Skip to main content
Log in

Surface-Wave Anelasticity in Porous Media: Effects of Wave-Induced Mesoscopic Flow

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

We study the anelastic properties (attenuation and velocity dispersion) of surface waves at an interface between a finite water layer and a porous medium described by Biot theory including the frequency-dependent effects due to mesoscopic flow. A closed-form dispersion equation is derived, based on potential functions and open and sealed boundary conditions (BC) at the interface. The analysis indicates the existence of high-order surface modes for both BCs and a slow true surface mode only for sealed BC. The formulation reduces to two particular cases in the absence of water and with infinite-thickness water layer, with the presence of pseudo-versions of Rayleigh and Stoneley waves. The mesoscopic flow affects the propagation of all the pseudo-surface waves, causing significant velocity dispersion and attenuation, whereas the effect of the BC is mainly evident at high frequencies, due to the presence of the slow Biot wave. The mesoscopic-flow peak moves to low frequencies as the thickness of the water layer increases. In all cases, the true surface wave resembles the slow P2 wave, and is hardly affected by the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Data and codes can be available by contacting the corresponding author.

References

  • Adler L, Nagy PB (1994) Measurements of acoustic surface waves on fluid-filled porous rocks. J Geophys Res Solid Earth 99(B9):17863–17869

    Article  Google Scholar 

  • Ba J, Carcione JM, Nie J (2011) Biot–Rayleigh theory of wave propagation in double-porosity media. J Geophys Res Solid Earth 116:B06202

    Article  Google Scholar 

  • Berryman JG, Wang HF (2000) Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. Int J Rock Mech Min Sci 37(1–2):63–78

    Article  Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J Acoust Soc Am 28(2):168–178

    Article  Google Scholar 

  • Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498

    Article  Google Scholar 

  • Carcione JM (2022) Wave Fields in Real Media. Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media. Elsevier Amsterdam (Fourth edition, extended and revised)

  • Carcione JM, Gurevich B (2011) Differential form and numerical implementation of Biot’s poroelasticity equations with squirt dissipation. Geophysics 76(6):N55–N64

    Article  Google Scholar 

  • Carcione JM, Helle HB (2004) The physics and simulation of wave propagation at the ocean bottom. Geophysics 69(3):825–839

    Article  Google Scholar 

  • Carcione JM, Morency C, Santos JE (2010) Computational poroelasticity—a review. Geophysics 75:A229–A243

    Article  Google Scholar 

  • Carcione JM, Bagaini C, Ba J, Wang E, Vesnaver A (2018) Waves at fluid-solid interfaces: explicit versus implicit formulation of the boundary condition. Geophys J Int 215(1):37–48

    Article  Google Scholar 

  • Carcione JM, Gei D, Gurevich B, Ba J (2021) On the normal-incidence reflection coefficient in porous media. Surv Geophys 42(4):923–942

    Article  Google Scholar 

  • Chao G, Smeulders DMJ, Van Dongen MEH (2006) Dispersive surface waves along partially saturated porous media. J Acoust Soc Am 119(3):1347–1355

    Article  Google Scholar 

  • Cheng N, Cheng CH (1996) Estimations of formation velocity, permeability, and shear-wave anisotropy using acoustic logs. Geophysics 61(2):437–443

    Article  Google Scholar 

  • Dahl EJ, Spikes KT (2017) Local and global fluid effects on sonic wave modes. Geophysics 82(6):D369–D381

    Article  Google Scholar 

  • Dai ZJ, Kuang ZB, Zhao SX (2006) Rayleigh waves in a double porosity half-space. J Sound Vib 298(1–2):319–332

    Article  Google Scholar 

  • Deresiewicz H (1962) The effect of boundaries on wave propagation in a liquid-filled porous solid: IV. Surface waves in a half-space. Bull Seismol Soc Am 52(3):627–638

    Article  Google Scholar 

  • Deresiewicz H (1964) The effect of boundaries on wave propagation in a liquid-filled porous solid: VII. Surface waves in a half-space in the presence of a liquid layer. Bull Seismol Soc Am 54(1):425–430

    Article  Google Scholar 

  • Deresiewicz H, Skalak R (1963) On uniqueness in dynamic poroelasticity. Bull Seismol Soc Am 53(4):783–788

    Article  Google Scholar 

  • Dvorkin J, Nur A (1993) Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms. Geophysics 58(4):524–533

    Article  Google Scholar 

  • Dvorkin J, Mavko G, Nur A (1995) Squirt flow in fully saturated rocks. Geophysics 60(1):97–107

    Article  Google Scholar 

  • Feng S, Johnson DL (1983a) High-frequency acoustic properties of a fluid/porous solid interface. I. New surface mode. J Acoust Soc Am 74(3):906–914

    Article  Google Scholar 

  • Feng S, Johnson DL (1983b) High-frequency acoustic properties of a fluid/porous solid interface. II. The 2D reflection Green’s function. J Acoust Soc Am 74(3):915–924

    Article  Google Scholar 

  • Gubaidullin AA, Kuchugurina OY, Smeulders DMJ, Wisse CJ (2004) Frequency-dependent acoustic properties of a fluid/porous solid interface. J Acoust Soc Am 116(3):1474–1480

    Article  Google Scholar 

  • Gurevich B, Ciz R, Denneman AI (2004) Simple expressions for normal-incidence reflection coefficients from an interface between fluid-saturated porous materials. Geophysics 69(6):1372–1377

    Article  Google Scholar 

  • Han Q, Qi L, Shan M, Yin C, Jiang X, Zhu C (2017) Propagation characteristics of interface waves between a porous medium and a sediment-containing two-phase fluid. Ultrasonics 81:73–80

    Article  Google Scholar 

  • Johnson DL, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech 176:379–402

    Article  Google Scholar 

  • Liu X, Greenhalgh S, Zhou B (2009) Transient solution for poro-viscoacoustic wave propagation in double porosity media and its limitations. Geophys J Int 178(1):375–393

    Article  Google Scholar 

  • Liu X, Greenhalgh S, Zhou B, Heinson G (2016) Generalized poroviscoelastic model based on effective Biot theory and its application to borehole guided wave analysis. Geophys J Int 207(3):1472–1483

    Article  Google Scholar 

  • Liu X, Greenhalgh S, Zhou B, Greenhalgh M (2018) Effective Biot theory and its generalization to poroviscoelastic models. Geophys J Int 212(2):1255–1273

    Article  Google Scholar 

  • Lo WC (2008) Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium. Adv Water Resour 31(10):1399–1410

    Article  Google Scholar 

  • Lo WC, Sposito G, Majer E (2005) Wave propagation through elastic porous media containing two immiscible fluids. Water Resour Res 41(2):W02025

    Article  Google Scholar 

  • Markov MG (2009) Low-frequency Stoneley wave propagation at the interface of two porous half-spaces. Geophys J Int 177(2):603–608

    Article  Google Scholar 

  • Masson YJ, Pride SR (2007) Poroelastic finite difference modeling of seismic attenuation and dispersion due to mesoscopic-scale heterogeneity. J Geophys Res: Solid Earth 112(B3):3204

    Google Scholar 

  • Masson YJ, Pride SR (2011) Seismic attenuation due to patchy saturation. J Geophys Res: Solid Earth 116(B3). https://doi.org/10.1029/2010JB007983

  • Mavko G, Jizba D (1991) Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics 56(12):1940–1949

    Article  Google Scholar 

  • Mayes MJ, Nagy PB, Adler L, Bonner BP, Streit R (1986) Excitation of surface waves of different modes at fluid-porous solid interface. J Acoust Soc Am 79(2):249–252

    Article  Google Scholar 

  • Muller DE (1956) A method for solving algebraic equations using an automatic computer. Math Tables Other Aids Comput 10(56):208–215

    Article  Google Scholar 

  • Müller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-a review. Geophysics 75(5):75A147-75A164

    Article  Google Scholar 

  • Norris AN (1989) Stoneley-wave attenuation and dispersion in permeable formations. Geophysics 54(3):330–341

    Article  Google Scholar 

  • Pan Y, Gao L, Bohlen T (2019) High-resolution characterization of near-surface structures by surface-wave inversions: from dispersion curve to full waveform. Surv Geophys 40(2):167–195

    Article  Google Scholar 

  • Pride SR, Berryman JG (2003a) Linear dynamics of double porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phys Rev E 68(3):036603

    Article  Google Scholar 

  • Pride SR, Berryman JG (2003b) Linear dynamics of double porosity dual-permeability materials. II. Fluid transport equations. Phys Rev E 68(3):036604

    Article  Google Scholar 

  • Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res: Solid Earth 109(B1). https://doi.org/10.1029/2003JB002639

    Article  Google Scholar 

  • Qi Q, Cao J, Wang X, Gao J (2021) Influence of interface condition on reflection of elastic waves in fluid-saturated porous media. Geophysics 86(4):MR223–MR233

    Article  Google Scholar 

  • Qiu H, Xia T, Chen W, Yu B (2019) Low-frequency pseudo-Rayleigh and pseudo-Scholte waves at an interface of liquid/soft porous sediment with underlying hard porous sediment substrate. Geophys J Int 219(1):540–552

    Article  Google Scholar 

  • Sharma MD (2012) Rayleigh waves in a partially saturated poroelastic solid. Geophys J Int 189(2):1203–1214

    Article  Google Scholar 

  • Sharma MD (2014) Effect of local fluid flow on Rayleigh waves in a double porosity solid. Bull Seismol Soc Am 104(6):2633–2643

    Article  Google Scholar 

  • Sharma MD (2018) Squirt-flow in fluid-saturated porous media: propagation of Rayleigh waves. Transp Porous Media 122(1):25–42

    Article  Google Scholar 

  • Sidler R, Carcione JM, Holliger K (2010) Simulation of surface waves in porous media. Geophys J Int 183(2):820–832

    Article  Google Scholar 

  • Tajuddin M (1984) Rayleigh waves in a poroelastic half-space. J Acoust Soc Am 75(3):682–684

    Article  Google Scholar 

  • Tang X, Cheng CH (1996) Fast inversion of formation permeability from Stoneley wave logs using a simplified Biot–Rosenbaum model. Geophysics 61(3):639–645

    Article  Google Scholar 

  • Wang Y, Zhao L, Cao C, Yao Q, Yang Z, Cao H, Geng J (2022) Wave-induced fluid pressure diffusion and anelasticity in partially saturated rocks: the influences of boundary conditions. Geophysics 87(5):MR247–MR263

    Article  Google Scholar 

  • Xia J, Xu Y, Luo Y, Miller RD, Cakir R, Zeng C (2012) Advantages of using multichannel analysis of Love waves (MALW) to estimate near-surface shear-wave velocity. Surv Geophys 33(5):841–860

    Article  Google Scholar 

  • Zhang X, Müller TM (2019) Stoneley wave attenuation and dispersion and the dynamic permeability correction. Geophysics 84(4):WA1–WA10

    Article  Google Scholar 

  • Zhang Y, Xu Y, Xia J (2011) Analysis of dispersion and attenuation of surface waves in poroelastic media in the exploration-seismic frequency band. Geophys J Int 187(2):871–888

    Article  Google Scholar 

  • Zhang Y, Xu Y, Xia J, Ping P, Zhang S (2014) On dispersive propagation of surface waves in patchy saturated porous media. Wave Motion 51(8):1225–1236

    Article  Google Scholar 

  • Zhang L, Ba J, Carcione JM (2021) Wave propagation in infinituple-porosity media. J Geophys Res: Solid Earth 126(4):e2020JB021266

    Article  Google Scholar 

  • Zhang L, Ba J, Carcione JM, Wu C (2022) Seismic wave propagation in partially saturated rocks with a fractal distribution of fluid-patch size. J Geophys Res: Solid Earth 127(2):e2021JB023809

    Article  Google Scholar 

  • Zhao L, Han DH, Yao Q, Zhou R, Yan F (2015) Seismic reflection dispersion due to wave-induced fluid flow in heterogeneous reservoir rocks. Geophysics 80(3):D221–D235

    Article  Google Scholar 

  • Zhao L, Yuan H, Yang J, Han DH, Geng J, Zhou R, Li H, Yao Q (2017) Mobility effect on poroelastic seismic signatures in partially saturated rocks with applications in time-lapse monitoring of a heavy oil reservoir. J Geophys Res: Solid Earth 122(11):8872–8891

    Article  Google Scholar 

  • Zhao L, Wang Y, Yao Q, Geng J, Li H, Yuan H, Han DH (2021) Extended Gassmann equation with dynamic volumetric strain: modeling wave dispersion and attenuation of heterogeneous porous rocks. Geophysics 86(3):MR149–MR164

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the comments from the Editor Michael J. Rycroft and three anonymous reviewers, which significantly improve this manuscript. This work has been supported by the “National Nature Science Foundation of China (42174148, 41804095),” the “China Postdoctoral Science Foundation (2020M682242),” and the Qingdao Postdoctoral Applied Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ba.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Complex Coefficients of the Effective Biot Medium

From Pride et al. (2004) and Liu et al. (2009), the complex coefficients are

$$\begin{aligned} a_{11}^{*}= & {} a_{11}-\dfrac{{\textrm{i}}\omega a_{13}^2}{{\textrm{i}}\omega a_{33}-\gamma (\omega )}, \ \ \ \ \ a_{12}^{*}=a_{12}-a_{13}\dfrac{{\textrm{i}}\omega a_{23}+\gamma (\omega )}{{\textrm{i}}\omega a_{33}-\gamma (\omega )}, \nonumber \\ a_{22}^{*}= & {} a_{22}+a_{23}-(a_{23}+a_{33})\dfrac{{\textrm{i}}\omega a_{23}+\gamma (\omega )}{{\textrm{i}}\omega a_{33}-\gamma (\omega )}, \end{aligned}$$
(A1)

where \(a_{ij}\) are the real double-porosity constants corresponding to the high-frequency response for which no internal fluid pressure relaxation can take place. These real coefficients are (Pride et al. 2004)

$$\begin{aligned} a_{11}= & {} 1/K^d, \ \ \ \ \ \ \ \ \ a_{22}=\dfrac{v_1\alpha _1}{K_1^{d}}\left( \dfrac{1}{B_1}-\dfrac{\alpha _1(1-Q_1)}{1-K_1^d/K_2^d}\right) ,\nonumber \\ a_{12}= & {} -\dfrac{v_1Q_1}{K_1^d}\alpha _1, \ \ \ a_{23}=-\dfrac{\alpha _1 \alpha _2 K_1^d/K_2^d}{(1-K_1^d/K_2^d)^2}\left( \dfrac{1}{K^d}-\dfrac{v_1}{K_1^d}-\dfrac{v_2}{K_2^d}\right) ,\nonumber \\ a_{13}= & {} -\dfrac{v_2Q_2}{K_2^d}\alpha _2, \ \ \ a_{33}=\dfrac{v_2\alpha _2}{K_2^{d}}\left( \dfrac{1}{B_2}-\dfrac{\alpha _2(1-Q_2)}{1-K_2^d/K_1^d}\right) , \end{aligned}$$
(A2)

where subscript \(i=\) 1 or 2 denotes the phase 1 or 2, respectively, \(v_i\) is the volume fraction, \(K_i^d\) is the bulk modulus of the dry-rock frame, \(K_\textrm{d}\) is the dry-rock bulk modulus of the composite,

$$\begin{aligned} Q_1=\dfrac{1}{v_1}\dfrac{1-K_2^d/K_\textrm{d}}{1-K_2^d/K_1^d}, \ \ \ \ \, Q_2=\dfrac{1}{v_2}\dfrac{1-K_1^d/K_\textrm{d}}{1-K_1^d/K_2^d}, \end{aligned}$$
(A3)

\(B_i\) is the Skempton coefficient,

$$\begin{aligned} B_i=\dfrac{K_\textrm{s}-K_i^d}{K_\textrm{s}-K_i^d+\phi _i K_i^d(K_\textrm{s}/K_\textrm{f}-1)}, \end{aligned}$$
(A4)

where \(K_\textrm{s}\) and \(K_\textrm{f}\) are the bulk moduli of the grains and fluid, respectively, and \(\phi _i\) is the porosity. Moreover, \(\alpha _i\) is the Biot-Willis coefficient of phase i, given by

$$\begin{aligned} \alpha _i=(1-K_i^d/K_i^u)/B_i, \end{aligned}$$
(A5)

where \(K_i^u\) is the Gassmann wet-rock bulk modulus (confining pressure change divided by dilatation for a sealed sample), and is given by

$$\begin{aligned} K_i^u=\dfrac{K_i^d}{1-B_i(1-K_i^d/K_\textrm{s})}. \end{aligned}$$
(A6)

Substituting equation (A6) into (A5), we obtain

$$\begin{aligned} \alpha _i=1-\dfrac{K_i^d}{K_\textrm{s}}. \end{aligned}$$
(A7)

The frequency-dependent internal transport coefficient \(\gamma (\omega )\) is derived by Pride et al. (2004) as

$$\begin{aligned} \gamma (\omega )=\gamma _\textrm{m}\sqrt{1-{\textrm{i}}\dfrac{\omega }{\omega _\textrm{m}}}, \end{aligned}$$
(A8)

where \(\gamma _\textrm{m}\) and \(\omega _\textrm{m}\) are parameters dependent on the constituent properties and the mesoscopic geometry. When the embedded phase 2 is very permeable, \(\gamma _\textrm{m}\) can be expressed by

$$\begin{aligned} \gamma _\textrm{m}=-\dfrac{\kappa _{1}K_1^d}{\eta L_1^2}\left[ \dfrac{a_{12}+B_0(a_{22}+a_{33})}{R_1-B_0/B_1}\right] \left[ (1+O(\kappa _1/\kappa _2)\right] , \end{aligned}$$
(A9)

where \(\eta\) is the fluid viscosity, \(\kappa _i\) is the permeability of phase i, \(B_0\) is the static Skempton coefficient of the composite, given by

$$\begin{aligned} B_0=-\dfrac{a_{12}+a_{13}}{a_{22}+2a_{23}+a_{33}}, \end{aligned}$$
(A10)

\(R_1\) is the ratio of the average confining pressure in phase 1 to the pressure applied to the external surface of the double-porosity composite, given by

$$\begin{aligned} R_1=Q_1+\dfrac{\alpha _1(1-Q_1)B_0}{1-K_1^d/K_2^d}-\dfrac{v_2}{v_1}\dfrac{\alpha _2(1-Q_2)B_0}{1-K_2^d/K_1^d}, \end{aligned}$$
(A11)

and \(L_1\) represents the characteristic length of the fluid pressure gradient.

In terms of \(\gamma _\textrm{m}\), \(\omega _\textrm{m}\) is

$$\begin{aligned} \omega _\textrm{m}=\dfrac{\eta B_1 K_1^d}{\kappa _1\alpha _1}\left( \gamma _\textrm{m} \dfrac{V}{S}\right) ^2\left( 1+\sqrt{\dfrac{\kappa _1B_2K_2^d\alpha _1}{\kappa _2B_1K_1^d\alpha _2}} \right) ^2, \end{aligned}$$
(A12)

with V/S representing the volume-to-surface ratio, where S is the surface area of the interface between the two phases in each volume V of composite.

In a concentric sphere geometry (a composite (phase 1) of radius R contains a small sphere of radius a of phase 2), satisfying \(\kappa _1/\kappa _2 \ll 1\),

$$\begin{aligned} L_1^2=\dfrac{9}{14}R^2\left[ 1-\dfrac{7}{6}\dfrac{a}{R}+O(a^3/R^3) \right] ,\ \ \ \ \ \dfrac{V}{S}=\dfrac{R^3}{3a^2}. \end{aligned}$$
(A13)

In this case, the volume fractions \(v_1\) and \(v_2\) are defined as

$$\begin{aligned} v_2=\left( \dfrac{a}{R}\right) ^3, \ \ \ \ v_1=1-v_2, \end{aligned}$$
(A14)

and the total porosity is

$$\begin{aligned} \phi =v_1\phi _1+v_2\phi _2. \end{aligned}$$
(A15)

Appendix B: Components of Matrix \({\textbf{M}}\)

The elements of matrix \({\textbf{M}}\) are

$$\begin{aligned} M_{00}= & {} 0, \ \ M_{01}=2\xi _1, \ \ M_{02}=2\xi _2, \ \ M_{03}=-{\textrm{i}}(1+\xi _3^2), \end{aligned}$$
(B1)
$$\begin{aligned} M_{10}= & {} -(1-\textrm{exp}[{-2kH\xi _0}])\rho _0,\nonumber \\ M_{11}= & {} (A+Q+\nu _1(R+Q)+2N)(1/V_1^2)-2N/c^2,\nonumber \\ M_{12}= & {} (A+Q+\nu _2(R+Q)+2N)(1/V_2^2)-2N/c^2,\nonumber \\ M_{13}= & {} 2{\textrm{i}}N \xi _3 /c^2, \end{aligned}$$
(B2)
$$\begin{aligned} M_{20}= & {} \xi _0(1+\textrm{exp}[{-2kH\xi _0}]),\nonumber \\ M_{21}= & {} \xi _1(1-\phi +\phi \nu _1),\nonumber \\ M_{22}= & {} \xi _2(1-\phi +\phi \nu _2),\nonumber \\ M_{23}= & {} -{\textrm{i}}(1-\phi +\phi \nu _3),\ \end{aligned}$$
(B3)
$$\begin{aligned} M_{30}= & {} -(1-\textrm{exp}[{-2kH\xi _0}])\rho _0,\nonumber \\ M_{31}= & {} (Q+R\nu _1)/\phi /V_1^2+{\textrm{i}}(\nu _1-1)\dfrac{\xi _1}{c}Z_I\phi ,\nonumber \\ M_{32}= & {} (Q+R\nu _2)/\phi /V_2^2+{\textrm{i}}(\nu _2-1)\dfrac{\xi _2}{c}Z_I\phi ,\nonumber \\ M_{33}= & {} (\nu _3-1) \dfrac{1}{c} Z_I\phi . \end{aligned}$$
(B4)

Next, we compare the above equations with those of Feng and Johnson (1983a). By letting \(H =+\infty\) and \(P=A+2N\), and defining

$$\begin{aligned} D_0= & {} C_0, \ \ D_1=C_1, \ \ D_2=C_2, \ \ D_3=iC_3,\nonumber \\ \nu _1= & {} -G_{+}, \ \ \nu _2=-G_{-}, \ \ \nu _3=\dfrac{{{\tilde{\tau }}}-1}{{{\tilde{\tau }}}}, \ \ Z_I=T, \end{aligned}$$
(B5)

in the same manner as Feng and Johnson (1983a), the first equation in (30) becomes

$$\begin{aligned} 2\xi _1C_1+2\xi _2C_2+(1+\xi _3^2)C_3=0. \end{aligned}$$
(B6)

By substituting \(\xi _j\) in equation (25) into (B6), we derive equation (C2) of Feng and Johnson (1983a).

The second equation in (30) becomes

$$\begin{aligned}{} & {} \rho _0 c^2C_0+ \bigg (\dfrac{\big [G_{+}(R+Q)-(P+Q)\big ]c^2}{V_1^2}+2N\bigg )C_1\nonumber \\{} & {} \quad +\bigg (\dfrac{\big [G_{-}(R+Q)-(P+Q)\big ]c^2}{V_2^2}+2N\bigg )C_2+2N\xi _3C_3=0, \end{aligned}$$
(B7)

which is Eq. (C1) of Feng and Johnson (1983a).

The third equation in (30) becomes

$$\begin{aligned} \xi _0C_0+\xi _1(1-\phi -\phi G_{+})C_1+\xi _2(1-\phi -\phi G_{-})C_2+\left( 1-\dfrac{\phi }{{{\tilde{\tau }}}}\right) C_3=0, \end{aligned}$$
(B8)

which is equation (C3) of Feng and Johnson (1983a), where they instead use \(\alpha =\tau\).

The last equation in (30) becomes

$$\begin{aligned}{} & {} -\rho _0C_0+\left[ \dfrac{Q-RG_{+}}{\phi V_1^2}-{\textrm{i}}\dfrac{(G_{+}+1)\xi _1T\phi }{c}\right] C_1 \nonumber \\{} & {} \qquad +\left[ \dfrac{Q-RG_{-}}{\phi V_2^2}-{\textrm{i}}\dfrac{(G_{-}+1)\xi _2T\phi }{c}\right] C_2-{\textrm{i}}\dfrac{T\phi }{c{{\tilde{\tau }}}}C_3=0. \end{aligned}$$
(B9)

By multiplying \(-\phi c^2\) on both sides, we derive equation (C4) of Feng and Johnson (1983a).

It is evident that the equations of Feng and Johnson (1983a) are special cases of our equations when \(H=+\infty\). Moreover, our equations use frequency-dependent elastic coefficients associated with the mesoscopic fluid flow, and hence are more realistic for low-frequency surface-wave propagation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, E., Yan, J., He, B. et al. Surface-Wave Anelasticity in Porous Media: Effects of Wave-Induced Mesoscopic Flow. Surv Geophys 44, 1953–1983 (2023). https://doi.org/10.1007/s10712-023-09780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-023-09780-1

Keywords

Navigation