Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 19, 2023

Fabrication of monodisperse droplets and microcapsules using microfluidic chips: a review of methodologies and applications

  • Weiguang Su ORCID logo EMAIL logo , Bing Han , Siegfried Yeboah ORCID logo , Dengfeng Du and Li Wang EMAIL logo

Abstract

Microfluidics has been applied in the preparation of monodisperse droplets and microcapsules due to its high encapsulation efficiency, its ability to create uniform particle sizes, and its capacity to control core–shell ratio and structure. To bring to the fore methodologies for the fabrication and application of monodisperse microcapsules using microfluidics, we present a review of the design, structure, materials, and surface modification techniques of various microfluidic chips. The review also covers fabrication methods, operating parameters and regulation methods of single and multiple monodisperse emulsion droplets fabricated from various microfluidic devices. Our findings show that particle size of monodisperse droplets depend mainly on microchannel characteristic size and flow rate, with particle size increasing with larger microchannel but decreasing with higher continuous phase flow rate. We additionally reviewed and compared various fabrication methods for monodisperse microcapsules, such as interfacial polymerization, free-radical polymerization, ionic cross-linking, and solvent evaporation. We further reviewed and examined the application of monodisperse microcapsules in biology applications, food engineering, composite materials development, and pharmaceutical industry. We found that high-throughput microfluidics for scale-up monodisperse microcapsule preparation towards uniform degradation and targeted release properties of monodisperse microcapsules would be key innovative direction for future applications.


Corresponding authors: Weiguang Su and Li Wang, School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, China; and Shandong Institute of Mechanical Design and Research, 250031 Jinan, China, E-mail: ,

Funding source: Taishan Scholars Foundation of Shandong Province

Award Identifier / Grant number: tsqn201812087

Funding source: Qilu University of Technology (Shandong Academy of Sciences)

Award Identifier / Grant number: Science, Education and Industry Integration Innovation Pilot Project (2022JBZ02-01)

Funding source: Department of Education of Shandong Province

Award Identifier / Grant number: Innovative Research Team of Advanced Energy Equipment

Award Identifier / Grant number: 2019KJB009

Award Identifier / Grant number: Innovative Research Team of High-Performance Integrated Device

Funding source: Jinan Scientific Research Leader Workshop Project

Award Identifier / Grant number: 2021GXRC083

Acknowledgements

We acknowledge the copyright permission from the journals for the graphics, images, and figures.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Qing Chuang plan by Shandong Province Department of Education (Sub-Title 1: Innovative Research Team of Advanced Energy Equipment, Sub-Title 2: Innovative Research Team of High-Performance Integrated Device, no. 2019KJB009); Taishan Scholars Foundation of Shandong Province (no. tsqn201812087); Jinan Scientific Research Leader Studio (no. 2021GXRC083); Science, Education and Industry Integration Innovation Pilot Project from Qilu University of Technology (Shandong Academy of Sciences)(No.2022JBZ02-01).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abate, A.R., Lee, D., Do, T., Holtze, C., and Weitz, D.A. (2008). Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip 8: 516–518, https://doi.org/10.1039/b800001h.Search in Google Scholar PubMed

Abate, A.R., Thiele, J., Weinhart, M., and Weitz, D.A. (2010). Patterning microfluidic device wettability using flow confinement. Lab Chip 10: 1774–1776, https://doi.org/10.1039/c004124f.Search in Google Scholar PubMed

Agarwal, P., Zhao, S., Bielecki, P., Rao, W., Choi, J.K., Zhao, Y., Yu, J., Zhang, W., and He, X. (2013). One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 13: 4525–4533, https://doi.org/10.1039/c3lc50678a.Search in Google Scholar PubMed PubMed Central

Alizadeh-Haghighi, E., Khaligh, A., Kalantarifard, A., Elbuken, C., and Tuncel, D. (2022). Fabrication of nanowalled catalytically self-threaded supramolecular polyrotaxane microcapsules using droplet microfluidics. ACS Appl. Polym. Mater. 4: 4681–4688, https://doi.org/10.1021/acsapm.2c00195.Search in Google Scholar

Alrifaiy, A., Lindahl, O.A., and Ramser, K. (2012). Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers 4: 1349–1398, https://doi.org/10.3390/polym4031349.Search in Google Scholar

Bonat Celli, G. and Abbaspourrad, A. (2018). Tailoring delivery system functionality using microfluidics. Annu. Rev. Food Sci. Technol. 9: 481–501, https://doi.org/10.1146/annurev-food-030117-012545.Search in Google Scholar PubMed

Boskovic, D. and Loebbecke, S. (2014). Synthesis of polymer particles and capsules employing microfluidic techniques. Nanotechnol. Rev. 3: 27–38, https://doi.org/10.1515/ntrev-2013-0014.Search in Google Scholar

Cai, L., Bian, F., Chen, H., Guo, J., Wang, Y., and Zhao, Y. (2021). Anisotropic microparticles from microfluidics. Chemistry 7: 93–136, https://doi.org/10.1016/j.chempr.2020.09.023.Search in Google Scholar

Campana, A.L., Sotelo, D.C., Oliva, H.A., Aranguren, A., Ornelas-Soto, N., Cruz, J.C., and Osma, J.F. (2020). Fabrication and characterization of a low-cost microfluidic system for the manufacture of alginate-lacasse microcapsules. Polymers 12: 1158, https://doi.org/10.3390/polym12051158.Search in Google Scholar PubMed PubMed Central

Cao, X., Peng, J., Fang, X., Yang, Z., Liao, Z., Yan, Z., Jiang, C., Liu, B., and Zhang, H. (2020). Process regulation for encapsulating pure polyamine via integrating microfluidicT-junctionand interfacial polymerization. J. Polym. Sci. 58: 1810–1824, https://doi.org/10.1002/pol.20200217.Search in Google Scholar

Chen, J., Huang, K., Chen, Q., Deng, C., Zhang, J., and Zhong, Z. (2018). Tailor-making fluorescent hyaluronic acid microgels via combining microfluidics and photoclick chemistry for sustained and localized delivery of herceptin in tumors. ACS Appl. Mater. Interfaces 10: 3929–3937, https://doi.org/10.1021/acsami.7b15832.Search in Google Scholar PubMed

Chen, P.W., Erb, R.M., and Studart, A.R. (2012). Designer polymer-based microcapsules made using microfluidics. Langmuir 28: 144–152, https://doi.org/10.1021/la203088u.Search in Google Scholar PubMed

Chen, Z., Xu, J., and Wang, Y. (2019). Gas-liquid-liquid multiphase flow in microfluidic systems – a review. Chem. Eng. Sci. 202: 1–14, https://doi.org/10.1016/j.ces.2019.03.016.Search in Google Scholar

Chen, Z., Lv, Z., Zhang, Z., Weitz, D.A., Zhang, H., Zhang, Y., and Cui, W. (2021). Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. Exploration 1: 20210036, https://doi.org/10.1002/exp.20210036.Search in Google Scholar PubMed PubMed Central

Choi, C.H., Lee, H., and Weitz, D.A. (2018). Rapid patterning of PDMS microfluidic device wettability using syringe-vacuum-induced segmented flow in nonplanar geometry. ACS Appl. Mater. Interfaces 10: 3170–3174, https://doi.org/10.1021/acsami.7b17132.Search in Google Scholar PubMed

Chou, W.-L., Lee, P.-Y., Yang, C.-L., Huang, W.-Y., and Lin, Y.-S. (2015). Recent advances in applications of droplet microfluidics. Micromachines 6: 1249–1271, https://doi.org/10.3390/mi6091249.Search in Google Scholar

Comunian, T.A., Abbaspourrad, A., Favaro-Trindade, C.S., and Weitz, D.A. (2014). Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. Food Chem. 152: 271–275, https://doi.org/10.1016/j.foodchem.2013.11.149.Search in Google Scholar PubMed

Datta, S.S., Abbaspourrad, A., Amstad, E., Fan, J., Kim, S.H., Romanowsky, M., Shum, H.C., Sun, B., Utada, A.S., Windbergs, M., et al.. (2014). 25th anniversary article: double emulsion templated solid microcapsules: mechanics and controlled release. Adv. Mater. 26: 2205–2218, https://doi.org/10.1002/adma.201305119.Search in Google Scholar PubMed

De Menech, M., Garstecki, P., Jousse, F., and Stone, H.A. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 595: 141–161, https://doi.org/10.1017/s002211200700910x.Search in Google Scholar

Deng, R., Wang, Y., Yang, L., and Bain, C.D. (2019). In situ fabrication of polymeric microcapsules by ink-jet printing of emulsions. ACS Appl. Mater. Interfaces 11: 40652–40661, https://doi.org/10.1021/acsami.9b14417.Search in Google Scholar PubMed

Dias Meirelles, A.A., Rodrigues Costa, A.L., Michelon, M., Viganó, J., Carvalho, M.S., and Cunha, R.L. (2022). Microfluidic approach to produce emulsion-filled alginate microgels. J. Food Engineering 315: 110812, https://doi.org/10.1016/j.jfoodeng.2021.110812.Search in Google Scholar

Dinh, N.D., Kukumberg, M., Nguyen, A.T., Keramati, H., Guo, S., Phan, D.T., Ja’afar, N.B., Birgersson, E., Leo, H.L., Huang, R.Y., et al.. (2020). Functional reservoir microcapsules generated via microfluidic fabrication for long-term cardiovascular therapeutics. Lab Chip 20: 2756–2764, https://doi.org/10.1039/d0lc00296h.Search in Google Scholar PubMed

Doufene, K., Tourne-Peteilh, C., Etienne, P., and Aubert-Pouessel, A. (2019). Microfluidic systems for droplet generation in aqueous continuous phases: a focus review. Langmuir 35: 12597–12612, https://doi.org/10.1021/acs.langmuir.9b02179.Search in Google Scholar PubMed

Du, Y., Mo, L., Wang, X., Wang, H., Ge, X.-h., and Qiu, T. (2020). Preparation of mint oil microcapsules by microfluidics with high efficiency and controllability in release properties. Microfluid. Nanofluidics 24: 1–11, https://doi.org/10.1007/s10404-020-02346-2.Search in Google Scholar

Duran, M., Serrano, A., Nikulin, A., Dauvergne, J.-L., Derzsi, L., and Palomo Del Barrio, E. (2022). Microcapsule production by droplet microfluidics: a review from the material science approach. Mater. Design 223: 111230, https://doi.org/10.1016/j.matdes.2022.111230.Search in Google Scholar

Eqbal, M.D. and Gundabala, V. (2017). Controlled fabrication of multi-core alginate microcapsules. J. Colloid Interface Sci. 507: 27–34, https://doi.org/10.1016/j.jcis.2017.07.100.Search in Google Scholar PubMed

Feng, Y., Zhou, Z., Ye, X., and Xiong, J. (2003). Passive valves based on hydrophobic microfluidics. Sens. Actuators, A 108: 138–143, https://doi.org/10.1016/s0924-4247(03)00363-7.Search in Google Scholar

Field, R. D., Jakus, M. A., Chen, X., Human, K., Zhao, X., Chitnis, P. V., and Sia, S. K. (2022). Ultrasound-responsive aqueous two-phase microcapsules for on-demand drug release. Angew. Chem. Int. Ed. Engl. 134: e202116515, https://doi.org/10.1002/anie.202116515.Search in Google Scholar PubMed

Freitas, S., Merkle, H.P., and Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control Release 102: 313–332, https://doi.org/10.1016/j.jconrel.2004.10.015.Search in Google Scholar PubMed

Galogahi, F.M., Zhu, Y., An, H., and Nguyen, N.-T. (2020). Core-shell microparticles: generation approaches and applications. J. Sci. 5: 417–435, https://doi.org/10.1016/j.jsamd.2020.09.001.Search in Google Scholar

Ganesan, K., Budtova, T., Ratke, L., Gurikov, P., Baudron, V., Preibisch, I., Niemeyer, P., Smirnova, I., and Milow, B. (2018). Review on the production of polysaccharide aerogel particles. Materials 11: 2144, https://doi.org/10.3390/ma11112144.Search in Google Scholar PubMed PubMed Central

Ghifari, N., Chahboun, A. and El Abed, A. (2019). One-step synthesis of highly monodisperse ZnO core-shell microspheres in microfluidic devices. In: 21st international conference on transparent optical networks (ICTON), IEEE, pp. 1–6.10.1109/ICTON.2019.8840433Search in Google Scholar

Hamonangan, W.M., Lee, S., Choi, Y.H., Li, W., Tai, M., and Kim, S.H. (2022). Osmosis-mediated microfluidic production of submillimeter-sized capsules with an ultrathin shell for cosmetic applications. ACS Appl. Mater. Interfaces 14: 18159–18169, https://doi.org/10.1021/acsami.2c01319.Search in Google Scholar PubMed

Han, X., Kong, T., Zhu, P., and Wang, L. (2020). Microfluidic encapsulation of phase-change materials for high thermal performance. Langmuir 36: 8165–8173, https://doi.org/10.1021/acs.langmuir.0c01171.Search in Google Scholar PubMed

He, F., Zhang, M.J., Wang, W., Cai, Q.W., Su, Y.Y., Liu, Z., Faraj, Y., Ju, X.J., Xie, R., and Chu, L.Y. (2019). Designable polymeric microparticles from droplet microfluidics for controlled drug release. Adv. Mater. Technol. 4: 1800687, https://doi.org/10.1002/admt.201800687.Search in Google Scholar

He, S., Joseph, N., Feng, S., Jellicoe, M., and Raston, C.L. (2020). Application of microfluidic technology in food processing. Food Funct. 11: 5726–5737, https://doi.org/10.1039/d0fo01278e.Search in Google Scholar PubMed

Hennequin, Y., Pannacci, N., De Torres, C.P., Tetradis-Meris, G., Chapuliot, S., Bouchaud, E., and Tabeling, P. (2009). Synthesizing microcapsules with controlled geometrical and mechanical properties with microfluidic double emulsion technology. Langmuir 25: 7857–7861, https://doi.org/10.1021/la9004449.Search in Google Scholar PubMed

Hidalgo San Jose, L., Stephens, P., Song, B., and Barrow, D. (2018). Microfluidic encapsulation supports stem cell viability, proliferation, and neuronal differentiation. Tissue Eng. Part C Methods 24: 158–170, https://doi.org/10.1089/ten.TEC.2017.0368.Search in Google Scholar PubMed PubMed Central

Hirama, H., Ishikura, Y., Kano, S., Hayase, M., and Mekaru, H. (2021). Monodispersed sodium hyaluronate microcapsules for transdermal drug delivery systems. Mater. Adv. 2: 7007–7016, https://doi.org/10.1039/d1ma00528f.Search in Google Scholar

Huang, K.S., Yang, C.H., Wang, Y.C., Wang, W.T., and Lu, Y.Y. (2019). Microfluidic synthesis of vinblastine-loaded multifunctional particles for magnetically responsive controlled drug release. Pharmaceutics 11: 212, https://doi.org/10.3390/pharmaceutics11050212.Search in Google Scholar PubMed PubMed Central

Huang, L., Wu, K., He, X., Yang, Z., and Ji, H. (2021). One-Step microfluidic synthesis of spherical and bullet-like alginate microcapsules with a core–shell structure. Colloids Surf., A 608: 125612, https://doi.org/10.1016/j.colsurfa.2020.125612.Search in Google Scholar

Ji, H., Lee, J., Park, J., Kim, J., Kim, H.S., and Cho, Y. (2022). High-aspect-ratio microfluidic channel with parallelogram cross-section for monodisperse droplet generation. Biosensors 12: 118, https://doi.org/10.3390/bios12020118.Search in Google Scholar PubMed PubMed Central

Jia, L., Li, Y.a., Chen, Y., Wang, J., Mo, S., Li, J., and Liu, G. (2019). New hybrid suspension of MEPCM/GO particles with enhanced dispersion stability and thermo-physical properties. Appl. Energy 255: 113817, https://doi.org/10.1016/j.apenergy.2019.113827.Search in Google Scholar

Jung, S.-H., Bulut, S., Paulo Busca Guerzoni, L., Günther, D., Braun, S., De Laporte, L., and Pich, A. (2022). Fabrication of pH-degradable supramacromolecular microgels with tunable size and shape via droplet-based microfluidics. J. Colloid Interface Sci. 617: 409–421, https://doi.org/10.1016/j.jcis.2022.02.065.Search in Google Scholar PubMed

Kang, K.-K., Lee, B., and Lee, C.-S. (2018). Microfluidic approaches for the design of functional materials. Microelectron. Eng. 199: 1–15, https://doi.org/10.1016/j.mee.2018.07.007.Search in Google Scholar

Khanmohammadi, M., Sakai, S., Ashida, T., and Taya, M. (2016). Production of hyaluronic-acid-based cell-enclosing microparticles and microcapsules via enzymatic reaction using a microfluidic system. J. Appl. Polym. Sci. 133: 16, https://doi.org/10.1002/app.43107.Search in Google Scholar

Kim, E. and Lee, H. (2022). Mechanical characterization of soft microparticles prepared by droplet microfluidics. J. Polym. Sci. 60: 1670–1699, https://doi.org/10.1002/pol.20220110.Search in Google Scholar

Kim, H., Jo, S.M., Meng, F., Guo, Y., Thérien-Aubin, H., Golestanian, R., Landfester, K., and Bodenschatz, E. (2020). One-step generation of core-gap-shell microcapsules for stimuli-responsive biomolecular sensing. Adv. Funct. Mater. 30: 2006019, https://doi.org/10.1002/adfm.202006019.Search in Google Scholar

Kim, J.W., Oh, Y., Lee, S., and Kim, S.H. (2021). Thermochromic microcapsules containing chiral mesogens enclosed by hydrogel shell for colorimetric temperature reporters. Adv. Funct. Mater. 32: 2107275, https://doi.org/10.1002/adfm.202107275.Search in Google Scholar

Laracuente, M.L., Yu, M.H., and Mchugh, K.J. (2020). Zero-order drug delivery: state of the art and future prospects. J. Control Release 327: 834–856, https://doi.org/10.1016/j.jconrel.2020.09.020.Search in Google Scholar PubMed

Lai, S., He, Y., Xiong, D., Wang, Y., Xiao, K., Yan, Z., and Zhang, H. (2021). Fabrication and property regulation of small-size polyamine microcapsules via integrating microfluidic T-junction and interfacial polymerization. Materials 14: 1800, https://doi.org/10.3390/ma14071800.Search in Google Scholar PubMed PubMed Central

Lee, C.Y., Chang, C.L., Wang, Y.N., and Fu, L.M. (2011). Microfluidic mixing: a review. Int. J. Mol. Sci. 12: 3263–3287, https://doi.org/10.3390/ijms12053263.Search in Google Scholar PubMed PubMed Central

Lee, D. and Cha, C. (2020). Cell subtype-dependent formation of breast tumor spheroids and their variable responses to chemotherapeutics within microfluidics-generated 3D microgels with tunable mechanics. Mater. Sci. Eng. C Mater. Biol. Appl. 112: 110932, https://doi.org/10.1016/j.msec.2020.110932.Search in Google Scholar PubMed

Lee, S.S., Kim, B., Kim, S.K., Won, J.C., Kim, Y.H., and Kim, S.H. (2015). Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules. Adv. Mater. 27: 627–633, https://doi.org/10.1002/adma.201403271.Search in Google Scholar PubMed

Lee, T.Y., Choi, T.M., Shim, T.S., Frijns, R.A., and Kim, S.H. (2016). Microfluidic production of multiple emulsions and functional microcapsules. Lab Chip 16: 3415–3440, https://doi.org/10.1039/c6lc00809g.Search in Google Scholar PubMed

Lee, T.Y., Ku, M., Kim, B., Lee, S., Yang, J., and Kim, S.H. (2017). Microfluidic production of biodegradable microcapsules for sustained release of hydrophilic actives. Small 13: 1700646, https://doi.org/10.1002/smll.201700646.Search in Google Scholar PubMed

Leister, N., Vladisavljevic, G.T., and Karbstein, H.P. (2022). Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions. J. Colloid Interface Sci. 611: 451–461, https://doi.org/10.1016/j.jcis.2021.12.094.Search in Google Scholar PubMed

Leopercio, B.C., Michelon, M., and Carvalho, M.S. (2021). Deformation and rupture of microcapsules flowing through constricted capillary. Sci. Rep. 11: 7707, https://doi.org/10.1038/s41598-021-86833-8.Search in Google Scholar PubMed PubMed Central

Li, J., Jia, L., Chen, Y., Li, L., Mo, S., Wang, J., and Wang, C. (2019a). Microfluidic fabrication and thermal properties of microencapsulated n-heptadecane with hexanediol diacrylate shell for thermal energy storage. Appl. Therm. Eng. 162: 114278, https://doi.org/10.1016/j.applthermaleng.2019.114278.Search in Google Scholar

Li, R., Wu, G., Hao, Y., Peng, J. and Zhai, M. (2019b). Radiation degradation or modification of poly (tetrafluoroethylene) and natural polymers. Radiat. Technol. Adv. Mater. 2019: 141–182, https://doi.org/10.1016/B978-0-12-814017-8.00005-6.Search in Google Scholar

Li, S., Gong, X., Mc Nally, C.S., Zeng, M., Gaule, T., Anduix-Canto, C., Kulak, A.N., Bawazer, L.A., Mcpherson, M.J., and Meldrum, F.C. (2016). Rapid preparation of highly reliable PDMS double emulsion microfluidic devices. RSC Adv. 6: 25927–25933, https://doi.org/10.1039/c6ra03225g.Search in Google Scholar

Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L., Choi, C.H., Xu, J., Zhang, A., Lee, H., et al.. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 47: 5646–5683, https://doi.org/10.1039/c7cs00263g.Search in Google Scholar PubMed PubMed Central

Liang, D., Ma, R., Fu, T., Zhu, C., Wang, K., Ma, Y., and Luo, G. (2019). Dynamics and formation of alternating droplets under magnetic field at a T-junction. Chem. Eng. Sci. 200: 248–256, https://doi.org/10.1016/j.ces.2019.01.053.Search in Google Scholar

Liao, Q.-Q., Zhao, S.-K., Cai, B., He, R.-X., Rao, L., Wu, Y., Guo, S.-S., Liu, Q.-Y., Liu, W., and Zhao, X.-Z. (2018). Biocompatible fabrication of cell-laden calcium alginate microbeads using microfluidic double flow-focusing device. Sens. Actuators, A 279: 313–320, https://doi.org/10.1016/j.sna.2018.06.006.Search in Google Scholar

Lin, P., Chen, H., Li, A., Zhuang, H., Chen, Z., Xie, Y., Zhou, H., Mo, S., Chen, Y., Lu, X., et al.. (2020). Bioinspired multiple stimuli-responsive optical microcapsules enabled by microfluidics. ACS Appl. Mater. Interfaces 12: 46788–46796, https://doi.org/10.1021/acsami.0c14698.Search in Google Scholar PubMed

Liu, G., Du, T., Chen, J., Hao, X., Yang, F., He, H., Meng, T., and Wang, Y. (2021a). Microfluidic aqueous two-phase system-based nitrifying bacteria encapsulated colloidosomes for green and sustainable ammonium-nitrogen wastewater treatment. Bioresour. Technol. 342: 126019, https://doi.org/10.1016/j.biortech.2021.126019.Search in Google Scholar PubMed

Liu, H., Singh, R.P., Zhang, Z., Han, X., Liu, Y., and Hu, L. (2021b). Microfluidic assembly: an innovative tool for the encapsulation, protection, and controlled release of nutraceuticals. J. Agric. Food Chem. 69: 2936–2949, https://doi.org/10.1021/acs.jafc.0c05395.Search in Google Scholar PubMed

Liu, J., Streufert, J.R., Mu, K., Si, T., Han, T., Han, Y., Lin, X., Li, J., and Braun, P.V. (2020). Polymer composites containing phase-change microcapsules displaying deep undercooling exhibit thermal history-dependent mechanical properties. Adv. Mater. Technol. 5: 2000286, https://doi.org/10.1002/admt.202000286.Search in Google Scholar

Liu, X., Yu, Y., Liu, D., Li, J., Sun, J., Wei, Q., Zhao, Y., Pandol, S. J., and Li, L. (2022). Porous microcapsules encapsulating β cells generated by microfluidic electrospray technology for diabetes treatment. NPG Asia Mater. 14: 39, https://doi.org/10.1038/s41427-022-00385-5.Search in Google Scholar

Liu, Z.-M., Yang, Y., Du, Y., and Pang, Y. (2017). Advances in droplet-based microfluidic technology and its applications. Chin. J. Anal. Chem. 45: 282–296, https://doi.org/10.1016/s1872-2040(17)60994-0.Search in Google Scholar

Logesh, D., Vallikkadan, M.S., Leena, M.M., Moses, J.A., and Anandharamakrishnan, C. (2021). Advances in microfluidic systems for the delivery of nutraceutical ingredients. Trends Food Sci. Technol. 116: 501–524, https://doi.org/10.1016/j.tifs.2021.07.011.Search in Google Scholar

Ma, J., Wang, Y., and Liu, J. (2017). Biomaterials meet microfluidics: from synthesis technologies to biological applications. Micromachines 8: 255, https://doi.org/10.3390/mi8080255.Search in Google Scholar PubMed PubMed Central

Ma, W.-L., Mou, C.-L., Chen, S.-H., Li, Y.-D., and Deng, H.-B. (2022). A mild method for encapsulation of citral in monodispersed alginate microcapsules. Polymers 14: 1165, https://doi.org/10.3390/polym14061165.Search in Google Scholar PubMed PubMed Central

Martins, C., Araujo, F., Gomes, M.J., Fernandes, C., Nunes, R., Li, W., Santos, H.A., Borges, F., and Sarmento, B. (2019). Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. Eur. J. Pharm. Biopharm. 138: 111–124, https://doi.org/10.1016/j.ejpb.2018.01.014.Search in Google Scholar PubMed

Martins, J.P., Torrieri, G., and Santos, H.A. (2018). The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opin. Drug Deliv. 15: 469–479, https://doi.org/10.1080/17425247.2018.1446936.Search in Google Scholar PubMed

Moreira, A., Carneiro, J., Campos, J.B.L.M., and Miranda, J.M. (2021). Production of hydrogel microparticles in microfluidic devices: a review. Microfluid. Nanofluidics 25: 1–24, https://doi.org/10.1007/s10404-020-02413-8.Search in Google Scholar

Mou, C.L., Deng, Q.Z., Hu, J.X., Wang, L.Y., Deng, H.B., Xiao, G., and Zhan, Y. (2020). Controllable preparation of monodisperse alginate microcapsules with oil cores. J. Colloid Interface Sci. 569: 307–319, https://doi.org/10.1016/j.jcis.2020.02.095.Search in Google Scholar PubMed

Mu, X.-T., Ju, X.-J., Zhang, L., Huang, X.-B., Faraj, Y., Liu, Z., Wang, W., Xie, R., Deng, Y., and Chu, L.-Y. (2019). Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs. J. Membr. Sci. 590: 117275, https://doi.org/10.1016/j.memsci.2019.117275.Search in Google Scholar

Mu, X.T., Li, Y., Ju, X.J., Yang, X.L., Xie, R., Wang, W., Liu, Z., and Chu, L.Y. (2020). Microfluidic fabrication of structure-controlled chitosan microcapsules via interfacial cross-linking of droplet templates. ACS Appl. Mater. Interfaces 12: 57514–57525, https://doi.org/10.1021/acsami.0c14656.Search in Google Scholar PubMed

Nie, Z., Xu, S., Seo, M., Lewis, P.C., and Kumacheva, E. (2005). Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J. Am. Chem. Soc. 127: 8058–8063, https://doi.org/10.1021/ja042494w.Search in Google Scholar PubMed

Nisisako, T., Torii, T., and Higuchi, T. (2002). Droplet formation in a microchannel network. Lab Chip 2: 24–26, https://doi.org/10.1299/jsmebio.2002.14.267.Search in Google Scholar

Okushima, S., Nisisako, T., Torii, T., and Higuchi, T. (2004). Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20: 9905–9908, https://doi.org/10.1021/la0480336.Search in Google Scholar PubMed

Peng, G., Hu, Y., Dou, G., Sun, Y., Huan, Y., Kang, S.H., and Piao, Z. (2022). Enhanced mechanical properties of epoxy composites embedded with MF/TiO2 hybrid shell microcapsules containing n-octadecane. J. Ind. Eng. Chem. 110: 414–423, https://doi.org/10.1016/j.jiec.2022.03.018.Search in Google Scholar

Pessi, J., Santos, H.A., Miroshnyk, I., JoukoyliruusiWeitz, D.A., and Mirza, S. (2014). Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Int. J. Pharmaceutics 472: 82–87, https://doi.org/10.1016/j.ijpharm.2014.06.012.Search in Google Scholar PubMed

Polenz, I., Weitz, D. A., and Baret, J. C. (2015). Polyurea microcapsules in microfluidics: surfactant control of soft membranes. Langmuir 31: 1127–1134, https://doi.org/10.1021/la5040189.Search in Google Scholar PubMed

Qi, D., Zhang, K., Tian, G., Jiang, B., and Huang, Y. (2021). Stretchable electronics based on PDMS substrates. Adv. Mater. 33: e2003155, https://doi.org/10.1002/adma.202003155.Search in Google Scholar PubMed

Qin, Y., Lu, X., Que, H., Wang, D., He, T., Liang, D., Liu, X., Chen, J., Ding, C., Xiu, P., et al.. (2021). Preparation and characterization of Pendimethalin microcapsules based on microfluidic technology. ACS Omega 6: 34160–34172, https://doi.org/10.1021/acsomega.1c05903.Search in Google Scholar PubMed PubMed Central

Quevedo, E., Steinbacher, J., and Mcquade, D. T. (2005). Interfacial polymerization within a simplified microfluidic device: capturing capsules. J. Am. Chem. Soc. 127: 10498–10499, https://doi.org/10.1021/ja0529945.Search in Google Scholar PubMed

Raj, M.K. and Chakraborty, S. (2020). PDMS microfluidics: a mini review. J. Appl. Polym. Sci. 137: 48958, https://doi.org/10.1002/app.48958.Search in Google Scholar

Ravanfar, R., Comunian, T.A., Dando, R., and Abbaspourrad, A. (2018). Optimization of microcapsules shell structure to preserve labile compounds: a comparison between microfluidics and conventional homogenization method. Food Chem. 241: 460–467, https://doi.org/10.1016/j.foodchem.2017.09.023.Search in Google Scholar PubMed

Ryu, S.A., Hwang, Y.H., Oh, H., Jeon, K., Lee, J.H., Yoon, J., Lee, J.B., and Lee, H. (2021). Biocompatible wax-based microcapsules with hermetic sealing for thermally triggered release of actives. ACS Appl. Mater. Interfaces 13: 36380–36387, https://doi.org/10.1021/acsami.1c04652.Search in Google Scholar PubMed

Sa, A., Hae, B., Ak, C., Pb, B., and Mewb, D. (2020). Application of microfluidic technology in cancer research and therapy. Adv. Clin. Chem. 99: 193–235, https://doi.org/10.1016/bs.acc.2020.02.012.Search in Google Scholar PubMed

Samandari, M., Alipanah, F., Haghjooy Javanmard, S., and Sanati-Nezhad, A. (2019). One-step wettability patterning of PDMS microchannels for generation of monodisperse alginate microbeads by in situ external gelation in double emulsion microdroplets. Sens. Actuators, B 291: 418–425, https://doi.org/10.1016/j.snb.2019.04.100.Search in Google Scholar

Seiffert, S. (2013). Microgel capsules tailored by droplet-based microfluidics. ChemPhysChem 14: 295–304, https://doi.org/10.1002/cphc.201200749.Search in Google Scholar PubMed

Shakeri, A., Khan, S., and Didar, T.F. (2021). Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab Chip 21: 3053–3075, https://doi.org/10.1039/d1lc00288k.Search in Google Scholar PubMed

Siltanen, C., Diakatou, M., Lowen, J., Haque, A., Rahimian, A., Stybayeva, G., and Revzin, A. (2017). One step fabrication of hydrogel microcapsules with hollow core for assembly and cultivation of hepatocyte spheroids. Acta Biomater. 50: 428–436, https://doi.org/10.1016/j.actbio.2017.01.010.Search in Google Scholar PubMed PubMed Central

Souza, L. and Al-Tabbaa, A. (2018). Microfluidic fabrication of microcapsules tailored for self-healing in cementitious materials. Construct. Build. Mater. 184: 713–722, https://doi.org/10.1016/j.conbuildmat.2018.07.005.Search in Google Scholar

Stauffer, F., Peter, B., Alem, H., Funfschilling, D., Dumas, N., Serra, C.A., and Roques-Carmes, T. (2019). Polyelectrolytes layer-by-layer surface modification of PDMS microchips for the production of simple O/W and double W/O/W emulsions: from global to localized treatment. Chem. Eng. Process – Process Intensif. 146: 107685, https://doi.org/10.1016/j.cep.2019.107685.Search in Google Scholar

Steegmans, M.L., Schroën, K.G., and Boom, R.M. (2009). Characterization of emulsification at flat microchannel Y junctions. Langmuir 25: 3396–3401, https://doi.org/10.1021/la8035852.Search in Google Scholar PubMed

Sugiura, S., Nakajima, M., and Seki, M. (2002). Effect of channel structure on microchannel emulsification. Langmuir 18: 5708–5712, https://doi.org/10.1021/la025813a.Search in Google Scholar

Sun, H., Zheng, H., Tang, Q., Dong, Y., Qu, F., Wang, Y., Yang, G., and Meng, T. (2019a). Monodisperse alginate microcapsules with spatially confined bioactive molecules via microfluid-generated W/W/O emulsions. ACS Appl. Mater. Interfaces 11: 37313–37321, https://doi.org/10.1021/acsami.9b12479.Search in Google Scholar PubMed

Sun, X., Wu, Q., Li, W., Gong, X., Ge, J.-Y., Wu, J., and Gao, X. (2021). Facile fabrication of drug-loaded PEGDA microcapsules for drug evaluation using droplet-based microchip. Chin. Chem. Lett. 33: 2697–2700, https://doi.org/10.1016/j.cclet.2021.08.122.Search in Google Scholar

Sun, Z., Yang, C., Eggersdorfer, M., Cui, J., Li, Y., Hai, M., Chen, D., and Weitz, D.A. (2019b). A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release. Chin. Chem. Lett. 31: 249–252, https://doi.org/10.1016/j.cclet.2019.04.040.Search in Google Scholar

Thorne, M. F., Simkovic, F., and Slater, A. G. (2019). Production of monodisperse polyurea microcapsules using microfluidics. Sci. Rep. 9: 1–7, https://doi.org/10.1038/s41598-019-54512-4.Search in Google Scholar PubMed PubMed Central

Tourne-Peteilh, C., Robin, B., Lions, M., Martinez, J., Mehdi, A., Subra, G., and Devoisselle, J.M. (2019). Combining sol-gel and microfluidics processes for the synthesis of protein-containing hybrid microgels. Chem. Commun. 55: 13112–13115, https://doi.org/10.1039/c9cc04963k.Search in Google Scholar PubMed

Trinh, K. T. L., Le, N. X. T., and Lee, N. Y. (2021). Microfluidic-based fabrication of alginate microparticles for protein delivery and its application in the in vitro chondrogenesis of mesenchymal stem cells. J. Drug Deliv. Sci. Technol. 66: 102735, https://doi.org/10.1016/j.jddst.2021.102735.Search in Google Scholar

Tyurin, I.N., Getmantseva, V.V., and Andreeva, E.G. (2018). Analysis of innovative technologies of thermoregulating textile materials. Fibre Chem. 50: 1–9, https://doi.org/10.1007/s10692-018-9918-y.Search in Google Scholar

Ushikubo, F.Y., Oliveira, D.R.B., Michelon, M., and Cunha, R.L. (2014). Designing food structure using microfluidics. Food Eng. Rev. 7: 393–416, https://doi.org/10.1007/s12393-014-9100-0.Search in Google Scholar

Utada, A.S., Lorenceau, E., Link, D.R., Kaplan, P.D., Stone, H.A., and Weitz, D.A. (2005). Monodisperse double emulsions generated from a microcapillary device. Science 308: 537–541, https://doi.org/10.1126/science.1109164.Search in Google Scholar PubMed

Van Der Kooij, R.S., Steendam, R., Zuidema, J., Frijlink, H.W., and Hinrichs, W.L.J. (2021). Microfluidic production of polymeric core-shell microspheres for the delayed pulsatile release of bovine serum albumin as a model antigen. Pharmaceutics 13: 1854, https://doi.org/10.3390/pharmaceutics13111854.Search in Google Scholar PubMed PubMed Central

Vladisavljević, G., Al Nuumani, R., and Nabavi, S. (2017). Microfluidic production of multiple emulsions. Micromachines 8: 75, https://doi.org/10.3390/mi8030075.Search in Google Scholar

Vian, A. and Amstad, E. (2019). Mechano-responsive microcapsules with uniform thin shells. Soft Matter 15: 1290–1296, https://doi.org/10.1039/c8sm02047g.Search in Google Scholar PubMed

Wang, H., Liu, H., Liu, H., Su, W., Chen, W., and Qin, J. (2019). One-step generation of core-shell gelatin methacrylate (GelMA) microgels using a droplet microfluidic system. Adv. Mater. Technol. 4: 800632, https://doi.org/10.1002/admt.201800632.Search in Google Scholar

Wang, J.T., Wang, J., and Han, J.J. (2011). Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics. Small 7: 1728–1754, https://doi.org/10.1002/smll.201001913.Search in Google Scholar PubMed

Wang, J., Hu, Y., Deng, R., Xu, W., Liu, S., Liang, R., Nie, Z., and Zhu, J. (2012). Construction of multifunctional photonic crystal microcapsules with tunable shell structures by combining microfluidic and controlled photopolymerization. Lab Chip 12: 2795–2798, https://doi.org/10.1039/c2lc40419b.Search in Google Scholar PubMed

Wang, K., Ni, J., Li, H., Tian, X., Tan, M., and Su, W. (2022). Survivability of probiotics encapsulated in kelp nanocellulose/alginate microcapsules on microfluidic device. Food Res. Int. 160: 111723, https://doi.org/10.1016/j.foodres.2022.111723.Search in Google Scholar PubMed

Wang, Y., Li, Y., Gong, J., and Ma, J. (2020). Microfluidic fabrication of monodisperse microcapsules for thermo-triggered release of liposoluble drugs. Polymers 12: 2200, https://doi.org/10.3390/polym12102200.Search in Google Scholar PubMed PubMed Central

Wei, J., Ju, X. J., Xie, R., Mou, C. L., Lin, X., and Chu, L. Y. (2011). Novel cationic pH-responsive poly(N,N-dimethylaminoethyl methacrylate) microcapsules prepared by a microfluidic technique. J. Colloid Interface Sci. 357: 101–108, https://doi.org/10.1016/j.jcis.2011.01.105.Search in Google Scholar PubMed

Wlodarczyk, K.L., Carter, R.M., Jahanbakhsh, A., Lopes, A.A., Mackenzie, M.D., Maier, R.R.J., Hand, D.P., and Maroto-Valer, M.M. (2018). Rapid laser manufacturing of microfluidic devices from glass substrates. Micromachines 9: 409, https://doi.org/10.3390/mi9080409.Search in Google Scholar PubMed PubMed Central

Wolf, M.P., Salieb-Beugelaar, G.B., and Hunziker, P. (2018). PDMS with designer functionalities: properties, modifications strategies, and applications. Prog. Polym. Sci. 83: 97–134, https://doi.org/10.1016/j.progpolymsci.2018.06.001.Search in Google Scholar

Wu, J., Zhao, Z., Hamel, C.M., Mu, X., Kuang, X., Guo, Z., and Qi, H.J. (2018). Evolution of material properties during free radical photopolymerization. J. Mech. Phys. Solid. 112: 25–49, https://doi.org/10.1016/j.jmps.2017.11.018.Search in Google Scholar

Xia, H., Li, J., Man, J., Man, L., Zhang, S., and Li, J. (2021). Recent progress in preparation of functional microparticles based on microfluidic technique. Mater. Today Commun. 29: 102740, https://doi.org/10.1016/j.mtcomm.2021.102740.Search in Google Scholar

Xie, X., Zhang, W., Abbaspourrad, A., Ahn, J., Bader, A., Bose, S., Vegas, A., Lin, J., Tao, J., Hang, T., et al.. (2017). Microfluidic fabrication of colloidal nanomaterials-encapsulated microcapsules for biomolecular sensing. Nano Lett. 17: 2015–2020, https://doi.org/10.1021/acs.nanolett.7b00026.Search in Google Scholar PubMed

Xu, J., Shamul, J.G., Staten, N.A., White, A.M., Jiang, B., and He, X. (2021a). Bioinspired 3D culture in nanoliter hyaluronic acid-rich core-shell hydrogel microcapsules isolates highly pluripotent human iPSCs. Small 17: e2102219, https://doi.org/10.1002/smll.202102219.Search in Google Scholar PubMed PubMed Central

Xu, Q., Qiu, R., Bai, Z., Ma, J., Fan, Q., Li, Y., Taha, S., Ramzan, Z., and Li, J. (2021b). Zein-based microcapsule for vanillin sustained release. J. Appl. Polym. Sci. 138: 51217, https://doi.org/10.1002/app.51217.Search in Google Scholar

Yang, B., Lu, Y., and Luo, G. (2012). Controllable preparation of polyacrylamide hydrogel microspheres in a coaxial microfluidic device. Ind. Eng. Chem. Res. 51: 9016–9022, https://doi.org/10.1021/ie3004013.Search in Google Scholar

Yang, L., Liu, Y., Sun, L., Zhao, C., Chen, G., and Zhao, Y. (2021). Biomass microcapsules with stem cell encapsulation for bone repair. Nanomicro Lett. 14: 4, https://doi.org/10.1007/s40820-021-00747-8.Search in Google Scholar PubMed PubMed Central

Yang, M., Liang, Z., Wang, L., Qi, M., Luo, Z., and Li, L. (2020a). Microencapsulation delivery system in food industry: challenge and the way forward. Adv. Polym. Technol. 2020: 1–14, https://doi.org/10.1155/2020/7531810.Search in Google Scholar

Yang, Z., Fang, X., Peng, J., Cao, X., Liao, Z., Yan, Z., Jiang, C., Liu, B., and Zhang, H. (2020b). Versatility of the microencapsulation technique via integrating microfluidic T-junction and interfacial polymerization in encapsulating different polyamines. Colloids Surf., A 604: 125097, https://doi.org/10.1016/j.colsurfa.2020.125097.Search in Google Scholar

Yazdian Kashani, S., Afzalian, A., Shirinichi, F., and Keshavarz Moraveji, M. (2020). Microfluidics for core-shell drug carrier particles – a review. RSC Adv. 11: 229–249, https://doi.org/10.1039/d0ra08607j.Search in Google Scholar PubMed PubMed Central

Ye, B., Miao, J.-L., Li, J.-L., Zhao, Z.-C., Chang, Z., and Serra, C.A. (2013). Fabrication of size-controlled CeO2 microparticles by a microfluidic sol–gel process as an analog preparation of ceramic nuclear fuel particles. J. Nucl. Sci. Technol. 50: 774–780, https://doi.org/10.1080/00223131.2013.796897.Search in Google Scholar

Yeh, C.-H., Chen, K.-R., and Lin, Y.-C. (2013). Developing heatable microfluidic chip to generate gelatin emulsions and microcapsules. Microfluid. Nanofluidics 15: 775–784, https://doi.org/10.1007/s10404-013-1193-x.Search in Google Scholar

Yew, M., Ren, Y., Koh, K.S., Sun, C., Snape, C., and Yan, Y. (2019). Synthesis of microcapsules for carbon capture via needle-based droplet microfluidics. Energy Proc. 160: 443–450, https://doi.org/10.1016/j.egypro.2019.02.179.Search in Google Scholar

You, X., Wang, B., Xie, S., Li, L., Lu, H., Jin, M., Wang, X., Zhou, G., and Shui, L. (2020). Microfluidic-assisted fabrication of monodisperse core-shell microcapsules for pressure-sensitive adhesive with enhanced performance. Nanomaterials 10: 274, https://doi.org/10.3390/nano10020274.Search in Google Scholar PubMed PubMed Central

Yuan, S., Zhang, G., Zhu, J., Mamrol, N., Liu, S., Mai, Z., Van Puyvelde, P., and Van Der Bruggen, B. (2020). Hydrogel assisted interfacial polymerization for advanced nanofiltration membranes. J. Mater. Chem. A 8: 3238–3245, https://doi.org/10.1039/c9ta12984g.Search in Google Scholar

Zeng, W. and Fu, H. (2020). Quantitative measurements of the somatic cell count of fat-free milk based on droplet microfluidics. J. Mater. Chem. C 8: 13770–13776, https://doi.org/10.1039/d0tc03571h.Search in Google Scholar

Zhang, C., Gao, W., Zhao, Y., and Chen, Y. (2018a). Microfluidic generation of self-contained multicomponent microcapsules for self-healing materials. Appl. Phys. Lett. 113: 203702, https://doi.org/10.1063/1.5064439.Search in Google Scholar

Zhang, C., Grossier, R., Candoni, N., and Veesler, S. (2021). Preparation of alginate hydrogel microparticles by gelation introducing cross-linkers using droplet-based microfluidics: a review of methods. Biomater. Res. 25: 41, https://doi.org/10.1186/s40824-021-00243-5.Search in Google Scholar PubMed PubMed Central

Zhang, F., Fan, J.B., and Wang, S. (2020). Interfacial polymerization: from chemistry to functional materials. Angew. Chem., Int. Ed. Engl. 59: 21840–21856, https://doi.org/10.1002/anie.201916473.Search in Google Scholar PubMed

Zhang, G. and Sun, J. (2021). Lipid in chips: a brief review of liposomes formation by microfluidics. Int. J. Nanomed. 16: 7391–7416, https://doi.org/10.2147/ijn.s331639.Search in Google Scholar

Zhang, H., Zhang, X., Bao, C., Li, X., Sun, D., Duan, F., Friedrich, K., and Yang, J. (2018b). Direct microencapsulation of pure polyamine by integrating microfluidic emulsion and interfacial polymerization for practical self-healing materials. J. Mater. Chem. A 6: 24092–24099, https://doi.org/10.1039/c8ta08324j.Search in Google Scholar

Zhang, H., Zhang, X., Bao, C., Li, X., Duan, F., Friedrich, K., and Yang, J. (2019a). Skin-inspired, fully autonomous self-warning and self-repairing polymeric material under damaging events. Chem. Mater. 31: 2611–2618, https://doi.org/10.1021/acs.chemmater.9b00398.Search in Google Scholar

Zhang, J., Coulston, R.J., Jones, S.T., Geng, J., Scherman, O.A., and Abell, C. (2012). One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 335: 690–694, https://doi.org/10.1126/science.1215416.Search in Google Scholar PubMed

Zhang, J.M., Ji, Q., and Duan, H. (2019b). Three-dimensional printed devices in droplet microfluidics. Micromachines 10: 754, https://doi.org/10.3390/mi10110754.Search in Google Scholar PubMed PubMed Central

Zhang, J., Zhang, R., Zhang, Y., Pan, Y., Shum, H.C., and Jiang, Z. (2022). Alginate-gelatin emulsion droplets for encapsulation of vitamin A by 3D printed microfluidics. Particuology 64: 164–170, https://doi.org/10.1016/j.partic.2021.09.004.Search in Google Scholar

Zhang, M.-J., Wang, W., Xie, R., Ju, X.-J., Liu, L., Gu, Y.-Y., and Chu, L.-Y. (2013). Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature. Soft Matter 9: 4150–4159, https://doi.org/10.1039/c3sm00066d.Search in Google Scholar

Zhao, C.X. (2013). Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug Deliv. Rev. 65: 1420–1446, https://doi.org/10.1016/j.addr.2013.05.009.Search in Google Scholar PubMed

Zhao, G., Liu, X., Zhu, K., and He, X. (2017). Hydrogel encapsulation facilitates rapid-cooling cryopreservation of stem cell-laden core-shell microcapsules as cell-biomaterial constructs. Adv. Healthc. Mater. 6: 1700988, https://doi.org/10.1002/adhm.201700988.Search in Google Scholar PubMed PubMed Central

Zhao, Q., Cui, H., Wang, Y., and Du, X. (2020a). Microfluidic platforms toward rational material fabrication for biomedical applications. Small 16: e1903798, https://doi.org/10.1002/smll.201903798.Search in Google Scholar PubMed

Zhao, S., Wen, H., Ou, Y., Li, M., Wang, L., Zhou, H., Di, B., Yu, Z., and Hu, C. (2021). A new design for living cell-based biosensors: microgels with a selectively permeable shell that can harbor bacterial species. Sens. Actuators, B 334: 129648, https://doi.org/10.1016/j.snb.2021.129648.Search in Google Scholar

Zhao, Y., Zhang, M., Wen, X., and Xiang, Z. (2020b). Microfluidic interface boosted synthesis of covalent organic polymer capsule. Green Chem. Eng. 1: 63–69, https://doi.org/10.1016/j.gce.2020.09.004.Search in Google Scholar

Zhu, K., Yu, Y., Cheng, Y., Tian, C., Zhao, G., and Zhao, Y. (2019). All-aqueous-phase microfluidics for cell encapsulation. ACS Appl. Mater. Interfaces 11: 4826–4832, https://doi.org/10.1021/acsami.8b19234.Search in Google Scholar PubMed

Zhu, P. and Wang, L. (2021). Microfluidics-enabled soft manufacture of materials with tailorable wettability. Chem. Rev. 122: 7010–7060, https://doi.org/10.1021/acs.chemrev.1c00530.Search in Google Scholar PubMed

Zhu, Y., Sun, L., Fu, X., Liu, J., Liang, Z., Tan, H., Li, W., and Zhao, Y. (2021). Engineering microcapsules to construct vascularized human brain organoids. Chem. Eng. J. 424: 130427, https://doi.org/10.1016/j.cej.2021.130427.Search in Google Scholar

Received: 2022-09-20
Accepted: 2023-03-26
Published Online: 2023-05-19
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2022-0060/html
Scroll to top button