J. Mol. Catal. B Enzym. 106: 81–89, https://doi.org/10.1016/j.molcatb.2014.04.016.Search in Google Scholar

George, R., Gopinath, S., and Sugunan, S. (2013). Improved stabilities of immobilized glucoamylase on functionalized mesoporous silica synthesized using decane as swelling agent. Bull. Chem. React. Eng. Catal. 8: 70–76.10.9767/bcrec.8.1.4208.70-76Search in Google Scholar

Ghollasi, M. (2018). Electrospun polyethersulfone nanofibers: a novel matrix for alpha-amylase immobilization. J. Appl. Biotechnol. Rep. 5: 19–25, https://doi.org/10.29252/jabr.01.01.04.Search in Google Scholar

Gopal, B.A., Muralikrishna, G., Femi-Ola, T.O., Oshokoya, A.H., and Bamidele, O.S. (2009–2013). Porcine Pancreatic α-Amylase and its Isoforms: purification and Kinetic Studies.Int. J. Food Prop. 12: 571–586, https://doi.org/10.9790/2402-0241923.Search in Google Scholar

Goradia, D., Cooney, J., Hodnett, B.K., and Magner, E. (2005). The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates. J. Mol. Catal. B Enzym. 32: 231–239, https://doi.org/10.1016/j.molcatb.2004.12.007.Search in Google Scholar

Guajardoa, N., Schrebler, R.A., and de Maríac, P.D. (2019). From batch to fed-batch and to continuous packed-bed reactors: lipase catalyzed esterifications in low viscous deep-eutectic-solvents with buffer as cosolvent. Bioresour. Technol. 273: 320–325, https://doi.org/10.1016/j.biortech.2018.11.026.Search in Google Scholar PubMed

Guo, C., Yunhui, M., Pengfei, S., and Baishan, F. (2012). Direct binding glucoamylase onto carboxyl-functioned magnetic nanoparticles. Biochem. Eng. J. 67: 120–125, https://doi.org/10.1016/j.bej.2012.06.002.Search in Google Scholar

Guo, H., Tang, Y., Yu, Y., Xue, L., and Qian, J.Q. (2016). Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch. Int. J. Biol. Macromol. 87: 537–544, https://doi.org/10.1016/j.ijbiomac.2016.02.080.Search in Google Scholar PubMed

Gupta, K., Jana, A.K., Kumar, S., and Maiti, M. (2013). Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Bioproc. Biosyst. Eng. 36: 1–11, https://doi.org/10.1007/s00449-013-0946-y,Search in Google Scholar PubMed

Hayashida, S. and Flor, P.Q. (1982). Raw starch-digestive chitin-immobilized amylase from a protease-glycosidase-less mutant of Aspergillus awamori var. kawachi. Agric. Biol. Chem. 46: 1639–1645.10.1271/bbb1961.46.1639Search in Google Scholar

He, L., Mao, Y., Zhang, L., Wang, H., Alias, S.A., Gao, B., and Wei, D. (2017). Functional expression of a novel α -amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnol. 17: 1–13, https://doi.org/10.1186/s12896-017-0343-8.Search in Google Scholar PubMed PubMed Central

Herizi, A., Souilah, R., Djabali, D., and Nadjemi, B. (2020). Optimization and immobilization of alpha amylase from Bacillus subtilis in calcium alginate and calcium alginate–cellulosic residue beads. Microbiol. Res. 11: 1–4.10.4081/mr.2020.8458Search in Google Scholar

Hermida, L., Agustian, J., Abdullah, A.Z., and Mohamed, A.R. (2019). Review of large-pore mesostructured cellular foam (MCF) silica and its applications. Open Chem 17: 1000–1016, https://doi.org/10.1515/chem-2019-0107.Search in Google Scholar

Hisamatsu, K., Shiomi, T., Matsuura, S., Nara, T.Y., Tsunoda, T., and Mizukami, F. (2012). α-Amylase immobilization capacities of mesoporous silicas with different morphologies and surface properties. J. Porous Mater. 19: 95–102, https://doi.org/10.1007/s10934-011-9452-2.Search in Google Scholar

Homaei, A.A., Sariri, R., Vianello, F., and Stevanato, R. (2013). Enzyme immobilization: an update. J. Chem. Biol. 6: 185–205, https://doi.org/10.1007/s12154-013-0102-9.Search in Google Scholar PubMed PubMed Central

Homaei, A. and Saberi, D. (2015). Immobilization of α-amylase on gold nanorods: an ideal system for starch processing. Process Biochem. 50: 1394–1399, https://doi.org/10.1016/j.procbio.2015.06.002.Search in Google Scholar

Huang, X.J., Xu, Z.K., Wan, L.S., Innocent, C., and Seta, P. (2006). Electrospun nanofibers modified with phospholipid moieties for enzyme immobilization. Macromol. Rapid Commun. 27: 1341–1345, https://doi.org/10.1002/marc.200600266.Search in Google Scholar

Husain, Q. (2017). Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: a review. Biocatalysis 3: 37–53, https://doi.org/10.1515/boca-2017-0004.Search in Google Scholar

Hussain, H., Mant, A., Seale, R., Zeeman, S., Hinchliffe, E., Edwards, A., Hylton, C., Bornemann, S., Smith, A.M., Martin, C., et al. (2003). Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell 15: 133–149, https://doi.org/10.1105/tpc.006635.Search in Google Scholar PubMed PubMed Central

Jadhav, S.B. and Singhal, R.S. (2014). Pullulan-complexed α-amylase and glucosidase in alginate beads: enhanced entrapment and stability. Carbohydr. Polym. 105: 49–56, https://doi.org/10.1016/j.carbpol.2014.01.066.Search in Google Scholar PubMed

Jalal, R., Milani, Z.M., and Goharshadi, E.K. (2011). Immobilization of α-amylase onto magnetic nanoparticles by shaking method. 1st Nation. Iranian New Chem. Cong 1: 874–880.Search in Google Scholar

Jesionowski, T., Zdarta, J., and Krajewska, B. (2014). Enzyme immobilization by adsorption: a review. Adsorption 20: 801–821, https://doi.org/10.1007/s10450-014-9623-y.Search in Google Scholar

Ju, Y.H., Chen, W.J., and Lee, C.K. (1995). Starch slurry hydrolysis using α-amylase immobilized on a hollow fiber reactor. Enzym. Microb. Technol. 17: 681–688, https://doi.org/10.1016/0141-0229(94)00034-o.Search in Google Scholar

Kahar, U.M., Sani, M.H., Chan, K., and Goh, K.M. (2016). Immobilization of α-amylase from anoxybacillus sp. SK3-4 on ReliZyme and immobead supports. Molecules 13: 1–17, https://doi.org/10.3390/molecules21091196.Search in Google Scholar PubMed PubMed Central

Kalburcu, T., Tuzmen, M.N., Akgo, S., and Denizli, A. (2014). Immobilized metal ion affinity nanospheres for α -amylase immobilization. Turk. J. Chem. 38: 28–40, https://doi.org/10.3906/kim-1301-87.Search in Google Scholar

Kanlayakrit, W., Nakahara, K., Teramoto, Y., and Hayashida, S. (1989). Raw-Starch-Digesting glucoamylase from amylomyces sp. 4-2 isolated from Loogpang Kaomag in Thailand. J. Fat. Agr. Kyushu Univ. 33: 177–187, https://doi.org/10.5109/23927.Search in Google Scholar

Katsuya, Y., Mezaki, Y., Kubota, M., and Matsuura, Y. (1998). Three-dimensional structure of Pseudomonas isoamylase at 2.2 AÊ resolution. J. Mol. Biol. 281: 885–897, https://doi.org/10.1006/jmbi.1998.1992.Search in Google Scholar PubMed

Katwa, L.C. and Rao, M.R.R. (1983). Immobilisation of alpha-amylase, glucoamylase and glucose isomerase on CNBr activated sepharose-6MB. Biotechnol. Lett. 5: 191–196, https://doi.org/10.1007/bf00131901.Search in Google Scholar

Kennedy, J.F., Kalogerakis, B., and Cabral, J.M.S. (1984). Immobilization of enzymes on crosslinked gelatin particles activated with various forms and complexes of titanium(IV) species. Enzym. Microb. Technol. 6: 68–72, https://doi.org/10.1016/0141-0229(84)90037-1.Search in Google Scholar

Khan, M.J., Husain, Q., and Ansari, S.A. (2013). Polyaniline-assisted silver nanoparticles: a novel support for the immobilization of α-amylase. Appl. Microbiol. Biotechnol. 97: 1513–1522, https://doi.org/10.1007/s00253-012-4384-6.Search in Google Scholar PubMed

Khan, M.J., Husain, Q., and Azam, A. (2012). Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: applications to the hydrolysis of starch. Biotechnol. Bioproc. Eng. 384: 377–384, https://doi.org/10.1007/s12257-011-0105-8.Search in Google Scholar

Kharkrang, K. and Ambasht, P.K. (2013). Immobilisation of α-amylase from Pennisetum typhoides inside gelatin beads and its characterization. J. Protein Proteonomics 4: 183–189.Search in Google Scholar

Klapiszewski, Ł., Zdarta, J., and Jesionowski, T. (2018). Titania/lignin hybrid materials as a novel support for α-amylase immobilization: a comprehensive study. Colloids Surf. B Biointerfaces 162: 90–97, https://doi.org/10.1016/j.colsurfb.2017.11.045.Search in Google Scholar PubMed

Kote, N., Manjula, A.C., Vishwanatha, T., and Keshamma, E. (2020). Biochemical characterisation of free and immobilized α-amylase from Aspergillus niger and its biotechnological applications. IJPSR 11: 1719–1726.Search in Google Scholar

Koch, R., Canganella, F., Hippe, H., Janhke, K.D., and Antranikian, G. (1997). Purification and properties of a thermostable pullulanase from a newly isolated thermophilic anaerobic bacterium, fervidobacterium pennavorans Ven5. Appl. Environ. Microbiol. 63: 1088–1094, https://doi.org/10.1128/aem.63.3.1088-1094.1997.Search in Google Scholar PubMed PubMed Central

Kotwal, S.M. and Shankar, V. (2009). Immobilized invertase. Biotechnol. Adv. 27: 311–322, https://doi.org/10.1016/j.biotechadv.2009.01.009.Search in Google Scholar PubMed

Krakowiak, W., Jach, M., Korona, J.J., and Sugier, H. (1984). Immobilization of glucoamylase on activated aluminiumoxide. Starch Staerke 36: 396–398, https://doi.org/10.1002/star.19840361107.Search in Google Scholar

Krishna, G.A., Geetha, G., Savitha, D.P., and Mohanan, P.V. (2021). Insoluble biopolymer based metal oxide nanocomposites as matrix for enzyme immobilization. Int. J. Res. Chem. Environ. 11: 1–11.Search in Google Scholar

Kumar, P. and Satyanarayana, T. (2009). Microbial glucoamylases: characteristics and applications. Crit. Rev. Biotechnol. 29: 225–255, https://doi.org/10.1080/07388550903136076.Search in Google Scholar PubMed

Kumar, S. and Khare, S.K. (2015). Chloride activated halophilic α-amylase from Marinobacter sp. EMB8: production, optimization, and nanoimmobilization for efficient starch hydrolysis. Enzym. Res. 859485: 1–9, https://doi.org/10.1155/2015/859485.Search in Google Scholar PubMed PubMed Central

Kvesitadze, G.I. and Dvali, M.S. (1982). Immobilization of mold and bacterial amylases on silica carriers. Biotechnol. Bioeng. 24: 1765–1772, https://doi.org/10.1002/bit.260240804.Search in Google Scholar PubMed

Lee, D.D. (1978). Pilot plant production of glucose with glucoamylase immobilized to porous silica. Retrospective theses and dissertations. Paper 6567. Iowa State University, Iowa, USA.Search in Google Scholar

Lee, D.D., Lee, G.K., Reilly, P.J., and Lee, Y.Y. (1980). Effect of pore diffusion limitation on dextrin hydrolysis by immobilized glucoamylase. Biotechnol. Bioeng. XXII: 1–17, https://doi.org/10.1002/bit.260220102.Search in Google Scholar PubMed

Lee, S.Y., Lee, J., Chang, J.H., and Lee, J.H. (2011). Nanomaterial, silica nanoparticle inorganic nanomaterial-based biocatalysts. BMB Rep. 44: 77–86, https://doi.org/10.5483/bmbrep.2011.44.2.77.Search in Google Scholar PubMed

Li, D.C., Yang, Y.J., Peng, Y.L., and She, C.Y. (1998). Purification and characterization of extracellular glucoamylase from the thermophilic Thermomyces lanuginosus. Mycol. Res. 102: 568–572, https://doi.org/10.1017/s0953756297005200.Search in Google Scholar

Li, Y., Niu, D., Zhang, L., Wang, Z., and Shi, G. (2013). Purification, characterization and cloning of a thermotolerant isoamylase produced from Bacillus sp. CICIM 304. J. Ind. Microbiol. Biotechnol. 40: 437–446, https://doi.org/10.1007/s10295-013-1249-7.Search in Google Scholar PubMed

Liang, H., Jiang, S., Yuan, Q., Li, G., Wang, F., Zhang, Z., and Liu, J. (2016). Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection. Nanoscale 8: 1–8, https://doi.org/10.1039/c5nr08734a.Search in Google Scholar PubMed

Linko, Y., Saarinen, P., and Linko, M. (1975). Starch conversion by soluble and immobilized α-amylase. Biotechnol. Bioeng. XVII: 153–165, https://doi.org/10.1002/bit.260170203.Search in Google Scholar

Long, J., Jiao, A., Wei, B., Wu, Z., Zhang, Y., Xu, X., and Jin, Z. (2014). A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. J. Mol. Catal. B Enzym. 109: 53–61, https://doi.org/10.1016/j.molcatb.2014.08.007.Search in Google Scholar

Long, J., Li, X., Wu, Z., Xu, E., Xu, X., Jin, Z., and Jiao, A. (2015a). Immobilization of pullulanase onto activated magnetic chitosan/Fe3O4 nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability. Coll. Surf. A Physicochem. Eng. Asp. 472: 69–77, https://doi.org/10.1016/j.colsurfa.2015.02.038.Search in Google Scholar

Long, J., Wu, Z., Li, X., Xu, E., Xu, X., Jin, Z., and Jiao, A. (2015b). New method for the immobilization of pullulanase onto hybrid magnetic (Fe3O4−κ-carrageenan) nanoparticles by electrostatic coupling with pullulanase/chitosan complex. J. Agric. Food Chem. 63: 3534–3542, https://doi.org/10.1021/jf505981t.Search in Google Scholar PubMed

Long, J., Xu, E., Li, X., Wu, Z., Wang, F., Xu, X., Jin, Z., Jiao, A., and Zhan, X. (2016). Effect of chitosan molecular weight on the formation of chitosan-pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4–κ-carrageenan nanoparticles. Food Chem. 202: 49–58.10.1016/j.foodchem.2016.01.119Search in Google Scholar PubMed

Lopez-Ulibarri, R. and Hall, G.M. (1997). Saccharification of cassava flour starch in a hollow-fiber membrane reactor. Enzym. Microb. Technol. 21: 398–404, https://doi.org/10.1016/s0141-0229(97)82260-0.Search in Google Scholar

Lu, A.H., Salabas, E.L., and Schuth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 46: 1222–1244, https://doi.org/10.1002/anie.200602866.Search in Google Scholar PubMed

Lubiewski, Z., Thanh, J.L., and Lewandowicz, G. (2010). Increasing the efficiency of the enzymatic hydrolysis of potato starch in a membrane reactor. Biotechnol. Bioproc. Eng. 15: 917–922, https://doi.org/10.1007/s12257-009-0094-z.Search in Google Scholar

Marsh, D.R. (1973). Kinetics of glucoamylase immobilized on porous glass. Retrospective theses and dissertations. Paper 5100. Iowa State University, Iowa, USA.Search in Google Scholar

Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., and Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 40: 1451–1463, https://doi.org/10.1016/j.enzmictec.2007.01.018.Search in Google Scholar

McGhee, J.E., Carr, M.E., and Julian, G.S.T. (1984). Continuous bioconversion of starch to ethanol by calcium-alginate immobilised enzymes and yeast. Cereal Chem. 61: 446–449.Search in Google Scholar

Mishra, A., Ahmad, R., Singh, V., Gupta, M.N., and Sardar, M. (2013). Preparation, characterization and biocatalytic activity of a nanoconjugate of alpha amylase and silver nanoparticles. J. Nanosci. Nanotechnol. 13: 5028–5033, https://doi.org/10.1166/jnn.2013.7593.Search in Google Scholar PubMed

Mishra, R. and Maheswari, R. (1996). Amylases of the thermophilic fungus Thermomyces lanuginosus: their purification, properties, action on starch and response to heat. J. Biosci. 21: 653–672, https://doi.org/10.1007/bf02703143.Search in Google Scholar

Misson, M., Zhang, H., and Jin, B. (2015). Nanobiocatalyst advancements and bioprocessing applications. J. R. Soc. Interface 12: 20140891, https://doi.org/10.1098/rsif.2014.0891.Search in Google Scholar PubMed PubMed Central

Miura, S., Kubota, N., Kawakita, H., and Saito, K. (2002). High-throughput hydrolysis of starch during permeation across a -amylase-immobilized porous hollow-fiber membranes. Radiat. Phys. Chem. 63: 143–149, https://doi.org/10.1016/s0969-806x(01)00222-5.Search in Google Scholar

Moubasher, H., Wahsh, S.S., and El-Kassem, N.A. (2013). Isolation of aureobasidium pullulans and the effect of different conditions for pullulanase and pullulan production. Microbiol. 82: 155–161, https://doi.org/10.1134/s0026261713020197.Search in Google Scholar

Morais, R.R., Aline, M.P., Caramori, S.S., Lopes, F.M., and Fernandes, K.F. (2013). Immobilization of α-amylase onto Luffa operculata fibers. Enzyme Res. 803415: 1–6.10.1155/2013/803415Search in Google Scholar PubMed PubMed Central

Mukherjee, A.K., Kumar, T.S., Rai, S.K., and Roy, J.K. (2010). Statistical optimization of α-amylase immobilization on iron-oxide magnetic nanoparticles. Biotechnol. Bioprocess. Eng. 992: 984–992, https://doi.org/10.1007/s12257-009-3160-7.Search in Google Scholar

Namdeo, M. and Bajpai, S.K. (2009). Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J. Mol. Catal. B Enzym. 59: 134–139, https://doi.org/10.1016/j.molcatb.2009.02.005.Search in Google Scholar

Nazarova, E.A., Yushkova, E.D., Ivanets, A.I., Prozorovich, V.G., Krivoshapkin, P.V., and Krivoshapkina, E.F. (2022). α-Amylase immobilization on ceramic membranes for starch hydrolysis. Starch Staerke 74: 210–217, https://doi.org/10.1002/star.202100017.Search in Google Scholar

Oktay, B., Demir, S., and Kayaman-Apohan, N. (2015). Immobilization of α-amylase onto poly(glycidyl methacrylate) grafted electrospun fibers by ATRP. Mater. Sci. Eng. C 50: 386–393, https://doi.org/10.1016/j.msec.2015.02.033.Search in Google Scholar PubMed

Oyefuga, O.H., Adeyanju, M.M., Adebawo, O.O., and Agboola, F.K. (2011). Purification and some properties of b-amylase from the nodes of sugar cane. Saccharium offinacium. Inter. J. Plant Physiol. Biochem. 3: 117–124.Search in Google Scholar

Pandey, G., Munguambe, D.M., Tharmavaram, M., Rawtani, D., and Agrawal, Y.K. (2017). Halloysite nanotubes - an efficient nano-support for the immobilization of α-amylase. Appl. Clay Sci. 136: 184–191, https://doi.org/10.1016/j.clay.2016.11.034.Search in Google Scholar

Pandya, P.H., Jasra, R.V., Newalkar, B.L., and Bhatt, P.N. (2005). Studies on the activity and stability of immobilized α-amylase in ordered mesoporous silicas. Micropor. Mesopor. Mat. 77: 67–77, https://doi.org/10.1016/j.micromeso.2004.08.018.Search in Google Scholar

Panek, A., Pietrow, O., and Synowiecki, J. (2012). Characterization of glucoamylase immobilized on magnetic nanoparticles. Starch Staerke 64: 1003–1008.10.1002/star.201200084Search in Google Scholar

Paolucci-Jeanjean, D., Belleville, M.P., Rios, G.M., and Zakhia, N. (2000). Kinetics of continuous starch hydrolysis in a membrane reactor. Biochem. Eng. J. 6: 233–238, https://doi.org/10.1016/s1369-703x(00)00092-9.Search in Google Scholar PubMed

Porto, M.D.A., dos Santos, J.P., Hackbart, H., Bruni, G.P., Fonseca, L.M., Zavareze, E.D.R., and Dias, A.R.G. (2019). Immobilization of α-amylase in ultrafine polyvinyl alcohol (PVA) fibers via electrospinning and their stability on different substrates. Int. J. Biol. Macromol. 126: 834–841, https://doi.org/10.1016/j.ijbiomac.2018.12.263.Search in Google Scholar PubMed

Prakash, O. and Khare, S. (2019). Immobilization of α-amylases and their analytical applications. In: Husain, Q. and Ullah, M.F. (Eds.), Biocatalysis: enzymatic basics and applications. Springer Nature Switzerland AG, Cham, pp. 113–138.10.1007/978-3-030-25023-2_6Search in Google Scholar

Qiu, G.M., Zhu, B.K., and Xu, Y.Y. (2005). α-Amylase immobilized by Fe3O4/Poly(styrene-co-maleic anhydride) magnetic composite microspheres: preparation and characterization. J. Appl. Polym. Sci. 95: 328–335, https://doi.org/10.1002/app.21239.Search in Google Scholar

Raghu, H.S. and Rajeshwara, N.A. (2015). Immobilization of α-amylase (1, 4-α-D-glucanglucanohydralase) by calcium alginate encapsulation. Inter. Food Res. J. 22: 869–871.Search in Google Scholar

Rahim, S.N.A., Sulaiman, A., and Edama, N.A. (2014). Kinetics of tapioca slurry saccharification process using immobilized multi-enzyme system enhanced with Sg. Sayong clay. J. Mech. Eng. 11: 67–77.Search in Google Scholar

Rahim, S.N.A., Sulaiman, A., Hamid, K.H.K., Edama, N.A., and Baharuddin, A.S. (2015). Effect of agitation speed for enzymatic hydrolysis of tapioca slurry using encapsulated enzymes in an enzyme bioreactor. Inter. J. Chem. Eng. Appl. 6: 38–41, https://doi.org/10.7763/ijcea.2015.v6.447.Search in Google Scholar

Rasouli, N., Sohrabi, N., and Zamani, M. (2016). Influence of a novel magnetic recoverable support on kinetic, stability and activity of beta-amylase enzyme. Phys. Chem. Res. 4: 271–283.Search in Google Scholar

Razieh, J., Zeinab, M.M., and Elaheh, G. (2011). Effect of temperature on the activity of α-amylase immobilized onto magnetic nanoparticles. Clin. Biochem. 44: 1, https://doi.org/10.1016/j.clinbiochem.2011.08.174.Search in Google Scholar

Reis, C.L.B., de Sousa, E.Y.A., Serpa, J.D.F., Oliveira, R.C., and dos Santos, J.C.S. (2019). Design of immobilised enzyme biocatalysts: drawbacks and opportunities. Quim. Nova 42: 768–783.10.21577/0100-4042.20170381Search in Google Scholar

Riaz, A., Ansari, B., Siddiqui, A., Ahmed, S., Naheed, S., and Qader, S.A.U. (2015). Immobilization of α-amylase in operationally stable calcium-alginate beads: a cost effective technique for enzyme aided industrial processes. Inter. J. Biotechnol. Res. 3: 81–86.Search in Google Scholar

Rodriguez-Colinas, B., Fernandez-Arrojo, L., Santos-Moriano, P., Ballesteros, A.O., and Plou, F.J. (2016). Continuous packed bed reactor with immobilized β-galactosidase for production of galacto oligosaccharides (GOS). Catalysts 6: 189–191, https://doi.org/10.3390/catal6120189.Search in Google Scholar

Romaskevic, T., Viskantienea, E., Budriene, S., Ramanaviciene, A., and Dienys, G. (2010). Immobilization of maltogenase onto polyurethane microparticles from poly(vinyl alcohol) and hexamethylene diisocyanate. J. Mol. Catal. B Enzym. 64: 172–176, https://doi.org/10.1016/j.molcatb.2009.09.013.Search in Google Scholar

Roy, I. and Gupta, M.N. (2004). Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzym. Microb. Technol. 34: 26–32, https://doi.org/10.1016/j.enzmictec.2003.07.001.Search in Google Scholar

Roy, J.K., Rai, S.K., and Mukherjee, A.K. (2012). Characterization and application of a detergent-stable alkaline α-amylase from Bacillus subtilis strain AS-S01a. Int. J. Biol. Macromol. 50: 219–229, https://doi.org/10.1016/j.ijbiomac.2011.10.026.Search in Google Scholar PubMed

Salem, K., Jabalera, Y., Puentes-Pardo, J.D., Vilchez-Garcia, J., Sayari, A., Hmida-Sayari, A., Jimenez-Lopez, C., and Perduca, M. (2021). Enzyme storage and recycling: nanoassemblies of α-amylase and xylanase immobilized on biomimetic magnetic nanoparticles. ACS Sustain. Chem. Eng. 9: 4054–4063, https://doi.org/10.1021/acssuschemeng.0c08300.Search in Google Scholar PubMed PubMed Central

Sankalia, M.G., Mashru, R.C., Sankalia, R.C., and Sutariya, J.M. (2006). Stability improvement of alpha-amylase trapped in kappa-carrageenan beads: physicochemical characterization and optimization using composite index. Inter. J. Pharm. 312: 1–14, https://doi.org/10.1016/j.ijpharm.2005.11.048.Search in Google Scholar PubMed

Santos, J.C.S.D., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R.C., and Fernandez-Lafuente, R. (2015). Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 7: 2413–2432, https://doi.org/10.1002/cctc.201500310.Search in Google Scholar

Sarma, R., Dolui, A.K., and Kumar, A. (2014). Thermodynamic and kinetic studies of α-amylase catalyzed reaction in free and carrageenan/chitosan immobilized state. Asian J. Chem. 26: 725–728, https://doi.org/10.14233/ajchem.2014.15492.Search in Google Scholar

Savitha, D.P., Bindu, V.U., Geetha, G., and Mohanan, P.V. (2019). Improvement in the properties of α-amylase enzyme by immobilization using metal oxide nanocomposites as carriers. Adv. Nanomed. Nanotechnol. Res. 2: 77–88.Search in Google Scholar

Say, R., Hilal, R.Ş., Biçen, Ö., Ersöz, A., Filiz, Ş., Akgöl, S., and Denizli, A. (2013). Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch. Mater. Sci. Eng. C 33: 1900–1906, https://doi.org/10.1016/j.msec.2012.12.053.Search in Google Scholar PubMed

Saylan, Y., Uzun, L., and Denizli, A. (2014). Alanine functionalized magnetic nanoparticles for reversible amyloglucosidase immobilization. Ind. Eng. Chem. Res. 54: 454–461, https://doi.org/10.1021/ie503621w.Search in Google Scholar

Schmidt-Winkel, P., Lukens, W.W., Yang, P., Margolese, D.L., Lettow, J.S., Ying, J.Y., and Stucky, G.D. (2000). Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. Chem. Mat. 12: 686–696, https://doi.org/10.1021/cm991097v.Search in Google Scholar

Schmidt-Winkel, P., Lukens, W.W., Zhao, D., Yang, P., Chmelka, B.F., and Stucky, G.D. (1999). Mesocellular siliceous foams with uniformly sized cells and windows. Am. Chem. Soc. 21: 254–255, https://doi.org/10.1021/ja983218i.Search in Google Scholar

Seenuvasan, M., Vinodhini, G., Malar, C.G., Balaji, N., and Kumar, K.S. (2018). Magnetic nanoparticles: a versatile carrier for enzymes in bio-processing sectors. IET Nanobiotech 12: 535–548, https://doi.org/10.1049/iet-nbt.2017.0041.Search in Google Scholar PubMed PubMed Central

Shakerian, F., Zhao, J., and Li, S.P. (2021). Evaluation of amylase immobilization on nanoclay by size exclusion chromatography and its application for starch removal from plant extracts of herbal medicines. Process Biochem. 101: 36–41, https://doi.org/10.1016/j.procbio.2020.11.003.Search in Google Scholar

Sharma, M., Sharma, V., and Majumdar, D.K. (2014). Entrapment of α-amylase in agar beads for biocatalysis of macromolecular substrate. ISRN 936129: 1–8, https://doi.org/10.1155/2014/936129.Search in Google Scholar PubMed PubMed Central

Shafiei, M., Ziaee, A.A., and Amoozegar, M.A. (2010). Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem. 45: 694–699, https://doi.org/10.1016/j.procbio.2010.01.003.Search in Google Scholar

Shehata, A.N., Darwish, D.A., and Masoud, H.M.M. (2016). Extraction, purification and characterization of endo-acting pullulanase type I from white edible mushrooms. J. Appl. Pharmaceut. Sci. 6: 147–152, https://doi.org/10.7324/japs.2016.600123.Search in Google Scholar

Shigesada, S., Kitagawa, H., Mihara, T., and Ishimatsu, Y. (1983). Immobilization of enzymes on granular gelatin. US Patent 4,411,999.Search in Google Scholar

Silva-Salinas, A., Rodríguez-Delgado, M., Gómez-Treviño, J., López-Chuken, U., Olvera-Carranza, C., and Blanco-Gámez, E.A. (2021). Novel thermotolerant amylase from Bacillus licheniformis strain LB04: purification, characterization and agar-agarose. Microorganisms 9: 1857–1864, https://doi.org/10.3390/microorganisms9091857.Search in Google Scholar PubMed PubMed Central

Sims, K.A. and Cheryan, M. (1992). Continuous saccharification of corn starch in a membrane reactor. Part I: conversion, capacity and productivity. Starch Staerke 44: 341–346, https://doi.org/10.1002/star.19920440907.Search in Google Scholar

Singh, V. and Ahmad, S. (2012). Synthesis and characterization of carboxymethyl cellulose-silver nanoparticle (AgNp)-silica hybrid for amylase immobilization. Cellulose 19: 1759–1769, https://doi.org/10.1007/s10570-012-9749-6.Search in Google Scholar

Singh, V. and Ahmad, S. (2014). Carboxymethyl cellulose-gelatin-silica nanohybrid: an efficient carrier matrix for alpha amylase. Int. J. Biol. Macromol. 67: 439–445, https://doi.org/10.1016/j.ijbiomac.2014.03.051.Search in Google Scholar PubMed

Singh, V. and Ahmed, S. (2012). Silver nanoparticle (AgNPs) doped gum acacia–gelatin–silica nanohybrid: An effective support for diastase immobilization. Int. J. Biol. Macromol. 50: 353–361, https://doi.org/10.1016/j.ijbiomac.2011.12.017.Search in Google Scholar PubMed

Singh, V. and Kumar, P. (2011). Carboxymethyl tamarind gum–silica nanohybrids for effective immobilization of amylase. J. Mol. Catal. B Enzym. 70: 67–73, https://doi.org/10.1016/j.molcatb.2011.02.006.Search in Google Scholar

Singh, V. and Singh, D. (2013). Polyvinyl alcohol–silica nanohybrids: an efficient carrier matrix for amylase immobilization. Process Biochem. 48: 96–102, https://doi.org/10.1016/j.procbio.2012.10.017.Search in Google Scholar

Singh, V. and Singh, D. (2014). Diastase α-amylase immobilisation on sol-gel derived guar gum-gelatin-silica nanohybrid. Adv. Mat. Lett. 5: 17–23, https://doi.org/10.5185/amlett.2013.7513.Search in Google Scholar

Singh, R.S., Saini, G.K., and Kennedy, J.F. (2011). Continuous hydrolysis of pullulan using covalently immobilized pullulanase in a packed bed reactor. Carbohy. Polym. 83: 672–675, https://doi.org/10.1016/j.carbpol.2010.08.037.Search in Google Scholar

Singh, K., Srivastava, G., Talat, M., and Nath, O. (2015). α-Amylase immobilization onto functionalized graphene nanosheets as scaffolds: its characterization, kinetics and potential applications in starch-based industries. Biochem. Biophys. Reports 3: 18–25, https://doi.org/10.1016/j.bbrep.2015.07.002.Search in Google Scholar PubMed PubMed Central

Singh, V., Rakshit, K., Rathee, S., Angmo, S., Kaushal, S., and Garg, P. (2016). Metallic/bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for enhanced reusability in bio-catalytic processes. J. Biores. Technol. 214: 528–533, https://doi.org/10.1016/j.biortech.2016.05.002.Search in Google Scholar PubMed

Siso, M.I.G., Lang, E., Carreno-Gomez, B., Espinar, M.B.F.O., and Blanco, J. (1997). Enzyme encapsulation on chitosan microbeads. Process Biochem. 32: 211–216, https://doi.org/10.1016/s0032-9592(96)00064-7.Search in Google Scholar

Slivinski, C.T., Machado, A.V.L., Iulek, J., Ayub, R.A., and de Almeida, M.M. (2011). Biochemical characterisation of a glucoamylase from Aspergillus Niger produced by solid-state fermentation. Braz. Arch. Biol. Technol. An Inter. J. 54: 559–568, https://doi.org/10.1590/s1516-89132011000300018.Search in Google Scholar

Sohrabi, N., Rasouli, N., and Torkzadeh, M. (2014). Enhanced stability and catalytic activity of immobilized a -amylase on. Chem. Eng. J. 240: 426–433, https://doi.org/10.1016/j.cej.2013.11.059.Search in Google Scholar

Spencer-Martins, I. (1982). Extracellular isoamylase produced by the yeast Lipomyces kononenkoae. Appl. Environ. Microbiol. 44: 1253–1257, https://doi.org/10.1128/aem.44.6.1253-1257.1982.Search in Google Scholar PubMed PubMed Central

Srivastava, G., Roy, S., and Kayastha, A.M. (2015). Immobilisation of Fenugreek β-amylase on chitosan/PVP blend and chitosan coated PVC beads: a comparative study. Food Chem. 172: 844–851, https://doi.org/10.1016/j.foodchem.2014.09.145.Search in Google Scholar PubMed

Srivastava, G., Singh, K., Talat, M., Srivastava, O.N., and Kayastha, A.M. (2014). Functionalized graphene sheets as immobilization matrix for fenugreek β-amylase: enzyme kinetics and stability studies. PLoS One 9: 113408, https://doi.org/10.1371/journal.pone.0113408.Search in Google Scholar PubMed PubMed Central

Straksys, A., Kochane, T., and Budriene, S. (2016). Catalytic properties of maltogenic a-amylase from Bacillus stearothermophilus immobilized onto poly(urethane urea) microparticles. Food Chem. 211: 294–299, https://doi.org/10.1016/j.foodchem.2016.05.071.Search in Google Scholar PubMed

Strakšys, A., Kochanė, T., Mačiulytė, S., and Budrienė, S. (2021). Porous poly(urethane urea) microparticles for immobilization of maltogenic α amylase from Bacillus stearothermophilus. Chemija 32: 127–136, https://doi.org/10.6001/chemija.v32i3-4.4550.Search in Google Scholar

Sulej-Chojnacka, J., Konowal, E., and Prochaska, K. (2010). Continuous recycle membrane reactor for enzymatic hydrolysis of dual modified potato starch. Desal. Wat. Treat. 14: 89–93, https://doi.org/10.5004/dwt.2010.1529.Search in Google Scholar

Švec, F., Kálal, J., Menyailova, I.I., and Nakhapetyan, L.A. (1978). Immobilization of amyloglucosidase on poly [(glycidyl methacrylate) co(ethylene dimethacrylate)] carrier and its derivatives. Biotechnol. Bioeng. 20: 1319–1328, https://doi.org/10.1002/bit.260200902.Search in Google Scholar

Swanson, S.J., Lim, H.C., and Emery, A. (1978). Optimization of polysaccharide carriers for immobilized glucoamylase reactors. Ind. Eng. Chem. Proc. Des. Dev. 17: 401–405, https://doi.org/10.1021/i260068a004.Search in Google Scholar

Swarnalatha, V., Esther, R.A., and Dhamodharan, R. (2013). Immobilization of α-amylase on gum acacia stabilized magnetite nanoparticles, an easily recoverable and reusable support. J. Mol. Catal. B Enzym. 96: 6–13, https://doi.org/10.1016/j.molcatb.2013.05.022.Search in Google Scholar

Szymanska, K., Bryjak, J., Mrowiec-Białon, J., and Jarzebski, A.B. (2007). Application and properties of siliceous mesostructured cellular foams as enzymes carriers to obtain efficient biocatalysts. Micropor. Mesopor. Mater. 99: 167–175, https://doi.org/10.1016/j.micromeso.2006.08.035.Search in Google Scholar

Takashima, Y., Senoura, T., Yoshizaki, T., Hamada, S., Ito, H., and Matsui, H. (2007). Differential chain-Length specificities of two isoamylase-type starch-debranching enzymes from developing seeds of Kidney bean. Biosci. Biotechnol. Biochem. 71: 2308–2312, https://doi.org/10.1271/bbb.70215.Search in Google Scholar PubMed

Talebi, M., Vaezifar, S., Jafary, F., Fazilati, M., and Motamedi, S. (2016). Stability improvement of immobilized α -amylase using nano pore zeolite. Iran J. Biotechnol. 14: 33–38, https://doi.org/10.15171/ijb.1261.Search in Google Scholar PubMed PubMed Central

Talekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S., Mulla, M., and Ladole, M. (2012). Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresour. Technol. 123: 542–547, https://doi.org/10.1016/j.biortech.2012.07.044.Search in Google Scholar PubMed

Tavano, O.L., Fernandez-Lafuente, R., José, A., and Monti, R. (2013). Optimization of the immobilization of sweet potato amylase using glutaraldehyde-agarose support. Characterization of the immobilized enzyme. Process Biochem. 48: 1054–1058, https://doi.org/10.1016/j.procbio.2013.05.009.Search in Google Scholar

Temocin, Z. (2013). Immobilization of a-amylase on reactive modified fiber and its application for continuous starch hydrolysis in a packed bed bioreactor. Starch Staerke 65: 1–9.Search in Google Scholar

Torabizadeh, H. and Montazeri, E. (2020). Nano co-immobilization of α-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch. Carbohyd. Res. 488: 107904, https://doi.org/10.1016/j.carres.2019.107904.Search in Google Scholar PubMed

Tully, J., Yendluri, R., and Lvov, Y. (2015). Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules 17: 615–621, https://doi.org/10.1021/acs.biomac.5b01542.Search in Google Scholar PubMed

Turunc, O., Kahraman, M.V., Akdemir, Z.S., Kayaman-Apohan, N., and Güngör, A. (2009). Immobilization of α-amylase onto cyclic carbonate bearing hybrid material. Food Chem. 112: 992–997, https://doi.org/10.1016/j.foodchem.2008.07.024.Search in Google Scholar

Usha, B. and Hemalatha, K.P.J. (2013). Immobilization of little millet (Panicum sumatrense) α-amylase. Indian J. Sci. Res. 4: 1–6.Search in Google Scholar

Usman, M.A., Ekwueme, V.I., Alaje, T.O., Afolabi, M.T., and Bolakale, S.O. (2013). Immobilization of α-amylase on mesoporous silica KIT-6 and palm wood chips for starch hydrolysis. Chem. Process Eng. Res. 9: 7–14.Search in Google Scholar

Uygun, D.A., Ozturk, N., Akgo, S., and Denizli, A. (2012). Novel magnetic nanoparticles for the hydrolysis of starch with Bacillus licheniformis α-amylase. J. Appl. Polym. Sci. 123: 2574–2581, https://doi.org/10.1002/app.33879.Search in Google Scholar

Uzun, U. and Akatin, M.Y. (2019). Immobilization and some application of α-amylase purified from Rhizoctonia solani AG-4 strain ZB-34. Turk. J. Biochem. 44: 397–407, https://doi.org/10.1515/tjb-2018-0240.Search in Google Scholar

Vikso-Nielsen, A., Christensen, T.M.I.E., Bojko, M., and Marcussen, J. (1997). Purification and characterization of α-amyIase from leaves of potato (Solanum tuberosum). Physiol. Plantarum 99: 190–196, https://doi.org/10.1034/j.1399-3054.1997.990126.x.Search in Google Scholar

Vlad-Oros, B., Preda, G., Dudas, Z., Dragomirescu, M., and Chiriac, A. (2007). Entrapment of glucoamylase by sol-gel technique in PhTES/TEOS hybrid matrixes. Proc. Appl. Ceram. 1: 63–67, https://doi.org/10.2298/pac0702063v.Search in Google Scholar

Wang, Y. and Hsieh, Y.L. (2008). Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes. J. Membr. Sci. 309: 73–81, https://doi.org/10.1016/j.memsci.2007.10.008.Search in Google Scholar

Wang, Z.G., Wan, L.S., Liu, Z.M., Huang, X.J., and Xu, Z.K. (2009). Enzyme immobilization on electrospun polymer nanofibers: an overview. J. Mol. Catal. B Enzym. 56: 189–195, https://doi.org/10.1016/j.molcatb.2008.05.005.Search in Google Scholar

Wang, J., Zhao, G., and Li, Y. (2013). Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl. Microbiol. Biotechnol. 97: 681–692, https://doi.org/10.1007/s00253-012-3979-2.Search in Google Scholar PubMed

Wang, J., Zhao, G., Li, Y., Peng, X., and Wang, X. (2015). Preparation of amine-functionalized mesoporous magnetic colloidal nanocrystal clusters for glucoamylase immobilization. Chem. Eng. J. 263: 471–478, https://doi.org/10.1016/j.cej.2014.08.007.Search in Google Scholar

Wang, J., Liu, Z., and Zhou, Z. (2017). Improving pullulanase catalysis via reversible immobilization on modified Fe3O4@Polydopamine nanoparticles. Appl. Biochem. Biotechnol. 182: 1467–1477, https://doi.org/10.1007/s12010-017-2411-x.Search in Google Scholar PubMed

Wasko, A., Polak-Berecka, M., and Targonski, Z. (2011). PURIFICATION AND CHARACTERIZATION OF PULLULANASE FROM Lactococcus lactis. Prep. Biochem. Biotechnol. 41: 252–261, https://doi.org/10.1080/10826068.2011.575316.Search in Google Scholar PubMed

Wöltinger, J., Karau, A., Leuchtenberger, W., and Drauz, K. (2005). Membrane reactors at Degussa. Adv. Biochem. Eng. Biotechnol. 92: 289–316.10.1007/b98909Search in Google Scholar PubMed

Xia, W., Zhang, K., Sua, L.Q., and Wu, J. (2021). Microbial starch debranching enzymes: developments and applications. Biotechnol. Adv. 50: 107786, https://doi.org/10.1016/j.biotechadv.2021.107786.Search in Google Scholar PubMed

Xie, T., Wang, A., Huang, L., Li, H., Chen, Z., and Wang, Q. (2009). Recent advance in the support and technology used in enzyme immobilization. Afr. J. Biotechnol. 8: 4724–4733.Search in Google Scholar

Yamasaki, Y., Nakashima, S., and Konno, H. (2008). Pullulanase from rice endosperm. Acta Biochim. Pol. 55: 507–510, https://doi.org/10.18388/abp.2008_3056.Search in Google Scholar

Yang, H., Liu, L., Li, J., Du, G., and Chen, C. (2012). Cloning, heterologous expression, and comparative characterization of a mesophilic α-amylase gene from Bacillus subtilis JN16 in Escherichia coli. Ann. Microbiol. 62: 1219–1226, https://doi.org/10.1007/s13213-011-0364-9.Search in Google Scholar

Yandri, Suhartati, T., Satria, H., Widyasmara, A., and Hadi, S. (2020). Increasing stability of α-amylase obtained from Bacillus subtilis ITBCCB148 by immobilization with chitosan. Mediterran J. Chem. 10: 155–161, https://doi.org/10.13171/mjc10202002131126ysh.Search in Google Scholar

Yiu, H.H.P. and Keane, M.A. (2012). Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J. Chem. Technol. Biotechnol. 87: 583–594, https://doi.org/10.1002/jctb.3735.Search in Google Scholar

Zhai, R., Zhang, B., Liu, L., Xie, Y., Zhang, H., and Liu, J. (2010). Immobilization of enzyme biocatalyst on natural halloysite nanotubes. CATCOM 12: 259–263, https://doi.org/10.1016/j.catcom.2010.09.030.Search in Google Scholar

Zhang, L., Zhu, X., Zheng, S., and Sun, H. (2009). Photochemical preparation of magnetic chitosan beads for immobilization of pullulanase. Biochem. Eng. J. 46: 83–87, https://doi.org/10.1016/j.bej.2009.04.024.Search in Google Scholar

Zhao, G., Wang, J., Li, Y., Huang, H., and Chen, X. (2012). Reversible immobilization of glucoamylase onto metal–ligand functionalized magnetic FeSBA-15. Biochem. Eng. J. 68: 159–166, https://doi.org/10.1016/j.bej.2012.04.009.Search in Google Scholar

Zhao, G., Li, Y., Wang, J., and Zhu, H. (2011a). Reversible immobilization of glucoamylase onto magnetic carbon nanotubes functionalized with dendrimer. Appl. Microbiol. Biotechnol. 91: 591–601, https://doi.org/10.1007/s00253-011-3299-y.Search in Google Scholar PubMed

Zhao, G., Wang, J., Li, Y., Chen, X., and Liu, Y. (2011b). Enzymes immobilized on superparamagnetic Fe3O4@clays nanocomposites: preparation, characterization, and a new strategy for the regeneration of supports. J. Phys. Chem. C 115: 6350–6359, https://doi.org/10.1021/jp200156j.Search in Google Scholar

Zhao, F., Song, Z., Wang, B., Han, Y., and Zhou, Z. (2020). Purification and immobilization of α-amylase in one step by gram-positive enhancer matrix (GEM) particles from the soluble proteinand the inclusion body. Appl. Microbiol. Biotechnol. 104: 643–652, https://doi.org/10.1007/s00253-019-10252-z.Search in Google Scholar PubMed

Zucca, P. and Sanjust, E. (2014). Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19: 14139–14194, https://doi.org/10.3390/molecules190914139.Search in Google Scholar PubMed PubMed Central

Received: 2022-05-31
Accepted: 2022-10-28
Published Online: 2022-12-15
Published in Print: 2024-01-29

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2022-0033/html
Scroll to top button