1932

Abstract

Learning is traditionally studied in biological or computational systems. The power of learning frameworks in solving hard inverse problems provides an appealing case for the development of physical learning in which physical systems adopt desirable properties on their own without computational design. It was recently realized that large classes of physical systems can physically learn through local learning rules, autonomously adapting their parameters in response to observed examples of use. We review recent work in the emerging field of physical learning, describing theoretical and experimental advances in areas ranging from molecular self-assembly to flow networks and mechanical materials. Physical learning machines provide multiple practical advantages over computer designed ones, in particular by not requiring an accurate model of the system, and their ability to autonomously adapt to changing needs over time. As theoretical constructs, physical learning machines afford a novel perspective on how physical constraints modify abstract learning theory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040821-113439
2023-03-10
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-040821-113439.html?itemId=/content/journals/10.1146/annurev-conmatphys-040821-113439&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    De Vito E, Rosasco L, Caponnetto A, De Giovannini U, Odone F. 2005. J. Mach. Learn. Res. 6:883904
    [Google Scholar]
  2. 2.
    Murugan A, Zeravcic Z, Brenner MP, Leibler S. 2015. PNAS 112:5459
    [Google Scholar]
  3. 3.
    Stern M, Pinson MB, Murugan A. 2020. Phys. Rev. X 10:3031044
    [Google Scholar]
  4. 4.
    Pashine N, Hexner D, Liu AJ, Nagel SR. 2019. Sci. Adv. 5:12eaax4215
    [Google Scholar]
  5. 5.
    Stern M, Arinze C, Perez L, Palmer SE, Murugan A. 2020. PNAS 117:261484350
    [Google Scholar]
  6. 6.
    Stern M, Hexner D, Rocks JW, Liu AJ. 2021. Phys. Rev. X 11:2021045
    [Google Scholar]
  7. 7.
    Pedretti G, Milo V, Ambrogio S, Carboni R, Bianchi S et al. 2017. Sci. Rep. 7:5288
    [Google Scholar]
  8. 8.
    Hebb DO. 2005. The Organization of Behavior: A Neuropsychological Theory London: Psychology
    [Google Scholar]
  9. 9.
    Micali G, Endres RG. 2016. Curr. Opin. Microbiol. 30:815
    [Google Scholar]
  10. 10.
    Bull MS, Prakash VN, Prakash M. 2021. arXiv:2107.02934
  11. 11.
    Marbach S, Ziethen N, Bastin L, Baeuerle F, Alim K. 2021. bioRxiv: 2021.12.29.474405
  12. 12.
    Ristroph L, Ristroph G, Morozova S, Bergou AJ, Chang S et al. 2013. J. R. Soc. Interface 10:8520130237
    [Google Scholar]
  13. 13.
    Peleg O, Peters JM, Salcedo MK, Mahadevan L. 2018. Nat. Phys. 14:12119398
    [Google Scholar]
  14. 14.
    Braitenberg V. 1986. Vehicles: Experiments in Synthetic Psychology Cambridge, MA: MIT Press
    [Google Scholar]
  15. 15.
    Kanai R, Komura Y, Shipp S, Friston K. 2015. Philos. Trans. R. Soc. B: Biol. Sci. 370:166820140169
    [Google Scholar]
  16. 16.
    Tlusty T, Libchaber A, Eckmann JP. 2017. Phys. Rev. X 7:2021037
    [Google Scholar]
  17. 17.
    Husain K, Murugan A. 2020. Mol. Biol. Evol. 37:10286574
    [Google Scholar]
  18. 18.
    Wang Y, Chen M, Zhou F, Ma E 2002. Nature 419:691091215
    [Google Scholar]
  19. 19.
    Karbasian H, Tekkaya AE. 2010. J. Mater. Proc. Technol. 210:15210318
    [Google Scholar]
  20. 20.
    Baird DG, Collias DI. 2014. Polymer Processing: Principles and Design Hoboken, NJ: Wiley
    [Google Scholar]
  21. 21.
    Keim NC, Paulsen JD, Zeravcic Z, Sastry S, Nagel SR. 2019. Rev. Mod. Phys. 91:3035002
    [Google Scholar]
  22. 22.
    Lillicrap TP, Santoro A, Marris L, Akerman CJ, Hinton G. 2020. Nat. Rev. Neurosci. 21:633546
    [Google Scholar]
  23. 23.
    Nemenman I. 2005. Neural Comput. 17:9200633
    [Google Scholar]
  24. 24.
    Caporale N, Dan Y 2008. Annu. Rev. Neurosci. 31:2546
    [Google Scholar]
  25. 25.
    Bengio Y, Lee DH, Bornschein J, Mesnard T, Lin Z. 2015. arXiv:1502.04156
  26. 26.
    Scellier B. 2021. A deep learning theory for neural networks grounded in physics PhD Thesis, Univ. Montr., Montreal, Quebec Can: arXiv:2103.09985
    [Google Scholar]
  27. 27.
    Dillavou S, Stern M, Liu AJ, Durian DJ. 2022. Phys. Rev. Appl. 18:014040
    [Google Scholar]
  28. 28.
    Wycoff JF, Dillavou S, Stern M, Liu AJ, Durian DJ. 2022. J. Chem. Phys. 156:14144903
    [Google Scholar]
  29. 29.
    Burr GW, Shelby RM, Sebastian A, Kim S, Kim S et al. 2017. Adv. Phys.: X 2:89124
    [Google Scholar]
  30. 30.
    Marković D, Mizrahi A, Querlioz D, Grollier J. 2020. Nat. Rev. Phys. 2:9499510
    [Google Scholar]
  31. 31.
    Piccinini G. 2015. Physical Computation: A Mechanistic Account Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  32. 32.
    Adleman LM. 1994. Science 266:5187102124
    [Google Scholar]
  33. 33.
    Soloveichik D, Cook M, Winfree E, Bruck J. 2008. Nat. Comput. 7:461533
    [Google Scholar]
  34. 34.
    Tanaka G, Yamane T, Héroux JB, Nakane R, Kanazawa N et al. 2019. Neural Netw. 115:10023
    [Google Scholar]
  35. 35.
    Jaeger H, Haas H. 2004. Science 304:56677880
    [Google Scholar]
  36. 36.
    Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T et al. 2014. Science 345:619764750
    [Google Scholar]
  37. 37.
    Bertoldi K, Vitelli V, Christensen J, Van Hecke M. 2017. Nat. Rev. Mater. 2:1117066
    [Google Scholar]
  38. 38.
    Rocks JW, Pashine N, Bischofberger I, Goodrich CP, Liu AJ, Nagel SR. 2017. PNAS 114:10252025
    [Google Scholar]
  39. 39.
    Hexner D, Pashine N, Liu AJ, Nagel SR. 2020. Phys. Rev. Res. 2:4043231
    [Google Scholar]
  40. 40.
    Hexner D, Liu AJ, Nagel SR. 2020. PNAS 117:503169095
    [Google Scholar]
  41. 41.
    Hagh VF, Nagel SR, Liu AJ, Manning ML, Corwin EI. 2022. PNAS 119:19e2117622119
    [Google Scholar]
  42. 42.
    Zhong W, Schwab DJ, Murugan A. 2017. J. Stat. Phys. 167:380626
    [Google Scholar]
  43. 43.
    Evans CG, O'Brien J, Winfree E, Murugan A 2022. arxiv:2207.06399
  44. 44.
    Wei B, Dai M, Yin P. 2012. Nature 485:62326
    [Google Scholar]
  45. 45.
    Kramar M, Alim K 2021. PNAS 118:10e2007815118
    [Google Scholar]
  46. 46.
    Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y et al. 2018. Science 361:640610048
    [Google Scholar]
  47. 47.
    Wright LG, Onodera T, Stein MM, Wang T, Schachter DT et al. 2022. Nature 601:789454955
    [Google Scholar]
  48. 48.
    Dudte LH, Vouga E, Tachi T, Mahadevan L. 2016. Nat. Mater. 15:558388
    [Google Scholar]
  49. 49.
    Stern M, Jayaram V, Murugan A. 2018. Nat. Commun. 9:4303
    [Google Scholar]
  50. 50.
    Stern M, Pinson MB, Murugan A. 2017. Phys. Rev. X 7:4041070
    [Google Scholar]
  51. 50a.
    Arinze C, Stern M, Nagel SR, Murugan A. 2022. arXiv:2206.08886
  52. 51.
    Bray D. 1995. Nature 376:653830712
    [Google Scholar]
  53. 52.
    Winfree E. 1998. Algorithmic self-assembly of DNA. PhD Thesis, Calif. Inst. Technol., Pasadena, CA
  54. 53.
    Cherry KM, Qian L. 2018. Nature 559:771437076
    [Google Scholar]
  55. 54.
    Zeravcic Z, Manoharan VN, Brenner MP. 2017. Rev. Mod. Phys. 89:3031001
    [Google Scholar]
  56. 55.
    Biffi S, Cerbino R, Bomboi F, Paraboschi EM, Asselta R et al. 2013. PNAS 110:391563337
    [Google Scholar]
  57. 56.
    Needleman D, Dogic Z. 2017. Nat. Rev. Mater. 2:917048
    [Google Scholar]
  58. 57.
    Schaus TE, Woo S, Xuan F, Chen X, Yin P 2017. Nat. Commun. 8:696
    [Google Scholar]
  59. 58.
    Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K et al. 2002. Nat. Biotechnol. 20:547377
    [Google Scholar]
  60. 59.
    Lee JH, Lee SH, Baek C, Chun H, Ryu Jh et al. 2017. Biosystems 158:19
    [Google Scholar]
  61. 60.
    Baek C, Lee SW, Lee BJ, Kwak DH, Zhang BT. 2019. Molecules 24:71409
    [Google Scholar]
  62. 61.
    Baum EB. 1995. Science 268:521058385
    [Google Scholar]
  63. 62.
    Mills AP, Yurke B, Platzman PM. 1999. Biosystems 52:17580
    [Google Scholar]
  64. 63.
    Zhong W, Schwab DJ, Murugan A. 2017. J. Stat. Phys. 167:380626
    [Google Scholar]
  65. 64.
    Hopfield JJ. 1982. PNAS 79:8255458
    [Google Scholar]
  66. 65.
    Jacobs WM. 2021. Phys. Rev. Lett. 126:25258101
    [Google Scholar]
  67. 66.
    Shrinivas K, Brenner MP. 2021. PNAS 118:45e2108551118
    [Google Scholar]
  68. 67.
    Lee JB, Peng S, Yang D, Roh YH, Funabashi H et al. 2012. Nat. Nanotechnol. 7:1281620
    [Google Scholar]
  69. 68.
    Mohammed AM, Sulc P, Zenk J, Schulman R. 2017. Nat. Nanotechnol. 12:431216
    [Google Scholar]
  70. 69.
    Schulman R, Yurke B, Winfree E. 2012. PNAS 109:17640510
    [Google Scholar]
  71. 70.
    Gandhi N, Ashkenasy G, Tannenbaum E. 2007. J. Theor. Biol. 249:5866
    [Google Scholar]
  72. 71.
    Lakin MR, Stefanovic D. 2016. ACS Synthet. Biol. 5:888597
    [Google Scholar]
  73. 72.
    Poole W, Ortiz-Muñoz A, Behera A, Jones NS, Ouldridge TE et al. 2017. DNA Computing and Molecular Programming. DNA 23. Lecture Notes in Computer Science, Vol. 10467 R Brijder, L Qian 21031. Cham, Switz: Springer
    [Google Scholar]
  74. 73.
    Tayar AM, Hagan MF, Dogic Z. 2021. PNAS 118:30e2102873118
    [Google Scholar]
  75. 74.
    Saha S, Nagy TL, Weiner OD. 2018. Philos. Trans. R. Soc. B Biol. Sci. 373:174720170145
    [Google Scholar]
  76. 75.
    Majumdar S, Foucard LC, Levine AJ, Gardel ML. 2018. Soft Matter 14:11205258
    [Google Scholar]
  77. 76.
    Li S, Batra R, Brown D, Chang HD, Ranganathan N et al. 2019. Nature 567:774836165
    [Google Scholar]
  78. 77.
    Cichos F, Gustavsson K, Mehlig B, Volpe G. 2020. Nat. Mach. Intel. 2:294103
    [Google Scholar]
  79. 78.
    Falk MJ, Alizadehyazdi V, Jaeger H, Murugan A. 2021. Phys. Rev. Res. 3:3033291
    [Google Scholar]
  80. 79.
    Rubenstein M, Cornejo A, Nagpal R. 2014. Science 345:619879599
    [Google Scholar]
  81. 80.
    Werfel J, Petersen K, Nagpal R. 2014. Science 343:617275458
    [Google Scholar]
  82. 81.
    Banerjee S, Gardel ML, Schwarz US. 2020. Annu. Rev. Condens. Matter Phys. 11:42139
    [Google Scholar]
  83. 82.
    Tero A, Takagi S, Saigusa T, Ito K, Bebber DP et al. 2010. Science 327:596443942
    [Google Scholar]
  84. 83.
    Katifori E, Szöllősi GJ, Magnasco MO. 2010. Phys. Rev. Lett. 104:4048704
    [Google Scholar]
  85. 84.
    Ronellenfitsch H, Katifori E. 2016. Phys. Rev. Lett. 117:13138301
    [Google Scholar]
  86. 85.
    Anisetti VR, Scellier B, Schwarz JM. 2022. arXiv:2203.12098
  87. 86.
    Kim KH, Gaba S, Wheeler D, Cruz-Albrecht JM, Hussain T et al. 2012. Nano Lett. 12:38995
    [Google Scholar]
  88. 87.
    Grollier J, Querlioz D, Camsari K, Everschor-Sitte K, Fukami S, Stiles MD. 2020. Nat. Electron. 3:736070
    [Google Scholar]
  89. 88.
    Rosenthal E, Greshnikov S, Soudry D, Kvatinsky S. 2016. 2016 IEEE International Symposium on Circuits and Systems (ISCAS)139497. Piscataway, NJ: IEEE
    [Google Scholar]
  90. 89.
    Serrano-Gotarredona T, Masquelier T, Prodromakis T, Indiveri G, Linares-Barranco B. 2013. Front. Neurosci. 7:2
    [Google Scholar]
  91. 90.
    Kendall J, Pantone R, Manickavasagam K, Bengio Y, Scellier B. 2020. arXiv:2006.01981
  92. 91.
    Martin E, Ernoult M, Laydevant J, Li S, Querlioz D et al. 2021. iScience 24:3102222
    [Google Scholar]
  93. 92.
    Sui X, Wu Q, Liu J, Chen Q, Gu G 2020. IEEE Access 8:7077383
    [Google Scholar]
  94. 93.
    Rajendran B, Sebastian A, Schmuker M, Srinivasa N, Eleftheriou E. 2019. IEEE Signal Proc. Mag. 36:697110
    [Google Scholar]
  95. 94.
    Agrawal DK, Jiang R, Reinhart S, Mohammed AM, Jorgenson TD, Schulman R. 2017. ACS Nano 11:10977079
    [Google Scholar]
  96. 95.
    Pashine N. 2021. Phys. Rev. Mater. 5:6065607
    [Google Scholar]
  97. 96.
    Cheng Z, Ríos C, Pernice WH, Wright CD, Bhaskaran H. 2017. Sci. Adv. 3:9e1700160
    [Google Scholar]
  98. 97.
    Bisker G, England JL. 2018. PNAS 115:45E1053138
    [Google Scholar]
  99. 98.
    Fisher RA. 1936. Ann. Eugen. 7:217988
    [Google Scholar]
  100. 99.
    Movellan JR 1991. Connectionist Models: Proceedings of the 1990 Summer School DS Touretzky, JL Elman, TJ Sejnowski, GE Hinton 1017. San Mateo, CA: Morgan Kaufmann Publ.
    [Google Scholar]
  101. 100.
    Xie S, Seung HS. 2003. Neural Comput. 15:244154
    [Google Scholar]
  102. 101.
    Scellier B, Bengio Y. 2017. Front. Comput. Neurosci. 11:24
    [Google Scholar]
  103. 102.
    Stern M, Dillavou S, Miskin MZ, Durian DJ, Liu AJ. 2022. Phys. Rev. Res. 4:2L022037
    [Google Scholar]
  104. 103.
    Lopez-Pastor V, Marquardt F. 2021. arXiv:2103.04992
  105. 104.
    Scellier B, Goyal A, Binas J, Mesnard T, Bengio Y. 2018. arXiv:1808.04873
  106. 105.
    Kim S, Du C, Sheridan P, Ma W, Choi S, Lu WD. 2015. Nano Lett. 15:3220311
    [Google Scholar]
  107. 106.
    Serb A, Bill J, Khiat A, Berdan R, Legenstein R, Prodromakis T. 2016. Nat. Commun. 7:12611
    [Google Scholar]
  108. 107.
    Anisetti VR, Kandala A, Scellier B, Schwarz J. 2022. arXiv:2208.08862
  109. 108.
    Bernstein J, Wang YX, Azizzadenesheli K, Anandkumar A. 2018. Proceed. Mach. Learn. Res. 80:56069
    [Google Scholar]
  110. 109.
    Murugan A, Zou J, Brenner MP. 2015. Nat. Commun. 6:6203
    [Google Scholar]
  111. 110.
    Ventriglia F, Di Maio V. 2002. Biosystems 67:1–328794
    [Google Scholar]
  112. 111.
    Keim NC, Nagel SR. 2011. Phys. Rev. Lett. 107:010603
    [Google Scholar]
  113. 112.
    Bottou L. 2003. Advanced Lectures on Machine Learning14668. Berlin: Springer
    [Google Scholar]
  114. 113.
    McKnight G, Henry C 2005. Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, Vol. 5761 WA Armstrong 11926. Bellingham, WA: SPIE
    [Google Scholar]
  115. 114.
    Lagoudas DC. 2008. Shape Memory Alloys: Modeling and Engineering Applications New York: Springer
    [Google Scholar]
  116. 115.
    Henke M, Gerlach G. 2014. Microsyst. Technol. 20:4–5599606
    [Google Scholar]
  117. 116.
    Zhou Y, Duque CM, Santangelo CD, Hayward RC. 2019. Adv. Funct. Mater. 29:481905273
    [Google Scholar]
  118. 117.
    Sorscher B, Mel G, Ganguli S, Ocko S. 2019. Adv. Neural Inf. Process. Syst. 32:1000313
    [Google Scholar]
  119. 118.
    Hu M, Strachan JP, Li Z, Grafals EM, Davila N et al. 2016. 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, Texas, June 5–9 Hewlett Packard Labs HPE-2016-23. https://www.labs.hpe.com/techreports/2016/HPE-2016-23.pdf
    [Google Scholar]
  120. 119.
    Wang Z, Li C, Song W, Rao M, Belkin D et al. 2019. Nat. Electron. 2:311524
    [Google Scholar]
  121. 120.
    Amari Si, Murata N, Müller KR, Finke M, Yang H. 1995. Adv. Neural Inf. Process. Syst. 8:14551
    [Google Scholar]
  122. 121.
    Bhaumik H, Hexner D. 2022. Phys. Rev. Res 44L042044
    [Google Scholar]
  123. 122.
    Zucker RS, Regehr WG. 2002. Annu. Rev. Physiol. 64:355405
    [Google Scholar]
  124. 123.
    Marom S. 2010. Prog. Neurobiol. 90:1628
    [Google Scholar]
  125. 124.
    Ernoult M, Grollier J, Querlioz D, Bengio Y, Scellier B. 2019. Adv. Neural Inform. Proc. Syst. 32:708191
    [Google Scholar]
  126. 125.
    Bartunov S, Santoro A, Richards BA, Marris L, Hinton GE, Lillicrap T. 2018. arXiv:1807.04587
  127. 126.
    Landauer R. 1961. IBM J. Res. Dev. 5:318391
    [Google Scholar]
  128. 127.
    Fruchart M, Hanai R, Littlewood PB, Vitelli V. 2021. Nature 592:785436369
    [Google Scholar]
  129. 128.
    Seliger P, Young SC, Tsimring LS. 2002. Phys. Rev. E 65:4041906
    [Google Scholar]
  130. 129.
    French RM. 1999. Trends Cogn. Sci. 3:412835
    [Google Scholar]
  131. 130.
    Bahri Y, Kadmon J, Pennington J, Schoenholz SS, Sohl-Dickstein J, Ganguli S. 2020. Annu. Rev. Condens. Matter Phys. 11:50128
    [Google Scholar]
  132. 131.
    Rocks JW, Mehta P. 2022. Phys. Rev. Res. 4:013201
    [Google Scholar]
  133. 132.
    Hertz J, Krogh A, Palmer RG. 2018. Introduction to the Theory of Neural Computation Boca Raton, FL: CRC
    [Google Scholar]
  134. 133.
    Fink TM, Ball RC. 2001. Phys. Rev. Lett. 87:19198103
    [Google Scholar]
  135. 134.
    Hinton GE, Osindero S, Teh YW. 2006. Neural Comput. 18:7152754
    [Google Scholar]
  136. 135.
    Coulais C, Teomy E, De Reus K, Shokef Y, Van Hecke M. 2016. Nature 535:761352932
    [Google Scholar]
  137. 136.
    Pinson MB, Witten TA. 2016. J. Phys. Condens. Matter 28:49495102
    [Google Scholar]
  138. 137.
    Mézard M, Parisi G, Virasoro MA. 1987. Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications, Vol. 9 Singapore: World Sci.
    [Google Scholar]
  139. 138.
    Wagner GP, Altenberg L. 1996. Evolution 50:396776
    [Google Scholar]
  140. 139.
    Johnson ME, Hummer G. 2011. PNAS 108:26038
    [Google Scholar]
  141. 140.
    Huntley MH, Murugan A, Brenner MP. 2016. PNAS 113:21584146
    [Google Scholar]
  142. 141.
    Su CJ, Murugan A, Linton JM, Yeluri A, Bois J et al. 2022. Cell Syst 13:540825.e12
    [Google Scholar]
  143. 142.
    Alon U. 2007. Nat. Rev. Genet. 8:645061
    [Google Scholar]
  144. 143.
    Modes CD, Magnasco MO, Katifori E. 2016. Phys. Rev. X 6:3031009
    [Google Scholar]
  145. 144.
    Kashtan N, Alon U. 2005. PNAS 102:391377378
    [Google Scholar]
  146. 145.
    Hemery M, Rivoire O. 2015. Phys. Rev. E 91:4042704
    [Google Scholar]
  147. 146.
    Bloom JD, Labthavikul ST, Otey CR, Arnold FH. 2006. PNAS 103:15586974
    [Google Scholar]
  148. 147.
    Murugan A, Jaeger HM. 2019. MRS Bull. 44:296105
    [Google Scholar]
  149. 148.
    Falk MJ, Wu J, Matthews A, Sachdeva V, Pashine N et al. 2022. arXiv:2211.02270
  150. 149.
    Pinson MB, Stern M, Carruthers Ferrero A, Witten TA, Chen E, Murugan A 2017. Nat. Commun. 8:15477
    [Google Scholar]
  151. 150.
    Yan L, Ravasio R, Brito C, Wyart M. 2018. Biophys. J. 114:12278798
    [Google Scholar]
  152. 151.
    Recanatesi S, Farrell M, Lajoie G, Deneve S, Rigotti M, Shea-Brown E. 2021. Nat. Commun. 12:1417
    [Google Scholar]
  153. 152.
    Kaneko K, Tsuda I. 2003. Chaos: Interdiscip. J. Nonlinear Sci. 13:392636
    [Google Scholar]
  154. 153.
    Transtrum MK, Machta BB, Brown KS, Daniels BC, Myers CR, Sethna JP. 2015. J. Chem. Phys. 143:07B201_1
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040821-113439
Loading
/content/journals/10.1146/annurev-conmatphys-040821-113439
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error