Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 4, 2023

Role of La-based perovskite catalysts in environmental pollution remediation

  • Anusha Jain , Sarang Tamhankar and Yash Jaiswal ORCID logo EMAIL logo

Abstract

Since the advent of the industrial revolution, there has been a constant need of efficient catalysts for abatement of industrial toxic pollutants. This phenomenon necessitated the development of eco-friendly, stable, and economically feasible catalytic materials like lanthanum-based perovskite-type oxides (PTOs) having well-defined crystal structure, excellent thermal, and structural stability, exceptional ionic conductivity, redox behavior, and high tunability. In this review, applicability of La-based PTOs in remediation of pollutants, including CO, NO x and VOCs was addressed. A framework for rationalizing reaction mechanism, substitution effect, preparation methods, support, and catalyst shape has been discussed. Furthermore, reactant conversion efficiencies of best PTOs have been compared with noble-metal catalysts for each application. The catalytic properties of the perovskites including electronic and structural properties have been extensively presented. We highlight that a robust understanding of electronic structure of PTOs will help develop perovskite catalysts for other environmental applications involving oxidation or redox reactions.


Corresponding author: Yash Jaiswal, Chemical Engineering Department, Faculty of Technology, Dharmsinh Desai University Nadiad, Gujarat 387001, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdulhamid, H., Fridell, E., and Skoglundh, M. (2004). Influence of the type of reducing agent (H2, CO, C3H6 and C3H8) on the reduction of stored NOX in a Pt/BaO/Al2O3 model catalyst. Top. Catal. 30–31: 161–168, https://doi.org/10.1023/b:toca.0000029745.87107.b8.10.1023/B:TOCA.0000029745.87107.b8Search in Google Scholar

Aizat, A., Aziz, F., Mohd Sokri, M.N., Sahimi, M.S., Yahya, N., Jaafar, J., Wan Salleh, W.N., Yusof, N., and Ismail, A.F. (2019). Photocatalytic degradation of phenol by LaFeO3 nanocrystalline synthesized by gel combustion method via citric acid route. SN Appl. Sci. 1: 89–102, https://doi.org/10.1007/s42452-018-0104-x.Search in Google Scholar

Alifanti, M., Florea, M., and Pârvulescu, V.I. (2007). Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC. Appl. Catal. B Environ. 70: 400–405, https://doi.org/10.1016/j.apcatb.2005.10.037.Search in Google Scholar

Alifanti, M., Florea, M., Somacescu, S., and Parvulescu, V.I. (2005). Supported perovskites for total oxidation of toluene. Appl. Catal. B Environ. 60: 33–39, https://doi.org/10.1016/j.apcatb.2005.02.018.Search in Google Scholar

Amini, S., Meshkani, F., and Rezaei, M. (2019). Catalytic oxidation of CO over nanocrystalline La1−xCexNiO3 perovskite-type oxides. Chem. Eng. Technol. 42: 2443–2449, https://doi.org/10.1002/ceat.201800008.Search in Google Scholar

Ayodhya, A.S. and Narayanappa, K.G. (2018). An overview of after-treatment systems for diesel engines. Environ. Sci. Pollut. Control Ser. 25: 35034–35047, https://doi.org/10.1007/s11356-018-3487-8.Search in Google Scholar PubMed

Barresi, A.A. and Baldi, G. (1992). Deep catalytic oxidation kinetics of benzene-ethenylbenzene mixtures. Chem. Eng. Sci. 47: 1943–1953, https://doi.org/10.1016/0009-2509(92)80312-Z.Search in Google Scholar

Barresi, A.A. and Baldi, G. (1993). Mixture effects in deep catalytic oxidation of ethanol over platinum. Influence of benzene and ethenylbenzene on rate and selectivity. Chem. Eng. Commun. 123: 31–42, https://doi.org/10.1080/00986449308936163.Search in Google Scholar

Bashan, V. and Ust, Y. (2019). Perovskite catalysts for methane combustion: applications, design, effects for reactivity and partial oxidation. Int. J. Energy Res. 56: 197–205, https://doi.org/10.1002/er.4721.Search in Google Scholar

Belkacemi, K., Larachi, F., and Sayari, A. (2000). Lumped kinetics for solid-catalyzed wet oxidation: a versatile model. J. Catal. 193: 224–237, https://doi.org/10.1006/jcat.2000.2891.Search in Google Scholar

Biendicho, J.J., Shafeie, S., Frenck, L., Gavrilova, D., Böhme, S., Bettanini, A.M., Svedlindh, P., Hull, S., Zhao, Z., Istomin, S.Y., et al.. (2013). Synthesis and characterization of perovskite-type SrxY1−xFeO3−δ (0.63 ≤ x < 1.0) and Sr0.75Y0.25Fe1−yMyO3−δ (M = Cr, Mn, Ni), (y = 0.2, 0.33, 0.5). J. Solid State Chem. 200: 30–38, https://doi.org/10.1016/j.jssc.2013.01.008.Search in Google Scholar

Bonzel, H.P. and Ku, R. (1972). Mechanisms of the catalytic carbon monoxide oxidation on Pt (110). Surf. Sci. 33: 91–106, https://doi.org/10.1016/0039-6028(72)90101-X.Search in Google Scholar

Cavani, F. and Trifiró, F. (1997). Classification of industrial catalysts and catalysis for the petrochemical industry. Catal. Today 34: 269–279, https://doi.org/10.1016/s0920-5861(96)00054-5.Search in Google Scholar

Chagas, C.A., Magalhães, R.N.S.H., and Schmal, M. (2021). The LaCo1−xVxO3 catalyst for CO oxidation in rich H2 stream. Catal. Lett. 151: 409–421, https://doi.org/10.1007/s10562-020-03303-y.Search in Google Scholar

Chang, C.C. and Weng, H.S. (1993). Deep oxidation of toluene on perovskite catalyst. Ind. Eng. Chem. Res. 32: 2930–2933, https://doi.org/10.1021/ie00023a066.Search in Google Scholar

Chen, D.L., Pan, K.L., and Chang, M.B. (2017). Catalytic removal of phenol from gas streams by perovskite-type catalysts. J. Environ. Sci. (China) 56: 131–139, https://doi.org/10.1016/j.jes.2016.04.031.Search in Google Scholar PubMed

Chen, H., Cui, W., Li, D., Tian, Q., He, J., Liu, Q., Chen, X., Cui, M., Qiao, X., Zhang, Z., et al.. (2020). Selectively etching lanthanum to engineer surface cobalt-enriched LaCoO3 perovskite catalysts for toluene combustion. Ind. Eng. Chem. Res. 59: 10804–10812, https://doi.org/10.1021/acs.iecr.0c01182.Search in Google Scholar

Chen, J., Shen, M., Wang, X., Qi, G., Wang, J., and Li, W. (2013a). The influence of nonstoichiometry on LaMnO3 perovskite for catalytic NO oxidation. Appl. Catal. B Environ. 134: 251–257, https://doi.org/10.1016/j.apcatb.2013.01.027.Search in Google Scholar

Chen, J., Shen, M., Wang, X., Wang, J., Su, Y., and Zhao, Z. (2013b). Catalytic performance of NO oxidation over LaMeO3 (Me = Mn, Fe, Co) perovskite prepared by the sol-gel method. Catal. Commun. 37: 105–108, https://doi.org/10.1016/j.catcom.2013.03.039.Search in Google Scholar

Chen, S., Li, H., Hao, Y., Chen, R., and Chen, T. (2020). Porous Mn-based oxides for complete ethanol and toluene catalytic oxidation: the relationship between structure and performance. Catal. Sci. Technol. 10: 1941–1951, https://doi.org/10.1039/c9cy02522g.Search in Google Scholar

Chen, Y.W., Li, B., Niu, Q., Li, L., Kan, J.W., Zhu, S.M., and Shen, S.B. (2016). Combined promoting effects of low-Pd-containing and Cu-doped LaCoO3 perovskite supported on cordierite for the catalytic combustion of benzene. Environ. Sci. Pollut. Res. 23: 15193–15201, https://doi.org/10.1007/s11356-016-6594-4.Search in Google Scholar PubMed

Chien, C.C., Shi, J.Z., and Huang, T.J. (1997). Effect of oxygen vacancy on CO–NO–O2 reaction over yttria-stabilized zirconia-supported copper oxide catalyst. Ind. Eng. Chem. Res. 36: 1544–1551, https://doi.org/10.1021/ie9602724.Search in Google Scholar

Choi, K.H., Lee, D.H., Kim, H.S., Yoon, Y.C., Park, C.S., and Kim, Y.H. (2016). Reaction characteristics of precious-metal-free ternary Mn–Cu–M (M = Ce, Co, Cr, and Fe) oxide catalysts for low-temperature CO oxidation. Ind. Eng. Chem. Res. 55: 4443–4450, https://doi.org/10.1021/ACS.IECR.5B04985.Search in Google Scholar

Choi, S.O., Penninger, M., Kim, C.H., Schneider, W.F., and Thompson, L.T. (2013). Experimental and computational investigation of effect of Sr on NO oxidation and oxygen exchange for La1−xSrxCoO3 perovskite catalysts. ACS Catal. 3: 2719–2728, https://doi.org/10.1021/cs400522r.Search in Google Scholar

Ciambelli, P., Cimino, S., De Rossi, S., Lisi, L., Minelli, G., Porta, P., and Russo, G. (2001). AFeO3 (A = La, Nd, Sm) and LaFe1−xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties. Appl. Catal. B Environ. 29: 239–250, https://doi.org/10.1016/S0926-3373(00)00215-0.Search in Google Scholar

Cimino, S., Colonna, S., De Rossi, S., Faticanti, M., Lisi, L., Pettiti, I., and Porta, P. (2002). Methane combustion and CO oxidation on zirconia-supported La, Mn oxides and LaMnO3 perovskite. J. Catal. 205: 309–317, https://doi.org/10.1006/jcat.2001.3441.Search in Google Scholar

Civera, A., Pavese, M., Saracco, G., and Specchia, V. (2003). Combustion synthesis of perovskite-type catalysts for natural gas combustion. Catal. Today 83: 199–211, https://doi.org/10.1016/S0920-5861(03)00220-7.Search in Google Scholar

Clayton, R.D., Harold, M.P., and Balakotaiah, V. (2009a). Performance features of Pt/BaO lean NOx trap with hydrogen as reductant. AIChE J. 55: 687–700, https://doi.org/10.1002/aic.11710.Search in Google Scholar

Clayton, R.D., Harold, M.P., Balakotaiah, V., and Wan, C.Z. (2009b). Pt dispersion effects during NOx storage and reduction on Pt/BaO/Al2O3 catalysts. Appl. Catal. B Environ. 90: 662–676, https://doi.org/10.1016/j.apcatb.2009.04.029.Search in Google Scholar

Constantinou, C., Li, W., Qi, G., and Epling, W.S. (2013). NOX storage and reduction over a perovskite-based lean NOX trap catalyst. Appl. Catal. B Environ. 134: 66–74, https://doi.org/10.1016/j.apcatb.2012.12.034.Search in Google Scholar

Da, Y., Zeng, L., Wang, C., Mao, T., Chen, R., Gong, C., and Fan, G. (2019). Catalytic oxidation of diesel soot particulates over Pt substituted LaMn1−xPtxO3 perovskite oxides. Catal. Today 327: 73–80, https://doi.org/10.1016/j.cattod.2018.06.007.Search in Google Scholar

Dacquin, J.P., Dujardin, C., and Granger, P. (2008). Surface reconstruction of supported Pd on LaCoO3: consequences on the catalytic properties in the decomposition of N2O. J. Catal. 253: 37–49, https://doi.org/10.1016/j.jcat.2007.10.023.Search in Google Scholar

de Lima, S.M., da Silva, A.M., da Costa, L.O.O., Assaf, J.M., Jacobs, G., Davis, B.H., Mattos, L.V., and Noronha, F.B. (2010). Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Appl. Catal. A Gen. 377: 181–190, https://doi.org/10.1016/j.apcata.2010.01.036.Search in Google Scholar

Deng, J., Dai, H., Jiang, H., Zhang, L., Wang, G., He, H., and Chak Tong, A.U. (2010). Hydrothermal fabrication and catalytic properties of La1−xSrxM1−yFeyO3 (M = Mn, Co) that are highly active for the removal of toluene. Environ. Sci. Technol. 44: 2618–2623, https://doi.org/10.1021/es9031997.Search in Google Scholar PubMed

Deng, J., Zhang, L., Dai, H., He, H., and Au, C. T. (2008). Single-crystalline La0.6Sr0.4CoO3-δ nanowires/nanorods derived hydrothermally without the use of a template: Catalysts highly active for toluene complete oxidation. Catal. Lett. 123: 294–300, https://doi.org/10.1007/s10562-008-9422-8.Search in Google Scholar

Dey, S. and Dhal, G.C. (2019). Catalytic conversion of carbon monoxide into carbon dioxide over spinel catalysts: an overview. Mater. Sci. Energy Technol. 2: 575–588, https://doi.org/10.1016/J.MSET.2019.06.003.Search in Google Scholar

Dey, S., Dhal, G.C., Mohan, D., and Prasad, R. (2017). Characterization and activity of CuMnOx/γ-Al2O3 catalyst for oxidation of carbon monoxide. Mater. Discov. 8: 26–34, https://doi.org/10.1016/J.MD.2017.08.001.Search in Google Scholar

Dey, S., Dhal, G.C., Mohan, D., and Prasad, R. (2019). Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review. Adv. Compos. Hybrid Mater. 2: 626–656, https://doi.org/10.1007/s42114-019-00126-3.Search in Google Scholar

Dhal, G.C., Dey, S., Mohan, D., and Prasad, R. (2017). Study of Fe, Co, and Mn-based perovskite-type catalysts for the simultaneous control of soot and NOX from diesel engine exhaust. Mater. Discov. 10: 37–42, https://doi.org/10.1016/j.md.2018.04.002.Search in Google Scholar

Díaz, C., Urán, L., and Santamaria, A. (2021). Preparation method effect of La0.9K0.1Co0.9Ni0.1O3 perovskite on catalytic soot oxidation. Fuel 295: 120605, https://doi.org/10.1016/j.fuel.2021.120605.Search in Google Scholar

Díaz, E., Mohedano, A.F., Calvo, L., Gilarranz, M.A., Casas, J.A., and Rodríguez, J.J. (2007). Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chem. Eng. J. 131: 65–71, https://doi.org/10.1016/j.cej.2006.12.020.Search in Google Scholar

Dong, B., Li, Q., Gan, Q., and Zhao, X. (2020). Removal of simulated Nox from motor vehicle exhaust by high-voltage pulsed discharge coupled with LaMn1−xFexO3catalyst. J. Environ. Chem. Eng. 8: 103554, https://doi.org/10.1016/j.jece.2019.103554.Search in Google Scholar

Dreyer, M., Krebs, M., Najafishirtari, S., Rabe, A., Friedel Ortega, K., and Behrens, M. (2021). The effect of Co incorporation on the CO oxidation activity of LaFe1−xCoxO3 perovskites. Catalysts 11: 550, https://doi.org/10.3390/catal11050550.Search in Google Scholar

Du, S., Wang, S., Guo, Y., Lu, X., Tang, W., Ding, Y., Mao, X., and Gao, P.X. (2018). Rational design, synthesis and evaluation of ZnO nanorod array supported Pt:La0.8Sr0.2MnO3 lean NOx traps. Appl. Catal. B Environ. 236: 348–358, https://doi.org/10.1016/j.apcatb.2018.05.007.Search in Google Scholar

Eftaxias, A., Font, J., Fortuny, A., Giralt, J., Fabregat, A., and Stüber, F. (2001). Kinetic modelling of catalytic wet air oxidation of phenol by simulated annealing. Appl. Catal. B Environ. 33: 175–190, https://doi.org/10.1016/S0926-3373(01)00178-3.Search in Google Scholar

Einaga, H., Hyodo, S., and Teraoka, Y. (2010). Complete oxidation of benzene over perovskite-type oxide catalysts. Top. Catal. 53: 629–634, https://doi.org/10.1007/s11244-010-9497-5.Search in Google Scholar

Epling, W.S., Campbell, L.E., Yezerets, A., Currier, N.W., and Parks, J.E. (2004). Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal. Rev. – Sci. Eng. 46: 163–245, https://doi.org/10.1081/CR-200031932.Search in Google Scholar

Esplugas, S., Giménez, J., Contreras, S., Pascual, E., and Rodríguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Res. 36: 1034–1042, https://doi.org/10.1016/S0043-1354(01)00301-3.Search in Google Scholar

Fang, F., Feng, N., Wang, L., Meng, J., Liu, G., Zhao, P., Gao, P., Ding, J., Wan, H., and Guan, G. (2018). Fabrication of perovskite-type macro/mesoporous La1−xKxFeO3−Δ nanotubes as an efficient catalyst for soot combustion. Appl. Catal. B Environ. 236: 184–194, https://doi.org/10.1016/j.apcatb.2018.05.030.Search in Google Scholar

Farhang, Y., Taheri-Nassaj, E., and Rezaei, M. (2018). Pd doped LaSrCuO4 perovskite nano-catalysts synthesized by a novel solid state method for CO oxidation and methane combustion. Ceram. Int. 44: 21499–21506, https://doi.org/10.1016/j.ceramint.2018.08.211.Search in Google Scholar

Feng, N., Chen, C., Meng, J., Liu, G., Fang, F., Wang, L., Wan, H., and Guan, G. (2017). K–Mn supported on three-dimensionally ordered macroporous La0.8Ce0.2FeO3 catalysts for the catalytic combustion of soot. Appl. Surf. Sci. 399: 114–122, https://doi.org/10.1016/j.apsusc.2016.12.066.Search in Google Scholar

Forslund, R.P., Hardin, W.G., Rong, X., Abakumov, A.M., Filimonov, D., Alexander, C.T., Mefford, J.T., Iyer, H., Kolpak, A.M., Johnston, K.P., et al.. (2018). Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexO4 ± δ Ruddlesden-Popper oxides. Nat. Commun. 9: 1–11, https://doi.org/10.1038/s41467-018-05600-y.Search in Google Scholar PubMed PubMed Central

Forzatti, P., Castoldi, L., Nova, I., Lietti, L., and Tronconi, E. (2006). NOx removal catalysis under lean conditions. Catal. Today 117: 316–320, https://doi.org/10.1016/j.cattod.2006.05.055.Search in Google Scholar

Gallagher, P.K., Johnson, D.W., and Schrey, F. (1974). Studies of some supported perovskite oxidation catalysts. Mater. Res. Bull. 9: 1345–1352, https://doi.org/10.1016/0025-5408(74)90057-9.Search in Google Scholar

Gallego, G.S., Mondragón, F., Barrault, J., Tatibouët, J.M., and Batiot-Dupeyrat, C. (2006). CO2 reforming of CH4 over La–Ni based perovskite precursors. Appl. Catal. A Gen. 311: 164–171, https://doi.org/10.1016/j.apcata.2006.06.024.Search in Google Scholar

Gangwal, S.K., Mullins, M.E., Spivey, J.J., Caffrey, P.R., and Tichenor, B.A. (1988). Kinetics and selectivity of deep catalytic oxidation of n-hexane and benzene. Appl. Catal. 36: 231–247, https://doi.org/10.1016/S0166-9834(00)80118-9.Search in Google Scholar

Gao, B., Deng, J., Liu, Y., Zhao, Z., Li, X., Wang, Y., and Dai, H. (2013). Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide. Cuihua Xuebao/Chin. J. Catal. 34: 2223–2229, https://doi.org/10.1016/s1872-2067(12)60689-5.Search in Google Scholar

Gao, P., Li, N., Wang, A., Wang, X., and Zhang, T. (2013). Perovskite LaMnO3 hollow nanospheres: the synthesis and the application in catalytic wet air oxidation of phenol. Mater. Lett. 92: 173–176, https://doi.org/10.1016/j.matlet.2012.10.091.Search in Google Scholar

Garvin, D. (1954). The oxidation of carbon monoxide in the presence of ozone. J. Am. Chem. Soc. 76: 1523–1527, https://doi.org/10.1021/ja01635a017.Search in Google Scholar

Gholizadeh, A. and Malekzadeh, A. (2017). Structural and redox features of La0.7Bi0.3Mn1−xCoxO3 nanoperovskites for ethane combustion and CO oxidation. Int. J. Appl. Ceram. Technol. 14: 404–412, https://doi.org/10.1111/ijac.12650.Search in Google Scholar

Giraudon, J.M., Elhachimi, A., Wyrwalski, F., Siffert, S., Aboukaïs, A., Lamonier, J.F., and Leclercq, G. (2007). Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene. Appl. Catal. B Environ. 75: 157–166, https://doi.org/10.1016/j.apcatb.2007.04.005.Search in Google Scholar

González-Velasco, J.R., Pereda-Ayo, B., De-La-Torre, U., Urrutxua, M., and López-Fonseca, R. (2018). NOx storage and reduction coupled with selective catalytic reduction for NOx removal in light-duty vehicles. ChemCatChem 10: 2928–2940, https://doi.org/10.1002/cctc.201800392.Search in Google Scholar

Granger, P. and Parvulescu, V.I. (2011). Catalytic NOx abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem. Rev. 111: 3155–3207, https://doi.org/10.1021/cr100168g.Search in Google Scholar PubMed

Gu, Q., Wang, L., Wang, Y., and Li, X. (2019). Effect of praseodymium substitution on La1−xPrxMnO3 (x = 0–0.4) perovskites and catalytic activity for NO oxidation. J. Phys. Chem. Solid. 133: 52–58, https://doi.org/10.1016/j.jpcs.2019.05.001.Search in Google Scholar

Guo, L., Bo, L., Li, Y., Jiang, Z., Tian, Y., and Li, X. (2021). Sr doping effect on the structure property and NO oxidation performance of dual-site doped perovskite La(Sr)Co(Fe)O3. Solid State Sci. 113: 106519, https://doi.org/10.1016/j.solidstatesciences.2020.106519.Search in Google Scholar

Guo, X., Meng, M., Dai, F., Li, Q., Zhang, Z., Jiang, Z., Zhang, S., and Huang, Y. (2013). NOx-assisted soot combustion over dually substituted perovskite catalysts La1−xKxCo1−yPdyO3−δ. Appl. Catal. B Environ. 142: 278–289, https://doi.org/10.1016/j.apcatb.2013.05.036.Search in Google Scholar

He, C., Li, P., Cheng, J., Hao, Z.P., and Xu, Z.P. (2010). A comprehensive study of deep catalytic oxidation of benzene, toluene, ethyl acetate, and their mixtures over Pd/ZSM-5 catalyst: mutual effects and kinetics. Water Air Soil Pollut. 209: 365–376, https://doi.org/10.1007/s11270-009-0205-7.Search in Google Scholar

Hodjati, S., Petit, C., Pitchon, V., and Kiennemann, A. (2000). Absorption/desorption of NO(x) process on perovskites. Nature and stability of the species formed on BaSnO3. Appl. Catal. B Environ. 27: 117–126, https://doi.org/10.1016/S0926-3373(00)00139-9.Search in Google Scholar

Hosseini, S.A., Sadeghi, M.T., Alemi, A., Niaei, A., Salari, D., and Kafi-Ahmadi, L. (2010). Synthesis, characterization, and performance of LaZnxFe1−xO3 perovskite nanocatalysts for toluene combustion. Cuihua Xuebao/Chin. J. Catal. 31: 747–750, https://doi.org/10.1016/S1872-2067(09)60083-8.Search in Google Scholar

Huang, H., Liu, Y., Tang, W., and Chen, Y. (2008). Catalytic activity of nanometer La1−xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion. Catal. Commun. 9: 55–59, https://doi.org/10.1016/j.catcom.2007.05.004.Search in Google Scholar

Huang, J., Wang, K., Huang, X., and Huang, J. (2020). Deep oxidation of benzene over LaCoO3 catalysts synthesized via a salt-assisted sol-gel process. Mol. Catal. 493: 111073, https://doi.org/10.1016/j.mcat.2020.111073.Search in Google Scholar

Huang, Z., Zhao, M., Luo, J., Zhang, X., Liu, W., Wei, Y., Zhao, J., and Song, Z. (2020). Interaction in LaOx–Co3O4 for highly efficient purification of toluene: insight into LaOx content and synergistic effect contribution. Separ. Purif. Technol. 251: 1–11, https://doi.org/10.1016/j.seppur.2020.117369.Search in Google Scholar

Hueso, J.L., Martínez-Martínez, D., Caballero, A., González-Elipe, A.R., Mun, B.S., and Salmerón, M. (2009). Near-ambient X-ray photoemission spectroscopy and kinetic approach to the mechanism of carbon monoxide oxidation over lanthanum substituted cobaltites. Catal. Commun. 10: 1898–1902, https://doi.org/10.1016/j.catcom.2009.06.022.Search in Google Scholar

Hwang, J., Rao, R.R., Giordano, L., Katayama, Y., Yu, Y., and Shao-Horn, Y. (2017). Perovskites in catalysis and electrocatalysis. Science 358: 751–756, https://doi.org/10.1126/science.aam7092.Search in Google Scholar PubMed

Idriss, H. and Barteau, M.A. (2000). Active sites on oxides: from single crystals to catalysts. Adv. Catal. 45: 261–331, https://doi.org/10.1016/S0360-0564(02)45016-X.Search in Google Scholar

Ismagilov, Z.R. and Kerzhentsev, M.A. (1990). Catalytic fuel combustion: a way of reducing emission of nitrogen oxides. Catal. Rev. 32: 51–103, https://doi.org/10.1080/01614949009349940.Search in Google Scholar

Jain, A., Pal, S.L., Jaiswal, Y., and Srivastava, S. (2021a). XRD and TG-DTG probes for thermal stability and durability of CuPbI3: Eu+2/Eu+3 and CuPbI3 perovskite as catalysts. J. Inst. Eng.: Ser. E 103: 1–5, https://doi.org/10.1007/s40034-020-00187-w.Search in Google Scholar

Jain, A., Pal, S.L., Jaiswal, Y., and Srivastava, S. (2021b). Designing a feasible phenol destruction process using LaM1−xCuxO3 (M = Co, Cr, Fe) perovskites as heterogeneous Fenton-like catalysts. Arabian J. Sci. Eng. 47: 1–20, https://doi.org/10.1007/s13369-021-05655-y.Search in Google Scholar

Ji, Y., Choi, J.S., Toops, T.J., Crocker, M., and Naseri, M. (2008). Influence of ceria on the NOx storage/reduction behavior of lean NOx trap catalysts. Catal. Today 136: 146–155, https://doi.org/10.1016/j.cattod.2007.11.059.Search in Google Scholar

Jia, M., Li, X., Zhaorigetu, Shen, Y., and Li, Y. (2011). Activity and deactivation behavior of Au/LaMnO3 catalysts for CO oxidation. J. Rare Earths 29: 213–216, https://doi.org/10.1016/S1002-0721(10)60433-4.Search in Google Scholar

Jiang, Y., Deng, J., Xie, S., Yang, H., and Dai, H. (2015). Au/MnOx/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the complete oxidation of toluene. Ind. Eng. Chem. Res. 54: 900–910, https://doi.org/10.1021/ie504304u.Search in Google Scholar

Jiang, Y., Xie, S., Yang, H., Deng, J., Liu, Y., and Dai, H. (2017). Mn3O4-Au/3DOM La0.6Sr0.4CoO3: high-performance catalysts for toluene oxidation. Catal. Today 281: 437–446, https://doi.org/10.1016/j.cattod.2016.05.012.Search in Google Scholar

Kamal, M.S., Razzak, S.A., and Hossain, M.M. (2016). Catalytic oxidation of volatile organic compounds (VOCs) – a review. Atmos. Environ. 140: 117–134, https://doi.org/10.1016/j.atmosenv.2016.05.031.Search in Google Scholar

Katz, M. (1953). The heterogeneous oxidation of carbon monoxide. Adv. Catal. 5: 177–216, https://doi.org/10.1016/S0360-0564(08)60642-2.Search in Google Scholar

Kayaalp, B., Lee, S., Klauke, K., Seo, J., Nodari, L., Kornowski, A., Jung, W.C., and Mascotto, S. (2019). Template-free mesoporous La0.3Sr0.7FexTi1−xO3 ± Δ with superior oxidation catalysis performance. Appl. Catal. B Environ. 245: 536–545, https://doi.org/10.1016/j.apcatb.2018.12.077.Search in Google Scholar

Kim, C.H., Qi, G., Dahlberg, K., and Li, W. (2010). Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327: 1624–1627, https://doi.org/10.1126/science.1184087.Search in Google Scholar PubMed

Kim, D.H., Kwak, J.H., Szanyi, J., Cho, S.J., and Peden, C.H.F. (2008). Roles of Pt and BaO in the sulfation of Pt/BaO/Al2O3 lean NOx trap materials: sulfur K-edge XANES and Pt LIII XAFS studies. J. Phys. Chem. C 112: 2981–2987, https://doi.org/10.1021/jp077563i.Search in Google Scholar

Kim, K.H. and Ihm, S.K. (2011). Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J. Hazard. Mater. 186: 16–34, https://doi.org/10.1016/j.jhazmat.2010.11.011.Search in Google Scholar PubMed

Kirchnerova, J., Klvana, D., Vaillancourt, J., and Chaouki, J. (1993). Evaluation of some cobalt and nickel based perovskites prepared by freeze-drying as combustion catalysts. Catal. Lett. 21: 77–87, https://doi.org/10.1007/BF00767373.Search in Google Scholar

Kwak, J.H., Kim, D.H., Szailer, T., Peden, C.H.F., and Szanyi, J. (2006). NOx uptake mechanism on Pt/BaO/Al2O3 catalysts. Catal. Lett. 111: 119–126, https://doi.org/10.1007/s10562-006-0153-4.Search in Google Scholar

Lado Ribeiro, A.R., Moreira, N.F.F., Li Puma, G., and Silva, A.M.T. (2019). Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem. Eng. J. 363: 155–173, https://doi.org/10.1016/j.cej.2019.01.080.Search in Google Scholar

Lamb, A.B., Bray, W.C., and Frazer, J.C.W. (1920). The removal of carbon monoxide from air. J. Ind. Eng. Chem. 12: 213–221.10.1021/ie50123a007Search in Google Scholar

Lee, H.M. and Chang, M.B. (2003). Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chem. Plasma Process. 23: 541–558, https://doi.org/10.1023/A:1023239122885.10.1023/A:1023239122885Search in Google Scholar

Li, B., Yang, Q., Peng, Y., Chen, J., Deng, L., Wang, D., Hong, X., and Li, J. (2019). Enhanced low-temperature activity of LaMnO3 for toluene oxidation: the effect of treatment with an acidic KMnO4. Chem. Eng. J. 366: 92–99, https://doi.org/10.1016/j.cej.2019.01.139.Search in Google Scholar

Li, G., Zhang, Y., Wu, L., Wu, F., Wang, R., Zhang, D., Zhu, J., and Li, H. (2012). An efficient round-the-clock La2NiO4 catalyst for breaking down phenolic pollutants. RSC Adv. 2: 4822–4828, https://doi.org/10.1039/c2ra20233f.Search in Google Scholar

Li, X., Chen, C., Liu, C., Xian, H., Guo, L., Lv, J., and Jiang, Z. (2013a). Pd-doped perovskite: an effective catalyst for removal of NO. ACS Catal. 3: 1071–1075.10.1021/cs400136tSearch in Google Scholar

Li, X., Chen, D., Li, N., Xu, Q., Li, H., He, J., and Lu, J. (2021). Highly efficient Pd catalysts loaded on La1−xSrxMnO3 perovskite nanotube support for low-temperature toluene oxidation. J. Alloys Compd. 871: 159575, https://doi.org/10.1016/j.jallcom.2021.159575.Search in Google Scholar

Li, X., Dai, H., Deng, J., Liu, Y., Zhao, Z., Wang, Y., Yang, H., and Au, C.T. (2013b). In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Appl. Catal. A Gen. 458: 11–20, https://doi.org/10.1016/j.apcata.2013.03.022.Search in Google Scholar

Li, X.G., Dong, Y.H., Xian, H., Hernández, W.Y., Meng, M., Zou, H.H., Ma, A.J., Zhang, T.Y., Jiang, Z., Tsubaki, N., et al.. (2011). De-NOx in alternative lean/rich atmospheres on La1−xSrxCoO3 perovskites. Energy Environ. Sci. 4: 3351–3354, https://doi.org/10.1039/c1ee01726h.Search in Google Scholar

Li, Z., Wang, X., Li, X., Zeng, M., Redshaw, C., Cao, R., Sarangi, R., Hou, C., Chen, Z., Zhang, W., et al.. (2022). Engineering surface segregation of perovskite oxide through wet exsolution for CO catalytic oxidation. J. Hazard. Mater. 436: 129110, https://doi.org/10.1016/j.jhazmat.2022.129110.Search in Google Scholar PubMed

Liu, G., Li, J., Yang, K., Tang, W., Liu, H., Yang, J., Yue, R., and Chen, Y. (2015). Effects of cerium incorporation on the catalytic oxidation of benzene over flame-made perovskite La1−xCexMnO3 catalysts. Particuology 19: 60–68, https://doi.org/10.1016/j.partic.2014.07.001.Search in Google Scholar

Liu, Y., Dai, H., Deng, J., Du, Y., Li, X., Zhao, Z., Wang, Y., Gao, B., Yang, H., and Guo, G. (2013a). In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnOx/3DOM LaMnO3 for the combustion of toluene and methanol. Appl. Catal. B Environ. 140: 493–505, https://doi.org/10.1016/j.apcatb.2013.04.051.Search in Google Scholar

Liu, Y., Dai, H., Deng, J., Li, X., Wang, Y., Arandiyan, H., Xie, S., Yang, H., and Guo, G. (2013b). Au/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. J. Catal. 305: 146–153, https://doi.org/10.1016/j.jcat.2013.04.025.Search in Google Scholar

Liu, Y., Dai, H., Du, Y., Deng, J., Zhang, L., Zhao, Z., and Au, C.T. (2012). Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. J. Catal. 287: 149–160, https://doi.org/10.1016/j.jcat.2011.12.015.Search in Google Scholar

Lu, H., Zhang, P., Qiao, Z.A., Zhang, J., Zhu, H., Chen, J., Chen, Y., and Dai, S. (2015). Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance. Chem. Commun. 51: 5910–5913, https://doi.org/10.1039/c5cc00534e.Search in Google Scholar PubMed

Lu, S., Wang, G., Chen, S., Yu, H., Ye, F., and Quan, X. (2018). Heterogeneous activation of peroxymonosulfate by LaCo1−xCuxO3 perovskites for degradation of organic pollutants. J. Hazard. Mater. 353: 401–409, https://doi.org/10.1016/j.jhazmat.2018.04.021.Search in Google Scholar PubMed

Luo, Y., Wang, K., Chen, Q., Xu, Y., Xue, H., and Qian, Q. (2015). Preparation and characterization of electrospun La1−xCexCoOδ: application to catalytic oxidation of benzene. J. Hazard. Mater. 296: 17–22, https://doi.org/10.1016/j.jhazmat.2015.04.031.Search in Google Scholar PubMed

Luo, Y., Wang, K., Zuo, J., Qian, Q., Xu, Y., Liu, X., Xue, H., and Chen, Q. (2017). Enhanced activity for total benzene oxidation over SBA-15 assisted electrospun LaCoO3. Mol. Catal. 436: 259–266, https://doi.org/10.1016/j.mcat.2017.04.030.Search in Google Scholar

Ma, A.J., Wang, S.Z., Liu, C., Xian, H., Ding, Q., Guo, L., Meng, M., Tan, Y.S., Tsubaki, N., Zhang, J., et al.. (2014). Effects of Fe dopants and residual carbonates on the catalytic activities of the perovskite-type La0.7Sr0.3Co1−xFexO3NOx storage catalyst. Appl. Catal. B Environ. 146: 24–34, https://doi.org/10.1016/j.apcatb.2013.06.005.Search in Google Scholar

Ma, Y., Ma, Y., Long, G., Buckley, C.E., Hu, X., and Dong, D. (2020). Electrospun La0.8Ce0.2Fe1−xNixO3 perovskite nanofibrous catalysts for CO oxidation. Appl. Surf. Sci. Adv. 2: 100030, https://doi.org/10.1016/j.apsadv.2020.100030.Search in Google Scholar

Mahyon, N.I., Li, T., Tantra, B.D., Martinez-Botas, R., Wu, Z., and Li, K. (2020). Integrating Pd-doped perovskite catalysts with ceramic hollow fibre substrate for efficient CO oxidation. J. Environ. Chem. Eng. 8: 103897, https://doi.org/10.1016/j.jece.2020.103897.Search in Google Scholar

Mars, P. and van Krevelen, D.W. (1954). Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 3: 41–59, https://doi.org/10.1016/S0009-2509(54)80005-4.Search in Google Scholar

Miao, J., Sunarso, J., Duan, X., Zhou, W., Wang, S., and Shao, Z. (2018). Nanostructured Co–Mn containing perovskites for degradation of pollutants: insight into the activity and stability. J. Hazard. Mater. 349: 177–185, https://doi.org/10.1016/j.jhazmat.2018.01.054.Search in Google Scholar PubMed

Mobini, S., Meshkani, F., and Rezaei, M. (2017). Surfactant-assisted hydrothermal synthesis of CuCr2O4 spinel catalyst and its application in CO oxidation process. J. Environ. Chem. Eng. 5: 4906–4916, https://doi.org/10.1016/J.JECE.2017.09.027.Search in Google Scholar

Monticelli, O., Loenders, R., Jacobs, P.A., and Martens, J.A. (1999). NO(χ) removal from exhaust gas from lean burn internal combustion engines through adsorption on FAU type zeolites cation exchanged with alkali metals and alkaline earth metals. Appl. Catal. B Environ. 21: 215–220, https://doi.org/10.1016/S0926-3373(99)00025-9.Search in Google Scholar

Mountapmbeme Kouotou, P., Vieker, H., Tian, Z.Y., Tchoua Ngamou, P.H., El Kasmi, A., Beyer, A., Gölzhäuser, A., and Kohse-Höinghaus, K. (2014). Structure–activity relation of spinel-type Co–Fe oxides for low-temperature CO oxidation. Catal. Sci. Technol. 4: 3359–3367, https://doi.org/10.1039/C4CY00463A.Search in Google Scholar

Mueller, D.N., MacHala, M.L., Bluhm, H., and Chueh, W.C. (2015). Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 6: 1–8, https://doi.org/10.1038/ncomms7097.Search in Google Scholar PubMed

Muñoz-Batista, M.J., Fernández-García, M., and Kubacka, A. (2015). Promotion of CeO2–TiO2 photoactivity by g-C3N4: ultraviolet and visible light elimination of toluene. Appl. Catal. B Environ. 164: 261–270, https://doi.org/10.1016/j.apcatb.2014.09.037.Search in Google Scholar

Natile, M.M., Ugel, E., Maccato, C., and Glisenti, A. (2007). LaCoO3: effect of synthesis conditions on properties and reactivity. Appl. Catal. B Environ. 72: 351–362, https://doi.org/10.1016/j.apcatb.2006.11.011.Search in Google Scholar

Ngamou, P.H.T. and Bahlawane, N. (2010). Influence of the arrangement of the octahedrally coordinated trivalent cobalt cations on the electrical charge transport and surface reactivity. Chem. Mater. 22: 4158–4165, https://doi.org/10.1021/cm1004642.Search in Google Scholar

Nishihata, Y., Mizuki, J., Akao, T., Tanaka, H., Uenishi, M., Kimura, M., Okamoto, T., and Hamada, N. (2002). Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 418: 164–167, https://doi.org/10.1038/nature00893.Search in Google Scholar PubMed

Noma, Y., Yamane, S., and Kida, A. (2001). Adsorbable organic halides (AOX), AOX formation potential, and PCDDs/DFs in landfill leachate and their removal in water treatment processes. J. Mater. Cycles Waste Manag. 3: 126–134.Search in Google Scholar

Nova, I., Castoldi, L., Lietti, L., Tronconi, E., Forzatti, P., Prinetto, F., and Ghiotti, G. (2004). NOx adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments. J. Catal. 222: 377–388, https://doi.org/10.1016/j.jcat.2003.11.013.Search in Google Scholar

Oemar, U., Ang, M.L., Hee, W.F., Hidajat, K., and Kawi, S. (2014). Perovskite LaxM1−xNi0.8Fe0.2O3 catalyst for steam reforming of toluene: crucial role of alkaline earth metal at low steam condition. Appl. Catal. B Environ. 148: 231–242, https://doi.org/10.1016/j.apcatb.2013.10.001.Search in Google Scholar

Onrubia-Calvo, J.A., Pereda-Ayo, B., De-La-Torre, U., and González-Velasco, J.R. (2017). Key factors in Sr-doped LaBO3 (B = Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Appl. Catal. B Environ. 213: 198–210, https://doi.org/10.1016/j.apcatb.2017.04.068.Search in Google Scholar

Olsson, L., Westerberg, B., Persson, H., Fridell, E., Skoglundh, M., and Andersson, B. (1999). A kinetic study of oxygen adsorption/desorption and NO oxidation over Pt/Al2O3 catalysts. J. Phys. Chem. B 103: 10433–10439, https://doi.org/10.1021/jp9918757.Search in Google Scholar

Onrubia-Calvo, J.A., Pereda-Ayo, B., Bermejo-López, A., Caravaca, A., Vernoux, P., and González-Velasco, J.R. (2019a). Pd-doped or Pd impregnated 30% La0.7Sr0.3CoO3/Al2O3 catalysts for NOx storage and reduction. Appl. Catal. B Environ. 259: 118052, https://doi.org/10.1016/j.apcatb.2019.118052.Search in Google Scholar

Onrubia-Calvo, J.A., Pereda-Ayo, B., Cabrejas, I., De-La-Torre, U., and González-Velasco, J.R. (2020a). Ba-doped versus Sr-doped LaCoO3 perovskites as base catalyst in diesel exhaust purification. Mol. Catal. 488: 110913, https://doi.org/10.1016/j.mcat.2020.110913.Search in Google Scholar

Onrubia-Calvo, J.A., Pereda-Ayo, B., Caravaca, A., De-La-Torre, U., Vernoux, P., and González-Velasco, J.R. (2020b). Tailoring perovskite surface composition to design efficient lean NOx trap Pd–La1−xAxCoO3/Al2O3-type catalysts (with A = Sr or Ba). Appl. Catal. B Environ. 266: 118628, https://doi.org/10.1016/j.apcatb.2020.118628.Search in Google Scholar

Onrubia-Calvo, J.A., Pereda-Ayo, B., De-La-Torre, U., and González-Velasco, J.R. (2019b). Strontium doping and impregnation onto alumina improve the NOx storage and reduction capacity of LaCoO3 perovskites. Catal. Today 333: 208–218, https://doi.org/10.1016/j.cattod.2018.12.031.Search in Google Scholar

Ordóñez, S., Bello, L., Sastre, H., Rosal, R., and Díez, F.V. (2002). Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst. Appl. Catal. B Environ. 38: 139–149, https://doi.org/10.1016/S0926-3373(02)00036-X.Search in Google Scholar

Orge, C.A., Órfão, J.J.M., Pereira, M.F.R., Barbero, B.P., and Cadús, L.E. (2013). Lanthanum-based perovskites as catalysts for the ozonation of selected organic compounds. Appl. Catal. B Environ. 140–141: 426–432, https://doi.org/10.1016/j.apcatb.2013.04.045.Search in Google Scholar

PalDey, S., Gedevanishvili, S., Zhang, W., and Rasouli, F. (2005). Evaluation of a spinel based pigment system as a CO oxidation catalyst. Appl. Catal. B Environ. 56: 241–250, https://doi.org/10.1016/J.APCATB.2004.09.013.Search in Google Scholar

Pan, K.L., Chen, D.L., Pan, G.T., Chong, S., and Chang, M.B. (2017). Removal of phenol from gas streams via combined plasma catalysis. J. Ind. Eng. Chem. 52: 108–120, https://doi.org/10.1016/j.jiec.2017.03.031.Search in Google Scholar

Pan, K.L., Pan, G.T., Chong, S., and Chang, M.B. (2018). Removal of VOCs from gas streams with double perovskite-type catalysts. J. Environ. Sci. (China) 69: 205–216, https://doi.org/10.1016/j.jes.2017.10.012.Search in Google Scholar PubMed

Parravano, G. (1953). The catalytic oxidation of carbon monoxide on nickel oxide. I. Pure nickel oxide. J. Am. Chem. Soc. 75: 1448–1451, https://doi.org/10.1021/ja01102a050.Search in Google Scholar

Parvizi, N., Rahemi, N., Allahyari, S., and Tasbihi, M. (2020). Plasma-catalytic degradation of BTX over ternary perovskite-type La1−x(Co, Zn, Mg, Ba)xMnO3 nanocatalysts. J. Ind. Eng. Chem. 84: 167–178, https://doi.org/10.1016/j.jiec.2019.12.031.Search in Google Scholar

Peng, Y., Si, W., Li, J., Crittenden, J., and Hao, J. (2015). Experimental and DFT studies on Sr-doped LaMnO3 catalysts for NOx storage and reduction. Catal. Sci. Technol. 5: 2478–2485, https://doi.org/10.1039/c5cy00073d.Search in Google Scholar

Peng, Y., Si, W., Luo, J., Su, W., Chang, H., Li, J., Hao, J., and Crittenden, J. (2016). Surface tuning of La0.5Sr0.5CoO3 perovskite catalysts by acetic acid for NOx storage and reduction. Environ. Sci. Technol. 50: 6442–6448, https://doi.org/10.1021/acs.est.6b00110.Search in Google Scholar PubMed

Pereda-Ayo, B., Duraiswami, D., Delgado, J.J., López-Fonseca, R., Calvino, J.J., Bernal, S., and González-Velasco, J.R. (2010). Tuning operational conditions for efficient NOx storage and reduction over a Pt-Ba/Al2O3 monolith catalyst. Appl. Catal. B Environ. 96: 329–337, https://doi.org/10.1016/j.apcatb.2010.02.029.Search in Google Scholar

Pereda-Ayo, B., López-Fonseca, R., and González-Velasco, J.R. (2009). Influence of the preparation procedure of NSR monolithic catalysts on the Pt-Ba dispersion and distribution. Appl. Catal. A Gen. 363: 73–80, https://doi.org/10.1016/j.apcata.2009.04.043.Search in Google Scholar

Pereñíguez, R., Hueso, J.L., Gaillard, F., Holgado, J.P., and Caballero, A. (2012). Study of oxygen reactivity in La12Xsrxcoo32D perovskites for total oxidation of toluene. Catal. Lett. 142: 408–416, https://doi.org/10.1007/s10562-012-0799-z.Search in Google Scholar

Pinto, D. and Glisenti, A. (2019). Pulsed reactivity on LaCoO3-based perovskites: a comprehensive approach to elucidate the CO oxidation mechanism and the effect of dopants. Catal. Sci. Technol. 9: 2749–2757, https://doi.org/10.1039/c9cy00210c.Search in Google Scholar

Qi, G. and Li, W. (2012). Pt-free, LaMnO3 based lean NOx trap catalysts. Catal. Today 184: 72–77, https://doi.org/10.1016/j.cattod.2011.11.012.Search in Google Scholar

Qin, Y., Shen, F., Zhu, T., Hong, W., and Liu, X. (2018). Catalytic oxidation of ethyl acetate over LaBO3 (B = Co, Mn, Ni, Fe) perovskites supported silver catalysts. RSC Adv. 8: 33425–33431, https://doi.org/10.1039/c8ra06933f.Search in Google Scholar PubMed PubMed Central

Rativa-Parada, W., Gómez-Cuaspud, J., Schmal, M., Cruz-Pacheco, A., and Vera-López, E. (2021). Structural and morphological characterization of the perovskite LaFe0.2Cr0.8-xCoxO3 (x = 0.0, 0.2, 0.4, 0.6, 0.8) for selective oxidation of CO. J. Aust. Ceram. Soc. 57: 767–781, https://doi.org/10.1007/s41779-020-00547-0.Search in Google Scholar

Ren, T., Jin, Z., Yang, J., Hu, R., Zhao, F., Gao, X., and Zhao, C. (2019). Highly efficient and stable p-LaFeO3/n-ZnO heterojunction photocatalyst for phenol degradation under visible light irradiation. J. Hazard. Mater. 377: 195–205, https://doi.org/10.1016/j.jhazmat.2019.05.070.Search in Google Scholar PubMed

Resini, C., Catania, F., Berardinelli, S., Paladino, O., and Busca, G. (2008). Catalytic wet oxidation of phenol over lanthanum strontium manganite. Appl. Catal. B Environ. 84: 678–683, https://doi.org/10.1016/j.apcatb.2008.06.005.Search in Google Scholar

Rojas-Cervantes, M.L. and Castillejos, E. (2019). Perovskites as catalysts in advanced oxidation processes for wastewater treatment. Catalysts 9: 101–110, https://doi.org/10.3390/catal9030230.Search in Google Scholar

Rousseau, S., Loridant, S., Delichere, P., Boreave, A., Deloume, J.P., and Vernoux, P. (2009). La(1−x)SrxCo1−yFeyO3 perovskites prepared by sol-gel method: characterization and relationships with catalytic properties for total oxidation of toluene. Appl. Catal. B Environ. 88: 438–447, https://doi.org/10.1016/j.apcatb.2008.10.022.Search in Google Scholar

Royer, S., Alamdari, H., Duprez, D., and Kaliaguine, S. (2005). Oxygen storage capacity of La1−xA′xBO3 perovskites (with A′ = Sr, Ce; B = Co, Mn) – relation with catalytic activity in the CH4 oxidation reaction. Appl. Catal. B Environ. 58: 273–288, https://doi.org/10.1016/j.apcatb.2004.12.010.Search in Google Scholar

Royer, S. and Duprez, D. (2011). Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 3: 24–65, https://doi.org/10.1002/cctc.201000378.Search in Google Scholar

Royer, S., Duprez, D., Can, F., Courtois, X., Batiot-Dupeyrat, C., Laassiri, S., and Alamdari, H. (2014). Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem. Rev. 114: 10292–10368, https://doi.org/10.1021/cr500032a.Search in Google Scholar PubMed

Royer, S., Duprez, D., and Kaliaguine, S. (2006). Oxygen mobility in LaCoO3 perovskites. Catal. Today 112: 99–102, https://doi.org/10.1016/j.cattod.2005.11.020.Search in Google Scholar

Rusevova, K., Köferstein, R., Rosell, M., Richnow, H.H., Kopinke, F.D., and Georgi, A. (2014). LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chem. Eng. J. 239: 322–331, https://doi.org/10.1016/j.cej.2013.11.025.Search in Google Scholar

Sakamoto, Y., Motohiro, T., Matsunaga, S., Okumura, K., Kayama, T., Yamazaki, K., Tanaka, T., Kizaki, Y., Takahashi, N., and Shinjoh, H. (2007). Transient analysis of the release and reduction of NOx using a Pt/Ba/Al2O3 catalyst. Catal. Today 121: 217–225, https://doi.org/10.1016/j.cattod.2006.05.088.Search in Google Scholar

Say, Z., Dogac, M., Vovk, E.I., Kalay, Y.E., Kim, C.H., Li, W., and Ozensoy, E. (2014). Palladium doped perovskite-based NO oxidation catalysts: the role of Pd and B-sites for NOx adsorption behavior via in-situ spectroscopy. Appl. Catal. B Environ. 154: 51–61, https://doi.org/10.1016/j.apcatb.2014.01.038.Search in Google Scholar

Seyfi, B., Baghalha, M., and Kazemian, H. (2009). Modified LaCoO3 nano-perovskite catalysts for the environmental application of automotive CO oxidation. Chem. Eng. J. 148: 306–311, https://doi.org/10.1016/j.cej.2008.08.041.Search in Google Scholar

Shen, M., Zhao, Z., Chen, J., Su, Y., Wang, J., and Wang, X. (2013). Effects of calcium substitute in LaMnO3 perovskites for NO catalytic oxidation. J. Rare Earths 31: 119–123, https://doi.org/10.1016/S1002-0721(12)60244-0.Search in Google Scholar

Shen, Q., Dong, S., Li, S., Yang, G., and Pan, X. (2021). A review on the catalytic decomposition of NO by Perovskite-type oxides. Catalysts 11: 622, https://doi.org/10.3390/catal11050622.Search in Google Scholar

Shi, C., Zhang, Z.S., Crocker, M., Xu, L., Wang, C.Y., Au, C., and Zhu, A.M. (2013). Non-thermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst. Catal. Today 211: 96–103, https://doi.org/10.1016/j.cattod.2013.03.008.Search in Google Scholar

Shou, T., Li, Y., Bernards, M.T., Becco, C., Cao, G., Shi, Y., and He, Y. (2020). Degradation of gas-phase o-xylene via combined non-thermal plasma and Fe doped LaMnO3 catalysts: byproduct control. J. Hazard. Mater. 387: 230–145, https://doi.org/10.1016/j.jhazmat.2019.121750.Search in Google Scholar PubMed

Simonot, L., Garin, F., and Maire, G. (1997). A comparative study of LaCoO3, Co3O4 and LaCoO3–Co3O4: I. Preparation, characterisation and catalytic properties for the oxidation of CO. Appl. Catal. B Environ. 11: 167–179, https://doi.org/10.1016/S0926-3373(96)00046-X.Search in Google Scholar

Singh, C. and Rakesh, M. (2010). Oxidation of phenol using LaMnO3 perovskite, TiO2, H2O2 and UV radiation. Indian J. Chem. Technol. 17: 451–454.Search in Google Scholar

Song, K.S., Cui, H.X., Kim, S.D., and Kang, S.K. (1999). Catalytic combustion of CH4 and CO on La1−xMxMnO3 perovskites. Catal. Today 47: 155–160, https://doi.org/10.1016/S0920-5861(98)00295-8.Search in Google Scholar

Sotelo, J.L., Ovejero, G., Martínez, F., Melero, J.A., and Milieni, A. (2004). Catalytic wet peroxide oxidation of phenolic solutions over a LaTi1−xCuxO3 perovskite catalyst. Appl. Catal. B Environ. 47: 281–294, https://doi.org/10.1016/j.apcatb.2003.09.007.Search in Google Scholar

Stoyanovskii, V.O. and Vedyagin, A.A. (2022). Size effects on the formation of LaAlO3 phase in La-doped γ-Al2O3 after hydrothermal treatment. Ceram. Int. 48: 17449–17459, https://doi.org/10.1016/J.CERAMINT.2022.03.009.Search in Google Scholar

Su, H.Y. and Sun, K. (2015). DFT study of the stability of oxygen vacancy in cubic ABO3 perovskites. J. Mater. Sci. 50: 1701–1709, https://doi.org/10.1007/s10853-014-8731-0.Search in Google Scholar

Sun, Q., Wang, Z., Wang, D., Hong, Z., Zhou, M., and Li, X. (2018). A review on the catalytic decomposition of NO to N2 and O2 catalysts and processes. Catal. Sci. Technol. 8: 4563–4575, https://doi.org/10.1039/c8cy01114a.Search in Google Scholar

Sun, X. and Wu, D. (2019). Monolithic LaBO3 (B = Mn, Co or Ni)/Co3O4/cordierite catalysts for o-xylene combustion. ChemistrySelect 4: 5503–5511, https://doi.org/10.1002/slct.201901034.Search in Google Scholar

Takahashia, N., Shinjoh, H., Iijima, T., Suzuki, T., Yamazaki, K., Yokota, K., Suzuki, H., Miyoshi, N., Matsumoto, S.I., Tanizawa, T., et al.. (1996). The new concept three-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catal. Today 27: 63–69, https://doi.org/10.1016/0920-5861(95)00173-5.Search in Google Scholar

Takeuchi, M., Hidaka, M., and Anpo, M. (2012). Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst. J. Hazard. Mater. 237: 133–139, https://doi.org/10.1016/j.jhazmat.2012.08.011.Search in Google Scholar PubMed

Tanaka, H., Fujikawa, H., and Takahashi, I. (1995). Excellent oxygen storage capacity of perovskite-Pd three way catalysts. SAE Tech. Pap. 104: 289–301, https://doi.org/10.4271/950256.Search in Google Scholar

Tanaka, H. and Misono, M. (2001). Advances in designing perovskite catalysts. Curr. Opin. Solid State Mater. Sci. 5: 381–387, https://doi.org/10.1016/S1359-0286(01)00035-3.Search in Google Scholar

Taran, O.P., Ayusheev, A.B., Ogorodnikova, O.L., Prosvirin, I.P., Isupova, L.A., and Parmon, V.N. (2016). Perovskite-like catalysts LaBO3 (B = Cu, Fe, Mn, Co, Ni) for wet peroxide oxidation of phenol. Appl. Catal. B Environ. 180: 86–93, https://doi.org/10.1016/j.apcatb.2015.05.055.Search in Google Scholar

Tascón, J.M.D., Fierro, J.L.G., and Tejuca, L.G. (1981). Kinetics and mechanism of CO oxidation on LaCoO3. Z. Phys. Chem. 124: 249–257, https://doi.org/10.1524/zpch.1981.124.2.249.Search in Google Scholar

Teraoka, Y., Harada, T., and Kagawa, S. (1998). Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides. J. Chem. Soc., Faraday Trans. 94: 1887–1891, https://doi.org/10.1039/a800872h.Search in Google Scholar

Teraoka, Y., Nii, H., Kagawa, S., Jansson, K., and Nygren, M. (2000). Influence of the simultaneous substitution of Cu and Ru in the perovskite-type (La,Sr)MO3 (M = Al, Mn, Fe, Co) on the catalytic activity for CO oxidation and CO–NO reactions. Appl. Catal. A Gen. 194: 35–41, https://doi.org/10.1016/S0926-860X(99)00351-8.Search in Google Scholar

Ueda, A., Yamada, Y., Katsuki, M., Kiyobayashi, T., Xu, Q., and Kuriyama, N. (2009). Perovskite catalyst (La, Ba)(Fe, Nb, Pd)O3 applicable to NOx storage and reduction system. Catal. Commun. 11: 34–37, https://doi.org/10.1016/j.catcom.2009.08.008.Search in Google Scholar

Urasaki, K., Sekine, Y., Kawabe, S., Kikuchi, E., and Matsukata, M. (2005). Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane. Appl. Catal. A Gen. 286: 23–29, https://doi.org/10.1016/j.apcata.2005.02.020.Search in Google Scholar

Valderrama, G., Kiennemann, A., and Goldwasser, M.R. (2010). La–Sr–Ni–Co–O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. J. Power Sources 195: 1765–1771, https://doi.org/10.1016/j.jpowsour.2009.10.004.Search in Google Scholar

Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Stoyanovskii, V.O., Shubin, Y.V., Plyusnin, P.E., and Mishakov, I.V. (2017). Effect of metal-metal and metal-support interaction on activity and stability of Pd-Rh/alumina in CO oxidation. Catal. Today 293: 73–81, https://doi.org/10.1016/J.CATTOD.2016.10.010.Search in Google Scholar

Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Mishakov, I.V., Medvedev, D.A., and Noskov, A.S. (2011). Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Appl. Catal. B Environ. 103: 397–403, https://doi.org/10.1016/J.APCATB.2011.02.002.Search in Google Scholar

Vojvodic, A. and Nørskov, J.K. (2011). Chemistry: optimizing perovskites for the water-splitting reaction. Science 334: 1355–1356, https://doi.org/10.1126/science.1215081.Search in Google Scholar PubMed

Wang, H., Zhang, L., Hu, C., Wang, X., Lyu, L., and Sheng, G. (2018). Enhanced degradation of organic pollutants over Cu-doped LaAlO3 perovskite through heterogeneous Fenton-like reactions. Chem. Eng. J. 332: 572–581, https://doi.org/10.1016/j.cej.2017.09.058.Search in Google Scholar

Wang, J., Su, Y., Wang, X., Chen, J., Zhao, Z., and Shen, M. (2012). The effect of partial substitution of Co in LaMnO3 synthesized by sol-gel methods for NO oxidation. Catal. Commun. 25: 106–109, https://doi.org/10.1016/j.catcom.2012.04.001.Search in Google Scholar

Wang, J., Syed, K., Ning, S., Waluyo, I., Hunt, A., Crumlin, E.J., Opitz, A.K., Ross, C.A., Bowman, W.J., and Yildiz, B. (2022). Exsolution synthesis of nanocomposite perovskites with tunable electrical and magnetic properties. Adv. Funct. Mater. 32: 2108005, https://doi.org/10.1002/ADFM.202108005.Search in Google Scholar

Wang, Q., Ma, L., Wang, L., and Wang, D. (2019). Mechanisms for enhanced catalytic performance for NO oxidation over La2CoMnO6 double perovskite by A-site or B-site doping: effects of the B-site ionic magnetic moments. Chem. Eng. J. 372: 728–741, https://doi.org/10.1016/j.cej.2019.04.178.Search in Google Scholar

Wang, X., Qi, X., Chen, Z., Jiang, L., Wang, R., and Wei, K. (2014). Studies on SO2 tolerance and regeneration over perovskite-type LaCo1−xPtxO3 in NOx storage and reduction. J. Phys. Chem. C 118: 13743–13751, https://doi.org/10.1021/jp5044255.Search in Google Scholar

Wang, X., Zuo, J., Luo, Y., and Jiang, L. (2017). New route to CeO2/LaCoO3 with high oxygen mobility for total benzene oxidation. Appl. Surf. Sci. 396: 95–101, https://doi.org/10.1016/j.apsusc.2016.11.033.Search in Google Scholar

Wang, Z., Ma, P., Zheng, K., Wang, C., Liu, Y., Dai, H., Wang, C., Hsi, H.C., and Deng, J. (2020). Size effect, mutual inhibition and oxidation mechanism of the catalytic removal of a toluene and acetone mixture over TiO2 nanosheet-supported Pt nanocatalysts. Appl. Catal. B Environ. 274: 118963, https://doi.org/10.1016/j.apcatb.2020.118963.Search in Google Scholar

Wen, Y., Zhang, C., He, H., Yu, Y., and Terako, Y. (2007). Catalytic oxidation of nitrogen monoxide over La1-xCexCoO3 perovskites. Catal. Today 126: 400–405, https://doi.org/10.1016/j.cattod.2007.06.032.Search in Google Scholar

Wen, W., Wang, X., Jin, S., and Wang, R. (2016). LaCoO3 perovskite in Pt/LaCoO3/K/Al2O3 for the improvement of NOx storage and reduction performances. RSC Adv. 6: 74046–74052, https://doi.org/10.1039/c6ra18273a.Search in Google Scholar

Wu, H., Hu, R., Zhou, T., Li, C., Meng, W., and Yang, J. (2015). A novel efficient boron-doped LaFeO3 photocatalyst with large specific surface area for phenol degradation under simulated sunlight. CrystEngComm 17: 3859–3865, https://doi.org/10.1039/c5ce00288e.Search in Google Scholar

Wu, M., Chen, S., and Xiang, W. (2020). Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chem. Eng. J. 387: 124101, https://doi.org/10.1016/j.cej.2020.124101.Search in Google Scholar

Wu, Y., Chu, B., Zhang, M., Yi, Y., Dong, L., Fan, M., Jin, G., Zhang, L., and Li, B. (2019). Influence of calcination temperature on the catalytic properties of LaCu0.25Co0.75O3 catalysts in NOx reduction. Appl. Surf. Sci. 481: 1277–1286, https://doi.org/10.1016/j.apsusc.2019.03.263.Search in Google Scholar

Wu, Y., Li, G., Chu, B., Dong, L., Tong, Z., He, H., Zhang, L., Fan, M., Li, B., and Dong, L. (2018). NO reduction by CO over highly active and stable perovskite oxide catalysts La0.8Ce0.2M0.25Co0.75O3 (M = Cu, Mn, Fe): effect of the role in B site. Ind. Eng. Chem. Res. 57: 15670–15682, https://doi.org/10.1021/acs.iecr.8b04214.Search in Google Scholar

Wu, Y., Liu, H., Li, G., Jin, L., Li, X., Ou, X., Dong, L., Jin, G., and Li, B. (2020a). Tuning composition on B sites of LaM0.5Mn0.5O3 (M = Cu, Co, Fe, Ni, Cr) perovskite catalysts in NOx efficient reduction. Appl. Surf. Sci. 32: 508–520, https://doi.org/10.1016/j.apsusc.2019.145158.Search in Google Scholar

Wu, Y., Liu, X., Wei, L., Liu, H., Ou, X., Dong, L., Fan, M., and Li, B. (2020b). Cooperative intergrowth effect in LaMnO3, La2CuO4 and CuO three-phase system with broad active window for highly efficient NOx reduction. Fuel 278: 118266, https://doi.org/10.1016/j.fuel.2020.118266.Search in Google Scholar

Xian, H., Li, F.L., Li, X.G., Zhang, X.W., Meng, M., Zhang, T.Y., and Tsubaki, N. (2011). Influence of preparation conditions to structure property, NOx and SO2 sorption behavior of the BaFeO3−x perovskite catalyst. Fuel Process. Technol. 92: 1718–1724, https://doi.org/10.1016/j.fuproc.2011.04.021.Search in Google Scholar

Xiao, P., Hong, J., Wang, T., Xu, X., Yuan, Y., Li, J., and Zhu, J. (2013). Oxidative degradation of organic dyes over supported perovskite Oxide LaFeO3/SBA-15 under ambient conditions. Catal. Lett. 143: 887–894, https://doi.org/10.1007/s10562-013-1026-2.Search in Google Scholar

Xiao, P., Zhu, J., Li, H., Jiang, W., Wang, T., Zhu, Y., Zhao, Y., and Li, J. (2014). Effect of textural structure on the catalytic performance of LaCoO3 for CO oxidation. ChemCatChem 6: 1774–1781, https://doi.org/10.1002/cctc.201402064.Search in Google Scholar

Xiong, Z.B., Peng, B., Zhou, F., Wu, C., Lu, W., Jin, J., and Ding, S.F. (2017). Magnetic iron-cerium-tungsten mixed oxide pellets prepared through critic acid sol-gel process assisted by microwave irradiation for selective catalytic reduction of NOx with NH3. Powder Technol. 319: 19–25, https://doi.org/10.1016/j.powtec.2017.06.037.Search in Google Scholar

Yagi, T. (1959). Enzymic oxidation of carbon monoxide, Vol. II. Japan: N. p. Web.10.1093/oxfordjournals.jbchem.a126988Search in Google Scholar

Yang, J., Hu, S., Fang, Y., Hoang, S., Li, L., Yang, W., Liang, Z., Wu, J., Hu, J., Xiao, W., et al.. (2019). Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature co oxidation. ACS Catal. 9: 9751–9763, https://doi.org/10.1021/acscatal.9b02408.Search in Google Scholar

Yang, L., Hu, J., Zhang, C., Song, Q., Xue, Z., Zhang, X., and Tong, L. (2020). Mechanism of Pd and K co-doping to enhance the simultaneous removal of NOx and soot over LaMnO3. Catal. Sci. Technol. 10: 6013–6024, https://doi.org/10.1039/d0cy00064g.Search in Google Scholar

Yang, Q., Wang, D., Wang, C., Li, X., Li, K., Peng, Y., and Li, J. (2018). Facile surface improvement method for LaCoO3 for toluene oxidation. Catal. Sci. Technol. 8: 3166–3173, https://doi.org/10.1039/c8cy00765a.Search in Google Scholar

Yang, S., Yang, X., Shao, X., Niu, R., and Wang, L. (2011). Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. J. Hazard. Mater. 186: 659–666, https://doi.org/10.1016/j.jhazmat.2010.11.057.Search in Google Scholar PubMed

Yasuda, H., Fujiwara, Y., Mizuno, N., and Misono, M. (1994). Oxidation of carbon monoxide on LaMn1−XCuxO3 perovskite-type mixed oxides. J. Chem. Soc., Faraday Trans. 90: 1183–1189, https://doi.org/10.1039/FT9949001183.Search in Google Scholar

Ye, J., Yu, Y., Meng, M., Jiang, Z., Ding, T., Zhang, S., and Huang, Y. (2013). Highly efficient NOx purification in alternating lean/rich atmospheres over non-platinic mesoporous perovskite-based catalyst K/LaCoO3. Catal. Sci. Technol. 3: 1915–1918, https://doi.org/10.1039/c3cy00155e.Search in Google Scholar

Yoon, D.Y., Lim, E., Kim, Y.J., Kim, J.H., Ryu, T., Lee, S., Cho, B.K., Nam, I.S., Choung, J.W., and Yoo, S. (2014). NO oxidation activity of Ag-doped perovskite catalysts. J. Catal. 319: 182–193, https://doi.org/10.1016/j.jcat.2014.09.007.Search in Google Scholar

Yoon, J.S., Lim, Y.S., Choi, B.H., and Hwang, H.J. (2014b). Catalytic activity of perovskite-type doped La0.08Sr0.92Ti1−xMxO3−δ (M = Mn, Fe, and Co) oxides for methane oxidation. Int. J. Hydrogen Energy 39: 7955–7962, https://doi.org/10.1016/j.ijhydene.2014.03.008.Search in Google Scholar

Zang, M., Zhao, C., Wang, Y., and Chen, S. (2019). A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts. J. Saudi Chem. Soc. 38: 160–177, https://doi.org/10.1016/j.jscs.2019.01.004.Search in Google Scholar

Zeng, Y., Wang, Y., Zhang, S., and Zhong, Q. (2020). Partial substitution of magnesium in lanthanum manganite perovskite for nitric oxide oxidation: the effect of substitution sites. J. Colloid Interface Sci. 580: 49–55, https://doi.org/10.1016/j.jcis.2020.07.023.Search in Google Scholar PubMed

Zhang, H.M., Teraoka, Y., and Yamazoe, N. (1989). Effects of preparation methods on the methane combustion activity of supported Mn2O3 and LaMnO3 catalysts. Catal. Today 6: 155–162, https://doi.org/10.1016/0920-5861(89)85018-7.Search in Google Scholar

Zhang, J., Tan, D., Meng, Q., Weng, X., and Wu, Z. (2015). Structural modification of LaCoO3 perovskite for oxidation reactions: the synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance. Appl. Catal. B Environ. 172: 18–26, https://doi.org/10.1016/j.apcatb.2015.02.006.Search in Google Scholar

Zhang, L., Nie, Y., Hu, C., and Qu, J. (2012). Enhanced Fenton degradation of Rhodamine B over nanoscaled Cu-doped LaTiO3 perovskite. Appl. Catal. B Environ. 125: 418–424, https://doi.org/10.1016/j.apcatb.2012.06.015.Search in Google Scholar

Zhang, S., An, K., Li, S., Zhang, Z., Sun, R., and Liu, Y. (2020). Bi-active sites of stable and highly dispersed platinum and oxygen vacancy constructed by reducing a loaded perovskite-type oxide for CO oxidation. Appl. Surf. Sci. 532: 147455, https://doi.org/10.1016/j.apsusc.2020.147455.Search in Google Scholar

Zhang, Y., Wang, X., Wang, Z., Li, Q., Zhang, Z., and Zhou, L. (2012). Direct spectroscopic evidence of CO spillover and subsequent reaction with preadsorbed NOx on Pd and K cosupported Mg–Al mixed oxides. Environ. Sci. Technol. 46: 9614–9619, https://doi.org/10.1021/es302018x.Search in Google Scholar PubMed

Zhang, Z.M., Zhang, C.X., An, K., Liu, Q., Zhang, S.R., and Liu, Y. (2019). Preparation of La–Ce oxide-modified platinum-cobalt nano-bimetallic catalysts with perovskite-type composite oxides as precursors and their performance in CO oxidation. Ranliao Huaxue Xuebao/J. Fuel Chem. Technol. 47: 1357–1367, https://doi.org/10.1016/s1872-5813(19)30054-4.Search in Google Scholar

Zhang-Steenwinkel, Y., Beckers, J., and Bliek, A. (2002). Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum-manganese oxides. Appl. Catal. A Gen. 235: 79–92, https://doi.org/10.1016/S0926-860X(02)00241-7.Search in Google Scholar

Zhao, D., Gao, Z., Xian, H., Xing, L., Yang, Y., Tian, Y., Ding, T., Jiang, Z., Zhang, J., Zheng, L., et al.. (2018). Addition of Pd on La0.7Sr0.3CoO3 perovskite to enhance catalytic removal of NOx. Ind. Eng. Chem. Res. 57: 521–531, https://doi.org/10.1021/acs.iecr.7b04399.Search in Google Scholar

Zhao, D., Yang, Y., Gao, Z., Tian, Y., Zhang, J., Jiang, Z., and Li, X. (2020). A-site defects in LaSrMnO3 perovskite-based catalyst promoting NOx storage and reduction for lean-burn exhausts. J. Rare Earths 89: 470–489, https://doi.org/10.1016/j.jre.2020.04.015.Search in Google Scholar

Zhao, H., Sun, L., Fu, M., Mao, L., Zhao, X., Zhang, X., Xiao, Y., and Dong, G. (2019). Effect of A-site substitution on the simultaneous catalytic removal of NOx and soot by LaMnO3 perovskites. New J. Chem. 43: 11684–11691, https://doi.org/10.1039/c9nj01444f.Search in Google Scholar

Zheng, B., Gan, T., Shi, S., Wang, J., Zhang, W., Zhou, X., Zou, Y., Yan, W., and Liu, G. (2021). Exsolution of iron oxide on LaFeO3 perovskite: a robust heterostructured support for constructing self-adjustable Pt-based room-temperature CO oxidation catalysts. ACS Appl. Mater. Interfaces. 13: 27029–27040, https://doi.org/10.1021/acsami.1c04836.Search in Google Scholar PubMed

Zhong, S., Sun, Y., Xin, H., Yang, C., Chen, L., and Li, X. (2015). NO oxidation over Ni–Co perovskite catalysts. Chem. Eng. J. 275: 351–356, https://doi.org/10.1016/j.cej.2015.04.046.Search in Google Scholar

Zhou, C., Feng, Z., Zhang, Y., Hu, L., Chen, R., Shan, B., Yin, H., Wang, W.G., and Huang, A. (2015). Enhanced catalytic activity for NO oxidation over Ba doped LaCoO3 catalyst. RSC Adv. 5: 28054–28059, https://doi.org/10.1039/c5ra02344k.Search in Google Scholar

Zhou, C., Liu, X., Wu, C., Wen, Y., Xue, Y., Chen, R., Zhang, Z., Shan, B., Yin, H., and Wang, W.G. (2014). NO oxidation catalysis on copper doped hexagonal phase LaCoO3: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 16: 5106–5112, https://doi.org/10.1039/c3cp54963a.Search in Google Scholar PubMed

Zhou, K., Chen, H., Tian, Q., Hao, Z., Shen, D., and Xu, X. (2002). Pd-containing perovskite-type oxides used for three-way catalysts. J. Mol. Catal. Chem. 189: 225–232, https://doi.org/10.1016/S1381-1169(02)00177-2.Search in Google Scholar

Zhu, H., Zhang, P., and Dai, S. (2015). Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 5: 6370–6385, https://doi.org/10.1021/acscatal.5b01667.Search in Google Scholar

Zhu, J. and Gao, Q. (2009). Mesoporous MCo2O4 (M = Cu, Mn and Ni) spinels: structural replication, characterization and catalytic application in CO oxidation. Microporous Mesoporous Mater. 124: 144–152, https://doi.org/10.1016/J.MICROMESO.2009.05.003.Search in Google Scholar

Zhu, J., Xiao, D., Li, J., Xie, X., Yang, X., and Wu, Y. (2005). Recycle – new possible mechanism of NO decomposition over perovskite(-like) oxides. J. Mol. Catal. A Chem. 233: 29–34, https://doi.org/10.1016/j.molcata.2005.02.011.Search in Google Scholar

Zhu, X., Tu, X., Chen, M., Yang, Y., Zheng, C., Zhou, J., and Gao, X. (2017). La0.8M0.2MnO3 (M = Ba, Ca, Ce, Mg and Sr) perovskite catalysts for plasma-catalytic oxidation of ethyl acetate. Catal. Commun. 92: 35–39, https://doi.org/10.1016/j.catcom.2016.12.013.Search in Google Scholar

Ziaei-Azad, H., Khodadadi, A., Esmaeilnejad-Ahranjani, P., and Mortazavi, Y. (2011). Effects of Pd on enhancement of oxidation activity of LaBO3 (B = Mn, Fe, Co and Ni) pervoskite catalysts for pollution abatement from natural gas fueled vehicles. Appl. Catal. B Environ. 102: 62–70, https://doi.org/10.1016/j.apcatb.2010.11.025.Search in Google Scholar

Zuhairi Abdullah, A., Bakar, M.Z.A., and Bhatia, S. (2003). A kinetic study of catalytic combustion of ethyl acetate and benzene in air stream over Cr-ZSM-5 catalyst. Ind. Eng. Chem. Res. 42: 6059–6067, https://doi.org/10.1021/ie020989t.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/revce-2022-0034).


Received: 2022-05-13
Accepted: 2023-01-26
Published Online: 2023-04-04
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2022-0034/html
Scroll to top button