Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 14, 2023

Modelling of fixed bed and slurry bubble column reactors for Fischer–Tropsch synthesis

  • Frank Sauerhöfer-Rodrigo ORCID logo EMAIL logo , Ismael Díaz , Manuel Rodríguez and Ponciano Pérez

Abstract

An extensive review of slurry bubble column reactor and fixed bed reactor steady state models for Fischer–Tropsch synthesis is presented in this work. Material, energy and momentum balance equations are presented here along with the relevant findings of each study for modelling purposes. For fixed bed reactor models, one-dimensional and two-dimensional models can be differentiated, with the latter being better at predicting hot spots and thermal runaways, although the computational effort required solving them is also higher. Fixed bed reactors can also be classified as pseudo-homogeneous or heterogeneous models, the former considering that all phases are in thermal and chemical equilibrium, and the latter having different profiles for the catalyst particles, generally including a pellet model. For slurry bubble column reactors, single-class and double-class bubble models can be differentiated. The double-class bubble models represent better churn-turbulent regimes at the expense of a higher computational effort.


Corresponding author: Frank Sauerhöfer-Rodrigo, Dpto. Ingeniería Química Industrial y del Medio Ambiente, ETSI Industriales, Universidad Politécnica de Madrid, C/ José Gutiérrez Abascal, 2, 28006, Madrid, Spain; and Repsol Technology Lab, c/ Agustín de Betancourt s/n, 28935, Madrid, Spain, E-mail:

Acknowledgments

The authors would like to acknowledge Repsol S.A. for supporting this work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

Aguirre, A. and Neria d’Angelo, M.F. (2021). The role of vapor-liquid equilibria during the Fischer-Tropsch synthesis: a modeling study. Chem. Eng. Sci. 233: 116394-1–116394-12, https://doi.org/10.1016/j.ces.2020.116394.Search in Google Scholar

Alizadeh, R., Allen, J.K., and Mistree, F. (2020). Managing computational complexity using surrogate models: a critical review. Res. Eng. Des. 31: 275–298, https://doi.org/10.1007/s00163-020-00336-7.Search in Google Scholar

An, M., Guan, X., Yang, N., Bu, Y., Xu, M., and Men, Z. (2018). Effects of internals on fluid dynamics and reactions in pilot-scale slurry bubble column reactors: a CFD study for Fischer-Tropsch synthesis. Chem. Eng. Process. Process Intensif. 132: 194–207, https://doi.org/10.1016/j.cep.2018.09.004.Search in Google Scholar

Arabpour, M., Rahimpour, M.R., Iranshahi, D., and Raeissi, S. (2012). Evaluation of maximum gasoline production of Fischer-Tropsch synthesis reactions in GTL technology: a discretized approach. J. Nat. Gas Sci. Eng. 9: 209–219, https://doi.org/10.1016/j.jngse.2012.08.001.Search in Google Scholar

Atwood, H.E. and Bennett, C.O. (1979). Kinetics of the Fischer-Tropsch reaction over iron. Ind. Eng. Chem. Process Des. Dev. 18: 163–170, https://doi.org/10.1021/i260069a023.Search in Google Scholar

Baird, M.J., Schehl, R.R., Haynes, W.P., and Cobb, J.T.Jr. (1980). Fischer-Tropsch processes investigated at the Pittsburgh Energy Technology Center since 1944. Ind. Eng. Chem. Prod. Res. Dev. 19: 175–191, https://doi.org/10.1021/i360074a010.Search in Google Scholar

Bárkányi, Á., Chován, T., Németh, S., and Abonyi, J. (2021). Modelling for digital twins—potential role of surrogate models. Processes 9: 476-1–476-29, https://doi.org/10.3390/pr9030476.Search in Google Scholar

Baroutaji, A., Wilberforce, T., Ramadan, M., and Olabi, A.G. (2019). Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew. Sustain. Energy Rev. 106: 31–40, https://doi.org/10.1016/j.rser.2019.02.022.Search in Google Scholar

Bartholomew, C.H. (1991). Chapter 5. Recent developments in Fischer-Tropsch catalysis. Stud. Surf. Sci. Catal. 64: 158–224.10.1016/S0167-2991(08)60947-7Search in Google Scholar

Basha, O.M. and Morsi, B.I. (2017). Effects of sparger and internals designs on the local hydrodynamics in slurry bubble column reactors operating under typical Fischer-Tropsch process conditions – I. Int. J. Chem. React. Eng. 16: 20170058-1–20170058-19, https://doi.org/10.1515/ijcre-2017-0058.Search in Google Scholar

Basha, O.M., Sehabiague, L., Abdel-Wahab, A., and Morsi, B.I. (2015). Fischer-Tropsch synthesis in slurry bubble column reactors: experimental investigations and modeling – a review. Int. J. Chem. React. Eng. 13: 201–288, https://doi.org/10.1515/ijcre-2014-0146.Search in Google Scholar

Bauen, A., Bitossi, N., German, L., Harris, A., and Leow, K. (2020). Sustainable aviation fuels status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation. Johnson Matthey Technol. Rev. 64: 263–278.10.1595/205651320X15816756012040Search in Google Scholar

Bhavaraju, S.M., Russell, T.W.F., and Blanch, H.W. (1978). The design of gas sparged devices for viscous liquid systems. AIChE J. 24: 454–466, https://doi.org/10.1002/aic.690240310.Search in Google Scholar

Bischoff, K.B. (1965). Effectiveness factors for general reaction rate forms. AIChE J. 11: 351–355, https://doi.org/10.1002/aic.690110229.Search in Google Scholar

Brunner, K.M. (2012). Novel iron catalyst and fixed-bed reactor model for the Fischer-Tropsch synthesis, Ph.D. thesis. Provo, Brigham Young University.Search in Google Scholar

Brunner, K.M., Duncan, J.C., Harrison, L.D., Pratt, K.E., Peguin, R.P.S., Bartholomew, C.H., and Hecker, W.C. (2012). A trickle fixed-bed recycle reactor model for the Fischer-Tropsch synthesis. Int. J. Chem. React. Eng. 10: 1–36, https://doi.org/10.1515/1542-6580.2840.Search in Google Scholar

Brunner, K.M., Perez, H.D., Peguin, R.P.S., Duncan, J.C., Harrison, L.D., Bartholomew, C.H., and Hecker, W.C. (2015). Effects of particle size and shape on the performance of a trickle fixed-bed recycle reactor for Fischer-Tropsch synthesis. Ind. Eng. Chem. Res. 54: 2902–2909, https://doi.org/10.1021/ie503174v.Search in Google Scholar

Bub, G., Baerns, M., Büssemeier, B., and Frohning, C. (1980). Prediction of the performance of catalytic fixed bed reactors for Fischer-Tropsch synthesis. Chem. Eng. Sci. 35: 348–355, https://doi.org/10.1016/0009-2509(80)80106-0.Search in Google Scholar

Bukur, D.B. (1983). Some comments on models for Fischer-Tropsch reaction in slurry bubble column reactors. Chem. Eng. Sci. 38: 440–446, https://doi.org/10.1016/0009-2509(83)80161-4.Search in Google Scholar

Bukur, D.B., Mandić, M., Todić, B., and Nikačević, N. (2020). Pore diffusion effects on catalyst effectiveness and selectivity of cobalt based Fischer-Tropsch catalyst. Catal. Today 343: 146–155, https://doi.org/10.1016/j.cattod.2018.10.069.Search in Google Scholar

Çabukoglu, E., Georges, G., Küng, L., Pareschi, G., and Boulouchos, K. (2019). Fuel cell electric vehicles: an option to decarbonize heavy-duty transport? Results from a Swiss case-study. Transport. Res. Transport Environ. 70: 35–48, https://doi.org/10.1016/j.trd.2019.03.004.Search in Google Scholar

Calderbank, P.H. (1959). Physical rate processes in industrial fermentation. II. Mass transfer coefficients in gas-liquid contacting with and without mechanical agitation. Trans. Inst. Chem. Eng. 37: 173–185.Search in Google Scholar

Calderbank, P.H., Evans, F., Farley, R., Japson, G., and Poll, A. (1963). Rate processes in the catalysis-slurry Fischer-Tropsch reaction. Catal. Pract., Symp. Inst. Chem. Eng. 66.Search in Google Scholar

Challiwala, M.S., Wilhite, B.A., Ghouri, M.M., and Elbashir, N.O. (2018). Multidimensional modeling of a microfibrous entrapped cobalt catalyst Fischer-Tropsch reactor bed. AIChE J. 64: 1723–1731, https://doi.org/10.1002/aic.16053.Search in Google Scholar

Chandra, V., Vogels, D., Peters, E.A.J.F., and Kuipers, J.A.M. (2021). A multi-scale model for the Fischer-Tropsch synthesis in a wall-cooled packed bed reactor. Chem. Eng. J. 410: 128245-1–128245-18, https://doi.org/10.1016/j.cej.2020.128245.Search in Google Scholar

Chang, J., Bai, L., Teng, B., Zhang, R., Yang, J., Xu, Y., Xiang, H., and Li, Y. (2007). Kinetic modeling of Fischer-Tropsch synthesis over Fe–Cu–K–SiO2. Catalyst in slurry phase reactor. Chem. Eng. Sci. 62: 4983–4991, https://doi.org/10.1016/j.ces.2006.12.031.Search in Google Scholar

Chen, J., Li, F., Degaleesan, S., Gupta, P., Al-Dahhan, M.H., Dudukovic, M.P., and Toseland, B.A. (1999). Fluid dynamic parameters in bubble columns with internals. Chem. Eng. Sci. 54: 2187–2197, https://doi.org/10.1016/s0009-2509(99)00003-2.Search in Google Scholar

Coleman, G.N. and Sandberg, R.D. (2010). A primer on direct numerical simulation of turbulence-methods, procedures and guidelines. Technical Report AFM-09/01a, Aerodynamics & Flight Mechanics Research Group School of Engineering SciencesUniversity of Southampton.10.1002/9780470686652.eae056Search in Google Scholar

Dai, X.P., Liu, P.Z., Shi, Y., Xu, J., and Wei, W.S. (2014). Fischer-Tropsch synthesis in a bench-scale two-stage multitubular fixed-bed reactor: simulation and enhancement in conversion and diesel selectivity. Chem. Eng. Sci. 105: 1–11, https://doi.org/10.1016/j.ces.2013.09.057.Search in Google Scholar

Davis, B.H. (2005). Fischer-Tropsch synthesis: overview of reactor development and future potentialities. Top. Catal. 32: 143–168, https://doi.org/10.1007/s11244-005-2886-5.Search in Google Scholar

Davis, M.E. and Davis, R.J. (2003). Fundamentals of chemical reaction engineering. McGraw-Hill, New York.Search in Google Scholar

Deckwer, W.D. (1980). FT process alternatives hold promise. Oil Gas J. 78: 198–213.Search in Google Scholar

Deckwer, W.D., Louisi, Y., Zaidi, A., and Ralek, M. (1980). Hydrodynamic properties of the Fischer-Tropsch slurry process. Ind. Eng. Chem. Process Des. Dev. 19: 699–708, https://doi.org/10.1021/i260076a032.Search in Google Scholar

Deckwer, W.D., Serpemen, Y., Ralek, M., and Schmidt, B. (1981). On the relevance of mass transfer limitations in the Fischer-Tropsch slurry process. Chem. Eng. Sci. 36: 773–774, https://doi.org/10.1016/0009-2509(81)85092-0.Search in Google Scholar

Deckwer, W.D., Serpemen, Y., Ralek, M., and Schmidt, B. (1982). Modeling the Fischer-Tropsch synthesis in the slurry phase. Ind. Eng. Chem. Process Des. Dev. 21: 231–241, https://doi.org/10.1021/i200017a006.Search in Google Scholar

Derevich, I.V., Ermolaev, V.S., and Mordkovich, V.Z. (2012). Modeling of hydrodynamics in microchannel reactor for Fischer-Tropsch synthesis. Int. J. Heat Mass Tran. 55: 1695–1708, https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.024.Search in Google Scholar

Dorling, T.A., Gall, D., and Hall, C.C. (1958). Some factors affecting the activity of sintered iron catalysts for the Fischer-Tropsch synthesis. J. Appl. Chem. 8: 533–549, https://doi.org/10.1002/jctb.5010080901.Search in Google Scholar

Dry, M.E. (1976). Advances in Fischer-Tropsch chemistry. Ind. Eng. Chem. Prod. Res. Dev. 15: 282–286, https://doi.org/10.1021/i360060a012.Search in Google Scholar

de Klerk, A. (2011). Fischer-Tropsch refining. Wiley-VCH, Weinheim.10.1002/9783527635603Search in Google Scholar

de Swart, J.W.A. (1996). Scale-up of a Fischer-Tropsch slurry reactor, Ph.D. thesis. Amsterdam, Amsterdam University.Search in Google Scholar

de Swart, J.W.A. and Krishna, R. (2002). Simulation of the transient and steady state behaviour of a bubble column slurry reactor for Fischer-Tropsch synthesis. Chem. Eng. Process 41: 35–47, https://doi.org/10.1016/s0255-2701(00)00159-8.Search in Google Scholar

de Swart, J.W.A., Krishna, R., and Sie, S.T. (1997). Selection, design and scale up of the Fischer-Tropsch reactor. Stud. Surf. Sci. Catal. 107: 213–218.10.1016/S0167-2991(97)80337-0Search in Google Scholar

Ellman, M.J., Midoux, N., Laurent, A., and Charpentier, J.C. (1988). A new, improved pressure drop correlation for trickle-bed reactors. Chem. Eng. Sci. 43: 2201–2206, https://doi.org/10.1016/0009-2509(88)87104-5.Search in Google Scholar

Emrani, A.S., Saber, M., and Farhadi, F. (2012). Modeling and optimization of fixed-bed Fischer-Tropsch synthesis using genetic algorithm. J. Chem. Pet. Eng. 46: 1–11.Search in Google Scholar

Ergun, S. (1952). Fluid flow through packed columns. Chem. Eng. Prog. 48: 89–94.Search in Google Scholar

Everson, R.C., Mulder, H., and Keyser, M.J. (1996). The Fischer-Tropsch reaction with supported ruthenium catalysts: modelling and evaluation of the reaction rate equation for a fixed bed reactor. Appl. Catal., A 142: 223–241, https://doi.org/10.1016/0926-860x(96)00054-3.Search in Google Scholar

Fernandes, F.A.N. (2006). Modeling and product grade optimization of Fischer-Tropsch synthesis in a slurry reactor. Ind. Eng. Chem. Res. 45: 1047–1057, https://doi.org/10.1021/ie0507732.Search in Google Scholar

Forghani, A.A., Elekaei, H., and Rahimpour, M.R. (2009). Enhancement of gasoline production in a novel hydrogen-permselective membrane reactor in Fischer-Tropsch synthesis of GTL technology. Int. J. Hydrogen Energy 34: 3965–3976, https://doi.org/10.1016/j.ijhydene.2009.02.038.Search in Google Scholar

Fox, J.M., Degen, B.D., Cady, G., Deslate, F.D., Summers, R.L., Akgerman, A., and Smith, J.M. (1990). Slurry reactor design studies. Technical Report DOE/PC/89867-T2 (DE91005752), Bechtel Group, Inc.10.2172/6094135Search in Google Scholar

Froment, G.F., Bischoff, K.B., and de Wilde, J. (2011). Chemical reactor analysis and design. Wiley, New York.Search in Google Scholar

Gardezi, S.A. and Joseph, B. (2015). Performance characteristics of eggshell Co/SiO2 Fischer-Tropsch catalysts: a modeling study. Ind. Eng. Chem. Res. 54: 8080–8092, https://doi.org/10.1021/acs.iecr.5b01288.Search in Google Scholar

Ge, Z. (2017). Review on data-driven modeling and monitoring for plant-wide industrial processes. Chemometr. Intell. Lab. Syst. 171: 16–25, https://doi.org/10.1016/j.chemolab.2017.09.021.Search in Google Scholar

Ghareghashi, A., Ghader, S., and Hashemipour, H. (2013). Theoretical analysis of oxidative coupling of methane and Fischer Tropsch synthesis in two consecutive reactors: comparison of fixed bed and membrane reactor. J. Ind. Eng. Chem. 19: 1811–1826, https://doi.org/10.1016/j.jiec.2013.02.025.Search in Google Scholar

Ghasemi, S., Sohrabi, M., and Rahmani, M. (2009). A comparison between two kinds of hydrodynamic models in bubble column slurry reactor during Fischer-Tropsch synthesis: single-bubble class and two-bubble class. Chem. Eng. Res. Des. 87: 1582–1588, https://doi.org/10.1016/j.cherd.2009.04.015.Search in Google Scholar

Gholami, F., Angaji, M.T., and Gholami, Z. (2009). Modeling the Fischer-Tropsch reaction in a slurry bubble column reactor. World Acad. Sci. Eng. Technol. 37: 168–171.Search in Google Scholar

Ghouri, M.M., Afzal, S., Hussain, R., Blank, J., Bukur, D.B., and Elbashir, N.O. (2016). Multi-scale modeling of fixed-bed Fischer Tropsch reactor. Comput. Chem. Eng. 91: 38–48, https://doi.org/10.1016/j.compchemeng.2016.03.035.Search in Google Scholar

Guettel, R. and Turek, T. (2009). Comparison of different reactor types for low temperature Fischer-Tropsch synthesis: a simulation study. Chem. Eng. Sci. 64: 955–964, https://doi.org/10.1016/j.ces.2008.10.059.Search in Google Scholar

Guo, X. and Chen, C. (2017). Simulating the impacts of internals on gas–liquid hydrodynamics of bubble column. Chem. Eng. Sci. 174: 311–325, https://doi.org/10.1016/j.ces.2017.09.004.Search in Google Scholar

Haghtalab, A., Nabipoor, M., and Farzad, S. (2012). Kinetic modeling of the Fischer-Tropsch synthesis in a slurry phase bubble column reactor using Langmuir-Freundlich isotherm. Fuel Process. Technol. 104: 73–79, https://doi.org/10.1016/j.fuproc.2011.07.005.Search in Google Scholar

Hallac, B.B., Keyvanloo, K., Hedengren, J.D., Hecker, W.C., and Argyle, M.D. (2015). An optimized simulation model for iron-based Fischer-Tropsch catalyst design: transfer limitations as functions of operating and design conditions. Chem. Eng. J. 263: 268–279, https://doi.org/10.1016/j.cej.2014.10.108.Search in Google Scholar

Hänggi, S., Elbert, P., Bütler, T., Cabalzar, U., Teske, S., Bach, C., and Onder, C. (2019). A review of synthetic fuels for passenger vehicles. Energy Rep. 5: 555–569, https://doi.org/10.1016/j.egyr.2019.04.007.Search in Google Scholar

Hassankiadeh, M.N., Khajehfard, A., and Golmohammadi, M. (2012). Kinetic and product distribution modeling of Fischer-Tropsch synthesis in a fluidized bed reactor. Int. J. Chem. Eng. Appl. 3: 400–403, https://doi.org/10.7763/ijcea.2012.v3.227.Search in Google Scholar

Hedrick, S.A. and Chuang, S.S.C. (2003). Modeling the Fischer-Tropsch reaction in a slurry bubble column reactor. Chem. Eng. Commun. 190: 445–474, https://doi.org/10.1080/00986440302083.Search in Google Scholar

Hein, S. and Vortmeyer, D. (1995). Wandgekühlte chemische Festbettreaktoren und deren Modellierung mit Ein- und Zweiphasenmodellen. Z. Naturforsch., A: Phys. Sci. 50: 568–576, https://doi.org/10.1515/zna-1995-0608.Search in Google Scholar

Hicks, R.E. (1970). Pressure drop in packed beds of spheres. Ind. Eng. Chem. Fundam. 9: 500–502, https://doi.org/10.1021/i160035a032.Search in Google Scholar

Hooshyar, N., Vervloet, D., Kapteijn, F., Hamersma, P.J., Mudde, R.F., and van Ommen, J.R. (2012). Intensifying the Fischer-Tropsch synthesis by reactor structuring – a model study. Chem. Eng. J. 207–208: 865–870, https://doi.org/10.1016/j.cej.2012.07.105.Search in Google Scholar

Horowitz, C.A. (2016). Paris agreement. Int. Leg. Mater. 55: 740–755, https://doi.org/10.1017/s0020782900004253.Search in Google Scholar

Hubble, R., York, A.P.E., and Dennis, J.S. (2019). Modelling reaction and diffusion in a wax-filled hollow cylindrical pellet of Fischer Tropsch catalyst. Chem. Eng. Sci. 207: 958–969, https://doi.org/10.1016/j.ces.2019.06.051.Search in Google Scholar

Hussain, R., Blank, J.H., and Elbashir, N.O. (2015). Modeling the fixed-bed Fischer-Tropsch reactor in different reaction media. Comput. Aided Chem. Eng. 37: 143–148.10.1016/B978-0-444-63578-5.50019-0Search in Google Scholar

Iliuta, I. and Larachi, F. (2018). Fischer-Tropsch synthesis in vertical, inclined and oscillating trickle-bed reactors for offshore floating applications. Chem. Eng. Sci. 177: 509–522, https://doi.org/10.1016/j.ces.2017.12.012.Search in Google Scholar

Iliuta, I., Larachi, F., Anfray, J., Dromard, N., and Schweich, D. (2007). Multicomponent multicompartment model for Fischer-Tropsch SCBR. AIChE J. 53: 2062–2083, https://doi.org/10.1002/aic.11242.Search in Google Scholar

Inga, J.R. and Morsi, B.I. (1996). A novel approach for the assessment of the rate-limiting step in Fischer-Tropsch slurry process. Energy Fuel. 10: 566–572, https://doi.org/10.1021/ef950198m.Search in Google Scholar

Jess, A. and Kern, C. (2009). Modeling of multi-tubular reactors for Fischer-Tropsch synthesis. Chem. Eng. Technol. 32: 1164–1175, https://doi.org/10.1002/ceat.200900131.Search in Google Scholar

Jess, A. and Kern, C. (2012). Influence of particle size and single-tube diameter on thermal behavior of Fischer-Tropsch reactors: Part I: particle size variation for constant tube size and vice versa. Chem. Eng. Technol. 35: 369–378, https://doi.org/10.1002/ceat.201100615.Search in Google Scholar

Jess, A., Popp, R., and Hedden, K. (1999). Fischer-Tropsch-synthesis with nitrogen-rich syngas: fundamentals and reactor design aspects. Appl. Catal., A 186: 321–342, https://doi.org/10.1016/s0926-860x(99)00152-0.Search in Google Scholar

Jiang, X., Yang, N., Zhu, J., and Yang, B. (2015). On the single and two-bubble class models for bubble column reactors. Chem. Eng. Sci. 123: 514–526, https://doi.org/10.1016/j.ces.2014.11.033.Search in Google Scholar

Kaiser, P. and Jess, A. (2014). Modeling of multitubular reactors for iron- and cobalt-catalyzed Fischer-Tropsch syntheses for application in a power-to-liquid process. Energy Technol. 2: 486–497, https://doi.org/10.1002/ente.201300189.Search in Google Scholar

Kaskes, B., Vervloet, D., Kapteijn, F., and van Ommen, J.R. (2016). Numerical optimization of a structured tubular reactor for Fischer-Tropsch synthesis. Chem. Eng. J. 283: 1465–1483, https://doi.org/10.1016/j.cej.2015.08.078.Search in Google Scholar

Kazemeini, M., Maleki, R., and Fattahi, M. (2012). Modelling of Fischer-Tropsch synthesis in a fluidized bed reactor. Adv. Mater. Res. 586: 274–281, https://doi.org/10.4028/www.scientific.net/amr.586.274.Search in Google Scholar

Kölbel, H. and Ralek, M. (1980). The Fischer-Tropsch synthesis in the liquid phase. Catal. Rev. Sci. Eng. 21: 225–274, https://doi.org/10.1080/03602458008067534.Search in Google Scholar

Koppers, H. (1961). Rheinpreussen-Koppers liquid-phase process of Fischer-Tropsch synthesis. Chem. Age India 12: 7.Search in Google Scholar

Krishna, R. and Sie, S.T. (2000). Design and scale-up of the Fischer-Tropsch bubble column slurry reactor. Fuel Process. Technol. 64: 73–105, https://doi.org/10.1016/s0378-3820(99)00128-9.Search in Google Scholar

Krishna, R., de Swart, J.W.A., Ellenberger, J., Martina, G.B., and Maretto, C. (1997). Gas holdup in slurry bubble columns: effect of column diameter and slurry concentrations. AIChE J. 43: 311–316, https://doi.org/10.1002/aic.690430204.Search in Google Scholar

Kuo, J.C.W. (1983). Slurry Fischer-Tropsch/Mobil two stage process of converting syngas to high octane gasoline. Final Report DOE/PC/30022-10 (DE8400411), Mobil Research and Development Corp.10.2172/6838947Search in Google Scholar

Larachi, F., Desvigne, D., Donnat, L., and Schweich, D. (2006). Simulating the effects of liquid circulation in bubble columns with internals. Chem. Eng. Sci. 61: 4195–4906, https://doi.org/10.1016/j.ces.2006.01.053.Search in Google Scholar

Larachi, F., Laurent, A., Midoux, N., and Wild, G. (1991). Experimental study of a trickle-bed reactor operating at high pressure: two-phase pressure drop and liquid saturation. Chem. Eng. Sci. 46: 1233–1246, https://doi.org/10.1016/0009-2509(91)85051-x.Search in Google Scholar

Levenspiel, O. (1999). Chemical reaction engineering. Ind. Eng. Chem. Res. 38: 4140–4143, https://doi.org/10.1021/ie990488g.Search in Google Scholar

Li, C. (2018). Modeling and optimization of industrial Fischer–Tropsch synthesis with the slurry bubble column reactor and iron-based catalyst. Chin. J. Chem. Eng. 26: 1102–1109, https://doi.org/10.1016/j.cjche.2018.01.002.Search in Google Scholar

Luo, M., Bao, S., Keogh, R.S., Sarkar, A., Jacobs, G., and Davis, B.H. (2006). Fischer Tropsch synthesis: a comparison of iron and cobalt catalysts. In: Proceedings of the AIChE fall national meeting, November 12–17, 2006. American Institute of Chemical Engineers, San Francisco.Search in Google Scholar

Mamonov, N.A., Kustov, L.M., Alkhimov, S.A., and Mikhailov, M.N. (2013). One-dimensional heterogeneous model of a Fischer-Tropsch synthesis reactor with a fixed catalyst bed in the isothermal granules approximation. Catal. Ind. 5: 223–231, https://doi.org/10.1134/s2070050413030100.Search in Google Scholar

Mandić, M., Todić, B., Živanić, L., Nikačević, N., and Bukur, D.B. (2017). Effects of catalyst activity, particle size and shape, and process conditions on catalyst effectiveness and methane selectivity for Fischer-Tropsch reaction: a modeling study. Ind. Eng. Chem. Res. 56: 2733–2745, https://doi.org/10.1021/acs.iecr.7b00053.Search in Google Scholar

Maretto, C. and Krishna, R. (1999). Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis. Catal. Today 52: 279–289, https://doi.org/10.1016/s0920-5861(99)00082-6.Search in Google Scholar

Maretto, C. and Krishna, R. (2001). Design and optimisation of a multi-stage bubble column slurry reactor for Fischer-Tropsch synthesis. Catal. Today 66: 241–248, https://doi.org/10.1016/s0920-5861(00)00626-x.Search in Google Scholar

Martinelli, M., Gnanamani, M.K., LeViness, S., Jacobs, G., and Shafer, W.D. (2020). An overview of Fischer-Tropsch synthesis: XtL processes, catalysts and reactors. Appl. Catal., A 608: 117740-1–117740-14, https://doi.org/10.1016/j.apcata.2020.117740.Search in Google Scholar

Marvast, M.A., Sohrabi, M., Zarrinpashne, S., and Baghmisheh, G. (2005). Fischer-Tropsch synthesis: modeling and performance study for Fe-HZSM5 bifunctional catalyst. Chem. Eng. Technol. 28: 78–86, https://doi.org/10.1002/ceat.200407013.Search in Google Scholar

Mazidi, S.K., Sadeghi, M.T., and Marvast, M.A. (2013). Optimization of Fischer-Tropsch process in a fixed-bed reactor using non-uniform catalysts. Chem. Eng. Technol. 36: 62–72, https://doi.org/10.1002/ceat.201200268.Search in Google Scholar

Mazzone, L.C.A. and Fernandes, F.A.N. (2006). Modeling of Fischer-Tropsch synthesis in a tubular reactor. Lat. Am. Appl. Res. 36: 141–148.Search in Google Scholar

Mears, D.E. (1971). Diagnostic criteria for heat transport limitations in fixed bed reactors. J. Catal. 20: 127–131, https://doi.org/10.1016/0021-9517(71)90073-x.Search in Google Scholar

Mehta, D. and Hawley, M.C. (1969). Wall effect in packed columns. Ind. Eng. Chem. Process Des. Dev. 8: 280–282, https://doi.org/10.1021/i260030a021.Search in Google Scholar

Méndez, C.I., Ancheyta, J., and Trejo, F. (2017). Modeling of catalytic fixed-bed reactors for fuels production by Fischer-Tropsch synthesis. Energy Fuel. 31: 13011–13042, https://doi.org/10.1021/acs.energyfuels.7b01431.Search in Google Scholar

Moutsoglou, A. and Sunkara, P.P. (2011). Fischer-Tropsch synthesis in a fixed bed reactor. Energy Fuel. 25: 2242–2257, https://doi.org/10.1021/ef200160x.Search in Google Scholar

Nanduri, A. and Mills, P.L. (2020). Effect of catalyst shape and multicomponent diffusion flux models on intraparticle transport-kinetic interactions in the gas-phase Fischer-Tropsch synthesis. Fuel 278: 118117, https://doi.org/10.1016/j.fuel.2020.118117.Search in Google Scholar

Niu, C., Li, H., Xia, M., Wang, J., Chen, C., Ma, Z., Jia, L., Hou, B., and Li, D. (2021). Mass transfer advantage of hierarchical structured cobalt-based catalyst pellet for Fischer–Tropsch synthesis. AIChE J. 67: e17226, https://doi.org/10.1002/aic.17226.Search in Google Scholar

Pachauri, R.K. and Meyer, L.A. (2014). Climate change 2014: synthesis report. Contribution of working Groups I, II and III to the 5th assessment report of the Intergovernmental Panel on Climate Change. Fifth Assessment Synthesis Report, IPCC.Search in Google Scholar

Park, N., Kim, J.R., Yoo, Y., Lee, J., and Park, M.J. (2014). Modeling of a pilot-scale fixed-bed reactor for iron-based Fischer-Tropsch synthesis: two-dimensional approach for optimal tube diameter. Fuel 122: 229–235, https://doi.org/10.1016/j.fuel.2014.01.044.Search in Google Scholar

Peacock, M., Paterson, J., Reed, L., Davies, S., Carter, S., Coe, A., and Clarkson, J. (2020). Innovation in Fischer-Tropsch: developing fundamental understanding to support commercial opportunities. Top. Catal. 63: 328–339, https://doi.org/10.1007/s11244-020-01239-6.Search in Google Scholar

Philippe, R., Lacroix, M., Dreibine, L., Pham-Huu, C., Edouard, D., Savin, S., Luck, F., and Schweich, D. (2009). Effect of structure and thermal properties of a Fischer-Tropsch catalyst in a fixed bed. Catal. Today 147: S305–S312, https://doi.org/10.1016/j.cattod.2009.07.058.Search in Google Scholar

Pöhlmann, F. and Jess, A. (2016). Interplay of reaction and pore diffusion during cobalt-catalyzed Fischer–Tropsch synthesis with CO2-rich syngas. Catal. Today 275: 172–182, https://doi.org/10.1016/j.cattod.2015.09.032.Search in Google Scholar

Pöhlmann, F., Kern, C., Rößler, S., and Jess, A. (2016). Accumulation of liquid hydrocarbons in catalyst pores during cobalt-catalyzed Fischer-Tropsch synthesis. Catal. Sci. Technol. 6: 6593–6604, https://doi.org/10.1039/c6cy00941g.Search in Google Scholar

Post, M.F.M., Van’t Hoog, A.C., Minderhoud, J.K., and Sie, S.T. (1989). Diffusion limitations in Fischer-Tropsch catalysts. AIChE J. 35: 1107–1114, https://doi.org/10.1002/aic.690350706.Search in Google Scholar

Prakash, A. (1994). On the effects of syngas composition and water-gas-shift reaction rate on FT synthesis over iron based catalyst in a slurry reactor. Chem. Eng. Commun. 128: 143–158, https://doi.org/10.1080/00986449408936242.Search in Google Scholar

Prakash, A. and Bendale, P.G. (1991). Design of slurry reactor for indirect liquefaction applications. Final report DOE/PC/89870-T1 (DE92008748), Viking Systems International, Inc.10.2172/10124836Search in Google Scholar

Qian, W.X., Ma, H.F., Li, T., Ying, W.Y., and Fang, D.Y. (2012). Modeling of a slurry bubble column reactor for Fischer-Tropsch synthesis. J. Coal Sci. Eng. 18: 88–95, https://doi.org/10.1007/s12404-012-0115-y.Search in Google Scholar

Qian, Z., Seepersad, C.C., Joseph, V.R., Allen, J.K., and Wu, C.F.J. (2006). Building surrogate models based on detailed and approximate simulations. J. Mech. Des. 128: 668–677, https://doi.org/10.1115/1.2179459.Search in Google Scholar

Quicker, G. and Deckwer, W.D. (1981). A further note on mass transfer limitations in the Fischer-Tropsch slurry process. Chem. Eng. Sci. 36: 1577–1579, https://doi.org/10.1016/0009-2509(81)85119-6.Search in Google Scholar

Rados, N., Al-Dahhan, M.H., and Dudukovic, M.P. (2003). Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors. Catal. Today 79: 211–218, https://doi.org/10.1016/s0920-5861(03)00007-5.Search in Google Scholar

Rafiq, M.H., Jakobsen, H.A., Schmid, R., and Hustad, J.E. (2011). Experimental studies and modeling of a fixed bed reactor for Fischer-Tropsch synthesis using biosyngas. Fuel Process. Technol. 92: 893–907, https://doi.org/10.1016/j.fuproc.2010.12.008.Search in Google Scholar

Rahimpour, M.R. and Elekaei, H. (2009). Optimization of a novel combination of fixed and fluidized-bed hydrogen-permselective membrane reactors for Fischer-Tropsch synthesis in GTL technology. Chem. Eng. J. 152: 747–761, https://doi.org/10.1016/j.cej.2009.05.016.Search in Google Scholar

Riedel, T. and Schaub, G. (2003). Low-temperature Fischer-Tropsch synthesis on cobalt catalysts effects of CO2. Top. Catal. 26: 145–156, https://doi.org/10.1023/b:toca.0000012995.42657.ca.10.1023/B:TOCA.0000012995.42657.caSearch in Google Scholar

Rößler, S., Kern, C., and Jess, A. (2019). Accumulation of liquid hydrocarbons during cobalt-catalyzed Fischer-Tropsch synthesis – influence of activity and chain growth probability. Catal. Sci. Technol. 9: 4047–4054, https://doi.org/10.1039/c9cy00671k.Search in Google Scholar

Sánchez-López, J.R.G., Martínez-Hernández, A., and Hernández-Ramírez, A. (2017). Modeling of transport phenomena in fixed-bed reactors for the Fischer-Tropsch reaction: a brief literature review. Rev. Chem. Eng. 33: 109–142, https://doi.org/10.1515/revce-2015-0044.Search in Google Scholar

Sasol. (2012). Uzbekistan brand launch Oltin Yo’l GTL. Sasol, <https://www.sasol.com/media-centre/media-releases/uzbekistan-brand-launch-oltin-yol-gtl> (Accessed 10 March 2022).Search in Google Scholar

Satterfield, C.N. and Huff, G.A. (1980). Effects of mass transfer on Fischer-Tropsch synthesis in slurry reactors. Chem. Eng. Sci. 35: 195–202, https://doi.org/10.1016/0009-2509(80)80087-x.Search in Google Scholar

Satterfield, C.N. and Huff, G.A. (1981). Mass transfer limitations in Fischer-Tropsch slurry reactors. Chem. Eng. Sci. 36: 791–792, https://doi.org/10.1016/0009-2509(81)85102-0.Search in Google Scholar

Satterfield, C.N. and Huff, G.A. (1983). Reply to letters of Bukur and Gupte and of van Vuuren concerning mass transfer limitations in Fischer-Tropsch slurry reactors. Chem. Eng. Sci. 38: 1367–1368, https://doi.org/10.1016/0009-2509(83)80066-9.Search in Google Scholar

Saxena, S.C. (2006). Bubble column reactors and Fischer-Tropsch synthesis. Catal. Rev. Sci. Eng. 37: 227–309, https://doi.org/10.1080/01614949508007096.Search in Google Scholar

Saxena, S.C., Rosen, M., Smith, D.N., and Ruether, J.A. (1986). Mathematical modeling of Fischer-Tropsch slurry bubble column reactors. Chem. Eng. Commun. 40: 97–151, https://doi.org/10.1080/00986448608911693.Search in Google Scholar

Sehabiague, L. (2012). Modeling, scaleup and optimization of slurry bubble column reactors for Fischer-Tropsch synthesis, Ph.D. thesis. Pittsburh, PA, University of Pittsburgh.Search in Google Scholar

Sehabiague, L., Basha, O.M., Hong, Y., Morsi, B., Shi, Z., Jia, H., Weng, L., Men, Z., Liu, K., and Cheng, Y. (2015). Assessing the performance of an industrial SBCR for Fischer-Tropsch synthesis: experimental and modeling. AIChE J. 61: 201–288, https://doi.org/10.1002/aic.14931.Search in Google Scholar

Sehabiague, L., Lemoine, R., Behkish, A., Heintz, Y.J., Sanoja, M., Oukaci, R., and Morsi, B.I. (2008). Modeling and optimization of a large-scale slurry bubble column reactor for producing 10,000 bbl/day of Fischer-Tropsch liquid hydrocarbons. J. Chin. Inst. Chem. Eng. 39: 169–179, https://doi.org/10.1016/j.jcice.2007.11.003.Search in Google Scholar

Sehabiague, L. and Morsi, B.I. (2013). Modeling and simulation of a Fischer-Tropsch slurry bubble column reactor using different kinetic rate expressions for iron and cobalt catalysts. Int. J. Chem. React. Eng. 11: 309–330, https://doi.org/10.1515/ijcre-2012-0017.Search in Google Scholar

Sharma, A., Philippe, R., Luck, F., and Schweich, D. (2011). A simple and realistic fixed bed model for investigating Fischer-Tropsch catalyst activity at lab-scale and extrapolating to industrial conditions. Chem. Eng. Sci. 66: 6358–6366, https://doi.org/10.1016/j.ces.2011.04.032.Search in Google Scholar

Sie, S.T. and Krishna, R. (1998). Process development and scale up: II. Catalyst design strategy. Rev. Chem. Eng. 14: 159–202, https://doi.org/10.1515/revce.1998.14.3.159.Search in Google Scholar

Sie, S.T. and Krishna, R. (1999). Fundamentals and selection of advanced Fischer-Tropsch reactors. Appl. Catal., A 186: 55–70, https://doi.org/10.1016/s0926-860x(99)00164-7.Search in Google Scholar

Solomatine, D., See, L.M., and Abrahart, R.J. (2008). Data-driven modelling: concepts, approaches and experiences. In: Abrahart, R.J., See, L.M., and Solomatine, D.P. (Eds.), Practical hydroinformatics. Water science and technology library, Vol. 68. Springer, Berlin, Heidelberg, pp. 17–30.10.1007/978-3-540-79881-1_2Search in Google Scholar

Song, H.S., Ramkrishna, D., Trinh, S., Espinoza, R.L., and Wright, H. (2003). Multiplicity and sensitivity analysis of Fischer-Tropsch bubble column slurry reactors: plug-flow gas and well-mixed slurry model. Chem. Eng. Sci. 58: 2759–2766, https://doi.org/10.1016/s0009-2509(03)00125-8.Search in Google Scholar

Stern, D., Bell, A.T., and Heinemann, H. (1983). Effects of mass transfer on the performance of slurry reactors used for Fischer-Tropsch synthesis. Chem. Eng. Sci. 38: 597–605, https://doi.org/10.1016/0009-2509(83)80119-5.Search in Google Scholar

Stern, D., Bell, A.T., and Heinemann, H. (1985a). A theoretical model for the performance of bubble-column reactors used for Fischer-Tropsch synthesis. Chem. Eng. Sci. 40: 1665–1677, https://doi.org/10.1016/0009-2509(85)80027-0.Search in Google Scholar

Stern, D., Bell, A.T., and Heinemann, H. (1985b). Experimental and theoretical studies of Fischer-Tropsch synthesis over ruthenium in a bubble-column reactor. Chem. Eng. Sci. 40: 1917–1924, https://doi.org/10.1016/0009-2509(85)80128-7.Search in Google Scholar

Stern, D., Bell, A.T., and Heinemann, H. (1985c). Analysis of the design of bubble-column reactors for Fischer-Tropsch synthesis. Ind. Eng. Chem. Process Des. Dev. 24: 1213–1219, https://doi.org/10.1021/i200031a053.Search in Google Scholar

Steynberg, A.P. (2004). Introduction to Fischer-Tropsch technology. Stud. Surf. Sci. Catal. 152: 1–63.10.1016/S0167-2991(04)80458-0Search in Google Scholar

Steynberg, A.P., Dry, M.E., Davis, B.H., and Breman, B.B. (2004). Fischer-Tropsch reactors. Stud. Surf. Sci. Catal. 152: 64–195.10.1016/S0167-2991(04)80459-2Search in Google Scholar

Tallmadge, J.A. (1970). Packed bed pressure drop-an extension to higher Reynolds numbers. AIChE J. 16: 1092–1093, https://doi.org/10.1002/aic.690160639.Search in Google Scholar

Todic, B., Mandic, M., Nikacevic, N., and Bukur, D.B. (2018). Effects of process and design parameters on heat management in fixed bed Fischer-Tropsch synthesis reactor. Kor. J. Chem. Eng. 35: 875–889, https://doi.org/10.1007/s11814-017-0335-3.Search in Google Scholar

Todić, B.S. (2015). Kinetic modeling and optimization of fixed-bed reactor for Fischer-Tropsch synthesis, Doctoral dissertation. Belgrade, University of Belgrade.Search in Google Scholar

Turner, J.R. and Mills, P.L. (1990). Comparison of axial dispersion and mixing cell models for design and simulation of Fischer-Tropsch slurry bubble column reactors. Chem. Eng. Sci. 45: 2317–2324, https://doi.org/10.1016/0009-2509(90)80111-q.Search in Google Scholar

Vervloet, D., Kapteijn, F., Nijenhuis, J., and van Ommen, J.R. (2012). Fischer-Tropsch reaction-diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability. Catal. Sci. Technol. 2: 1221–1233, https://doi.org/10.1039/c2cy20060k.Search in Google Scholar

Vik, C.B., Solsvik, J., Hillestad, M., and Jakobsen, H.A. (2015). Modeling of a slurry bubble column reactor for the production of biofuels via the Fischer-Tropsch synthesis. Chem. Eng. Technol. 38: 690–700, https://doi.org/10.1002/ceat.201400647.Search in Google Scholar

Visconti, C.G. and Mascellaro, M. (2013). Calculating the product yields and the vapor-liquid equilibrium in the low-temperature Fischer-Tropsch synthesis. Catal. Today 214: 61–73, https://doi.org/10.1016/j.cattod.2012.10.016.Search in Google Scholar

Vortmeyer, D. and Haidegger, E. (1991). Discrimination of three approaches to evaluate heat fluxes for wall-cooled fixed bed chemical reactors. Chem. Eng. Sci. 46: 2651–2660, https://doi.org/10.1016/0009-2509(91)80058-7.Search in Google Scholar

van de Loosdrecht, J., Botes, F.G., Ciobica, I.M., Ferreira, A.C., Gibson, P., Moodley, D.J., Saib, A.M., Visagie, J.L., Weststrate, C.J., and Niemantsverdriet, J.W. (2013). Fischer-Tropsch synthesis: catalysts and chemistry. In: Reedijk, J. and Poeppelmeier, K. (Eds.), Comprehensive inorganic chemistry II: from elements to applications. Elsevier, Amsterdam, Netherlands, pp. 525–557.10.1016/B978-0-08-097774-4.00729-4Search in Google Scholar

van der Laan, G.P. (1999). Kinetics, selectivity and scale up of the Fischer-Tropsch synthesis, Ph.D. thesis. Groningen, University of Groningen.Search in Google Scholar

van der Laan, G.P., Beenackers, A.A.C.M., and Krishna, R. (1999). Multicomponent reaction engineering model for Fe-catalyzed Fischer-Tropsch synthesis in commercial scale slurry bubble column reactors. Chem. Eng. Sci. 54: 5013–5019, https://doi.org/10.1016/s0009-2509(99)00225-0.Search in Google Scholar

Wang, T., Wang, J., and Jin, Y. (2007). Slurry reactors for gas-to-liquid processes: a review. Ind. Eng. Chem. Res. 46: 5824–5847, https://doi.org/10.1021/ie070330t.Search in Google Scholar

Wang, Y., Fan, W., Liu, Y., Zeng, Z., Hao, X., Chang, M., Zhang, C., Xu, Y., Xiang, H., and Li, Y. (2008). Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors. Chem. Eng. Process. Process Intensif. 47: 222–228, https://doi.org/10.1016/j.cep.2007.02.011.Search in Google Scholar

Wang, Y.N., Xu, Y.Y., Li, Y.W., Zhao, Y.L., and Zhang, B.J. (2003). Heterogeneous modeling for fixed-bed Fischer-Tropsch synthesis: reactor model and its applications. Chem. Eng. Sci. 58: 867–875, https://doi.org/10.1016/s0009-2509(02)00618-8.Search in Google Scholar

Wang, Y.N., Xu, Y.Y., Xiang, H.W., Li, Y.W., and Zhang, B.J. (2001). Modeling of catalyst pellets for Fischer-Tropsch synthesis. Ind. Eng. Chem. Res. 40: 4324–4335, https://doi.org/10.1021/ie010080v.Search in Google Scholar

Yates, I.C. and Satterfield, C.N. (1991). Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst. Energy Fuel. 5: 168–173, https://doi.org/10.1021/ef00025a029.Search in Google Scholar

Zimmerman, W.H., Rossin, J.A., and Bukur, D.B. (1989). Effect of particle size on the activity of a fused iron Fischer-Tropsch catalyst. Ind. Eng. Chem. Res. 28: 406–413, https://doi.org/10.1021/ie00088a005.Search in Google Scholar

Received: 2022-08-01
Accepted: 2022-12-20
Published Online: 2023-02-14
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2022-0041/html
Scroll to top button