skip to main content
research-article

Learning Physically Realizable Skills for Online Packing of General 3D Shapes

Published:28 July 2023Publication History
Skip Abstract Section

Abstract

We study the problem of learning online packing skills for irregular 3D shapes, which is arguably the most challenging setting of bin packing problems. The goal is to consecutively move a sequence of 3D objects with arbitrary shapes into a designated container with only partial observations of the object sequence. We take physical realizability into account, involving physics dynamics and constraints of a placement. The packing policy should understand the 3D geometry of the object to be packed and make effective decisions to accommodate it in the container in a physically realizable way. We propose a Reinforcement Learning (RL) pipeline to learn the policy. The complex irregular geometry and imperfect object placement together lead to huge solution space. Direct training in such space is prohibitively data intensive. We instead propose a theoretically provable method for candidate action generation to reduce the action space of RL and the learning burden. A parameterized policy is then learned to select the best placement from the candidates. Equipped with an efficient method of asynchronous RL acceleration and a data preparation process of simulation-ready training sequences, a mature packing policy can be trained in a physics-based environment within 48 hours. Through extensive evaluation on a variety of real-life shape datasets and comparisons with state-of-the-art baselines, we demonstrate that our method outperforms the best-performing baseline on all datasets by at least 12.8% in terms of packing utility. We also release our datasets and source code to support further research in this direction.1

Skip Supplemental Material Section

Supplemental Material

REFERENCES

  1. Ali Sara, Ramos António Galrão, Carravilla Maria Antónia, and Oliveira José Fernando. 2022. On-line three-dimensional packing problems: A review of off-line and on-line solution approaches. Computers & Industrial Engineering (2022), 108122. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barth-Maron Gabriel, Hoffman Matthew W., Budden David, Dabney Will, Horgan Dan, TB Dhruva, Muldal Alistair, Heess Nicolas, and Lillicrap Timothy P.. 2018. Distributed distributional deterministic policy gradients. In International Conference on Learning Representations. OpenReview.net, Vancouver, BC, Canada. https://openreview.net/forum?id=SyZipzbCb.Google ScholarGoogle Scholar
  3. Bellemare Marc G., Dabney Will, and Munos Rémi. 2017. A distributional perspective on reinforcement learning. In International Conference on Machine Learning (Proceedings of Machine Learning Research), Vol. 70. PMLR, Sydney, NSW, Australia, 449458. http://proceedings.mlr.press/v70/bellemare17a.html.Google ScholarGoogle Scholar
  4. Botsch Mario, Kobbelt Leif, Pauly Mark, Alliez Pierre, and Lévy Bruno. 2010. Polygon Mesh Processing. AK Peters. http://www.crcpress.com/product/isbn/9781568814261.Google ScholarGoogle ScholarCross RefCross Ref
  5. Boyd Stephen, Boyd Stephen P., and Vandenberghe Lieven. 2004. Convex Optimization. Cambridge University Press.Google ScholarGoogle ScholarCross RefCross Ref
  6. Brockman Greg, Cheung Vicki, Pettersson Ludwig, Schneider Jonas, Schulman John, Tang Jie, and Zaremba Wojciech. 2016. OpenAI gym. arXiv preprint arXiv:1606.01540 (2016). http://arxiv.org/abs/1606.01540.Google ScholarGoogle Scholar
  7. Çalli Berk, Singh Arjun, Bruce James, Walsman Aaron, Konolige Kurt, Srinivasa Siddhartha S., Abbeel Pieter, and Dollar Aaron M.. 2017. Yale-CMU-Berkeley dataset for robotic manipulation research. The International Journal of Robotics Research 36, 3 (2017), 261268. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chang Angel X., Funkhouser Thomas A., Guibas Leonidas J., Hanrahan Pat, Huang Qi-Xing, Li Zimo, Savarese Silvio, Savva Manolis, Song Shuran, Su Hao, Xiao Jianxiong, Yi Li, and Yu Fisher. 2015. ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015). http://arxiv.org/abs/1512.03012.Google ScholarGoogle Scholar
  9. Chen Rulin, Wang Ziqi, Song Peng, and Bickel Bernd. 2022. Computational design of high-level interlocking puzzles. Transactions on Graphics 41, 4 (2022), 150:1–150:15. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chen Xuelin, Zhang Hao, Lin Jinjie, Hu Ruizhen, Lu Lin, Huang Qi-Xing, Benes Bedrich, Cohen-Or Daniel, and Chen Baoquan. 2015. Dapper: Decompose-and-pack for 3D printing. Transactions on Graphics 34, 6 (2015), 213:1–213:12. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Conway John H. and Torquato Salvatore. 2006. Packing, tiling, and covering with tetrahedra. National Academy of Sciences 103, 28 (2006), 1061210617.Google ScholarGoogle ScholarCross RefCross Ref
  12. Coumans Erwin and Bai Yunfei. 2016. PyBullet, a Python module for physics simulation for games, robotics and machine learning. PyBullet (2016).Google ScholarGoogle Scholar
  13. Duan Lu, Hu Haoyuan, Qian Yu, Gong Yu, Zhang Xiaodong, Wei Jiangwen, and Xu Yinghui. 2019. A multi-task selected learning approach for solving 3D flexible bin packing problem. In International Conference on Autonomous Agents and MultiAgent Systems. International Foundation for Autonomous Agents and Multiagent Systems, Montreal, QC, Canada, 13861394. http://dl.acm.org/citation.cfm?id=3331847.Google ScholarGoogle Scholar
  14. Duan Yan, Chen Xi, Houthooft Rein, Schulman John, and Abbeel Pieter. 2016. Benchmarking deep reinforcement learning for continuous control. In International Conference on Machine Learning. PMLR, 13291338. http://proceedings.mlr.press/v48/duan16.html.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Falkenauer Emanuel. 1996. A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2, 1 (1996), 530. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. Fortunato Meire, Azar Mohammad Gheshlaghi, Piot Bilal, Menick Jacob, Hessel Matteo, Osband Ian, Graves Alex, Mnih Volodymyr, Munos Rémi, Hassabis Demis, Pietquin Olivier, Blundell Charles, and Legg Shane. 2018. Noisy networks for exploration. In International Conference on Learning Representations. OpenReview.net, Vancouver, BC, Canada. https://openreview.net/forum?id=rywHCPkAW.Google ScholarGoogle Scholar
  17. Funk Niklas, Chalvatzaki Georgia, Belousov Boris, and Peters Jan. 2021. Learn2Assemble with structured representations and search for robotic architectural construction. In Conference on Robot Learning (Proceedings of Machine Learning Research), Vol. 164. PMLR, London, UK, 14011411. https://proceedings.mlr.press/v164/funk22a.html.Google ScholarGoogle Scholar
  18. Funk Niklas, Menzenbach Svenja, Chalvatzaki Georgia, and Peters Jan. 2022. Graph-based reinforcement learning meets mixed integer programs: An application to 3D robot assembly discovery. In International Conference on Intelligent Robots and Systems. IEEE, Kyoto, Japan, 1021510222. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  19. Goldberg Ken, Mirtich Brian, Zhuang Yan, Craig John, Carlisle Brian, and Canny John F.. 1999. Part pose statistics: Estimators and experiments. Transactions on Robotics and Automation 15, 5 (1999), 849857. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. Goyal Ankit and Deng Jia. 2020. PackIt: A virtual environment for geometric planning. In International Conference on Machine Learning (Proceedings of Machine Learning Research), Vol. 119. PMLR, 37003710. http://proceedings.mlr.press/v119/goyal20b.html.Google ScholarGoogle Scholar
  21. Ha Chi Trung, Nguyen Trung Thanh, Bui Lam Thu, and Wang Ran. 2017. An online packing heuristic for the three-dimensional container loading problem in dynamic environments and the physical internet. In Applications of Evolutionary Computation (Lecture Notes in Computer Science), Vol. 10200. Amsterdam, The Netherlands, 140155. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. Hales Thomas, Adams Mark, Bauer Gertrud, Dang Tat Dat, Harrison John, Truong Hoang Le, Kaliszyk Cezary, Magron Victor, McLaughlin Sean, Nguyen Tat Thang, et al. 2017. A formal proof of the Kepler conjecture. In Forum of Mathematics, Vol. 5. Cambridge University Press.Google ScholarGoogle Scholar
  23. Han Shuai D., Feng Si Wei, and Yu Jingjin. 2019. Toward fast and optimal robotic pick-and-place on a moving conveyor. Robotics and Automation Letters 5, 2 (2019), 446453. Google ScholarGoogle ScholarCross RefCross Ref
  24. Hartmanis Juris. 1982. Computers and intractability: A guide to the theory of NP-completeness (Michael R. Garey and David S. Johnson). SIAM Review 24, 1 (1982), 90.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hessel Matteo, Modayil Joseph, Hasselt Hado van, Schaul Tom, Ostrovski Georg, Dabney Will, Horgan Dan, Piot Bilal, Azar Mohammad Gheshlaghi, and Silver David. 2018. Rainbow: Combining improvements in deep reinforcement learning. In AAAI Conference on Artificial Intelligence. AAAI Press, New Orleans, Louisiana, USA, 32153222. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204.Google ScholarGoogle ScholarCross RefCross Ref
  26. Horgan Dan, Quan John, Budden David, Barth-Maron Gabriel, Hessel Matteo, Hasselt Hado van, and Silver David. 2018. Distributed prioritized experience replay. In International Conference on Learning Representations. OpenReview.net, Vancouver, BC, Canada. https://openreview.net/forum?id=H1Dy---0Z.Google ScholarGoogle Scholar
  27. Hu Haoyuan, Zhang Xiaodong, Yan Xiaowei, Wang Longfei, and Xu Yinghui. 2017. Solving a new 3D bin packing problem with deep reinforcement learning method. arXiv preprint arXiv:1708.05930 (2017). http://arxiv.org/abs/1708.05930.Google ScholarGoogle Scholar
  28. Hu Ruizhen, Xu Juzhan, Chen Bin, Gong Minglun, Zhang Hao, and Huang Hui. 2020. TAP-Net: Transport-and-pack using reinforcement learning. Transactions on Graphics 39, 6 (2020), 232:1–232:15. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Huang Haojie, Wang Dian, Walters Robin, and Platt Robert. 2022. Equivariant transporter network. Proceedings of Robotics: Science and Systems (2022).Google ScholarGoogle ScholarCross RefCross Ref
  30. Huang Sichao, Wang Ziwei, Zhou Jie, and Lu Jiwen. 2023. Planning irregular object packing via hierarchical reinforcement learning. Robotics and Automation Letters 8, 1 (2023), 8188. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  31. Kallrath Josef. 2017. Packing ellipsoids into volume-minimizing rectangular boxes. Journal of Global Optimization 67, 1-2 (2017), 151185. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kappler Daniel, Bohg Jeannette, and Schaal Stefan. 2015. Leveraging big data for grasp planning. In International Conference on Robotics and Automation. IEEE, Seattle, WA, USA, 43044311. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. Karabulut Korhan and Inceoglu Mustafa Murat. 2004. A hybrid genetic algorithm for packing in 3D with deepest bottom left with fill method. In Advances in Information Systems (Lecture Notes in Computer Science), Vol. 3261. Springer, Izmir, Turkey, 441450. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Kasper Alexander, Xue Zhixing, and Dillmann Rüdiger. 2012. The KIT object models database: An object model database for object recognition, localization and manipulation in service robotics. The International Journal of Robotics Research 31, 8 (2012), 927934. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  35. Koch Sebastian, Matveev Albert, Jiang Zhongshi, Williams Francis, Artemov Alexey, Burnaev Evgeny, Alexa Marc, Zorin Denis, and Panozzo Daniele. 2019. ABC: A big CAD model dataset for geometric deep learning. In Conference on Computer Vision and Pattern Recognition. Computer Vision Foundation/IEEE, Long Beach, CA, USA, 96019611. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  36. Lévy Bruno, Petitjean Sylvain, Ray Nicolas, and Maillot Jérôme. 2002. Least squares conformal maps for automatic texture atlas generation. Transactions on Graphics 21, 3 (2002), 362371. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Limper Max, Vining Nicholas, and Sheffer Alla. 2018. Box cutter: Atlas refinement for efficient packing via void elimination. Transactions on Graphics 37, 4 (2018), 153. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Liu Hao-Yu, Fu Xiao-Ming, Ye Chunyang, Chai Shuangming, and Liu Ligang. 2019. Atlas refinement with bounded packing efficiency. Transactions on Graphics 38, 4 (2019), 33:1–33:13. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Liu Xiao, Liu Jia-min, Cao An-xi, and Yao Zhuang-le. 2015. HAPE3D - a new constructive algorithm for the 3D irregular packing problem. Frontiers of Information Technology & Electronic Engineering 16, 5 (2015), 380390. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  40. Lo Kui-Yip, Fu Chi-Wing, and Li Hongwei. 2009. 3D polyomino puzzle. Transactions on Graphics 28, 5 (2009), 157. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Lodi Andrea, Martello Silvano, and Monaci Michele. 2002. Two-dimensional packing problems: A survey. European Journal of Operational Research 141, 2 (2002), 241252. Google ScholarGoogle ScholarCross RefCross Ref
  42. Luo Linjie, Baran Ilya, Rusinkiewicz Szymon, and Matusik Wojciech. 2012. Chopper: Partitioning models into 3D-printable parts. Transactions on Graphics 31, 6 (2012), 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ma Y., Chen Zhonggui, Hu W., and Wang W.. 2018. Packing irregular objects in 3D space via hybrid optimization. Computer Graphics Forum 37, 5 (2018), 4959. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  44. Mahler Jeffrey and Goldberg Ken. 2017. Learning deep policies for robot bin picking by simulating robust grasping sequences. In Conference on Robot Learning (Proceedings of Machine Learning Research), Vol. 78. PMLR, Mountain View, California, USA, 515524. http://proceedings.mlr.press/v78/mahler17a.html.Google ScholarGoogle Scholar
  45. Mahler Jeffrey, Pokorny Florian T., Hou Brian, Roderick Melrose, Laskey Michael, Aubry Mathieu, Kohlhoff Kai, Kröger Torsten, Kuffner James J., and Goldberg Ken. 2016. Dex-Net 1.0: A cloud-based network of 3D objects for robust grasp planning using a Multi-Armed Bandit model with correlated rewards. In International Conference on Robotics and Automation. IEEE, Stockholm, Sweden, 19571964. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Mamou Khaled, Lengyel E., and Peters A.. 2016. Volumetric hierarchical approximate convex decomposition. In Game Engine Gems 3. AK Peters, 141158.Google ScholarGoogle Scholar
  47. Berg M., Cheong Otfried, Kreveld Marc van, and Mark Overmars. 2008. Computational Geometry Algorithms and Applications. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  48. Martello Silvano, Pisinger David, and Vigo Daniele. 2000. The three-dimensional bin packing problem. Operations Research 48, 2 (2000), 256267. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Mnih Volodymyr, Kavukcuoglu Koray, Silver David, Rusu Andrei A., Veness Joel, Bellemare Marc G., Graves Alex, Riedmiller Martin A., Fidjeland Andreas, Ostrovski Georg, Petersen Stig, Beattie Charles, Sadik Amir, Antonoglou Ioannis, King Helen, Kumaran Dharshan, Wierstra Daan, Legg Shane, and Hassabis Demis. 2015. Human-level control through deep reinforcement learning. Nature 518, 7540 (2015), 529533. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. Nöll Tobias and Strieker D.. 2011. Efficient packing of arbitrary shaped charts for automatic texture atlas generation. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 13091317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Pan Zherong, Gao Xifeng, and Manocha Dinesh. 2020. Grasping fragile objects using a stress-minimization metric. In International Conference on Robotics and Automation. 517523. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  52. Pan Zherong and Hauser Kris. 2021. Decision making in joint push-grasp action space for large-scale object sorting. In International Conference on Robotics and Automation. 61996205. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Qi Charles Ruizhongtai, Su Hao, Mo Kaichun, and Guibas Leonidas J.. 2017. PointNet: Deep learning on point sets for 3D classification and segmentation. In Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Honolulu, HI, USA, 7785. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  54. Ramer Urs. 1972. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing 1, 3 (1972), 244256. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  55. Ramos A. Galrão, Oliveira José F., Gonçalves José F., and Lopes Manuel P.. 2016. A container loading algorithm with static mechanical equilibrium stability constraints. Transportation Research Part B: Methodological 91 (2016), 565581.Google ScholarGoogle ScholarCross RefCross Ref
  56. Ray Nicolas, Ulysse Jean-Christophe, Cavin Xavier, and Levy Bruno. 2003. Generation of radiosity texture atlas for realistic real-time rendering. In Eurographics 2003 — Short Presentations. Eurographics Association. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  57. Rennie Colin, Shome Rahul, Bekris Kostas E., and Souza Alberto F. De. 2016. A dataset for improved RGBD-based object detection and pose estimation for warehouse pick-and-place. Robotics and Automation Letters 1, 2 (2016), 11791185. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  58. Saakes Daniel, Cambazard Thomas, Mitani Jun, and Igarashi Takeo. 2013. PacCAM: Material capture and interactive 2D packing for efficient material usage on CNC cutting machines. In Symposium on User Interface Software and Technology. ACM, St. Andrews, United Kingdom, 441446. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Schaul Tom, Quan John, Antonoglou Ioannis, and Silver David. 2016. Prioritized experience replay. In International Conference on Learning Representations. San Juan, Puerto Rico. http://arxiv.org/abs/1511.05952.Google ScholarGoogle Scholar
  60. Schertler Nico, Panozzo Daniele, Gumhold Stefan, and Tarini Marco. 2018. Generalized motorcycle graphs for imperfect quad-dominant meshes. Transactions on Graphics 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Schulman John, Wolski Filip, Dhariwal Prafulla, Radford Alec, and Klimov Oleg. 2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017). http://arxiv.org/abs/1707.06347.Google ScholarGoogle Scholar
  62. Seiden Steven S.. 2002. On the online bin packing problem. J. ACM 49, 5 (2002), 640671. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Shome Rahul, Tang Wei N., Song Changkyu, Mitash Chaitanya, Kourtev Hristiyan, Yu Jingjin, Boularias Abdeslam, and Bekris Kostas E.. 2019. Towards robust product packing with a minimalistic end-effector. In International Conference on Robotics and Automation. 90079013. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Singh Arjun, Sha James, Narayan Karthik S., Achim Tudor, and Abbeel Pieter. 2014. BigBIRD: A large-scale 3D database of object instances. In International Conference on Robotics and Automation. IEEE, Hong Kong, China, 509516. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  65. Stutz David and Geiger Andreas. 2020. Learning 3D shape completion under weak supervision. International Journal of Computer Vision 128, 5 (2020), 11621181. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Suzuki Satoshi and Abe Keiichi. 1985. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30, 1 (1985), 3246. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  67. Tiwari Santosh, Fadel Georges, and Fenyes Peter. 2010. A fast and efficient compact packing algorithm for SAE and ISO luggage packing problems. Journal of Computing and Information Science in Engineering 10, 2 (2010), 021010. Google ScholarGoogle ScholarCross RefCross Ref
  68. Velickovic Petar, Cucurull Guillem, Casanova Arantxa, Romero Adriana, Liò Pietro, and Bengio Yoshua. 2018. Graph attention networks. In International Conference on Learning Representations. OpenReview.net, Vancouver, BC, Canada. https://openreview.net/forum?id=rJXMpikCZ.Google ScholarGoogle Scholar
  69. Wang Fan and Hauser Kris. 2019. Stable bin packing of non-convex 3D objects with a robot manipulator. In International Conference on Robotics and Automation. IEEE, Montreal, QC, Canada, 86988704. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Wang Fan and Hauser Kris. 2021. Robot packing with known items and nondeterministic arrival order. Transactions on Automation Science and Engineering 18, 4 (2021), 19011915. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  71. Wang Fan and Hauser Kris. 2022. Dense robotic packing of irregular and novel 3D objects. Transactions on Robotics 38, 2 (2022), 11601173. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  72. Wang Ziyu, Schaul Tom, Hessel Matteo, Hasselt Hado van, Lanctot Marc, and Freitas Nando de. 2016. Dueling network architectures for deep reinforcement learning. In International Conference on Machine Learning (JMLR Workshop and Conference Proceedings), Vol. 48. JMLR.org, New York, NY, USA, 19952003. http://proceedings.mlr.press/v48/wangf16.html.Google ScholarGoogle Scholar
  73. Wang Ziqi, Song Peng, and Pauly Mark. 2021. MOCCA: Modeling and optimizing cone-joints for complex assemblies. Transactions on Graphics 40, 4 (2021), 114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Wu Yuhuai, Mansimov Elman, Grosse Roger B., Liao Shun, and Ba Jimmy. 2017. Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. 52795288. https://proceedings.neurips.cc/paper/2017/hash/361440528766bbaaaa1901845cf4152b-Abstract.html.Google ScholarGoogle Scholar
  75. Yang Zifei, Yang Shuo, Song Shuai, Zhang Wei, Song Ran, Cheng Jiyu, and Li Yibin. 2021. PackerBot: Variable-sized product packing with heuristic deep reinforcement learning. In International Conference on Intelligent Robots and Systems. IEEE, Prague, Czech Republic, 50025008. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Yao Miaojun, Chen Zhili, Luo Linjie, Wang Rui, and Wang Huamin. 2015. Level-set-based partitioning and packing optimization of a printable model. Transactions on Graphics 34, 6 (2015), 111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Yin Hang, Varava Anastasia, and Kragic Danica. 2021. Modeling, learning, perception, and control methods for deformable object manipulation. Science Robotics 6, 54 (2021), 8803. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  78. Zeng Andy, Florence Pete, Tompson Jonathan, Welker Stefan, Chien Jonathan, Attarian Maria, Armstrong Travis, Krasin Ivan, Duong Dan, Sindhwani Vikas, and Lee Johnny. 2020. Transporter networks: Rearranging the visual world for robotic manipulation. In Conference on Robot Learning (Proceedings of Machine Learning Research), Vol. 155. PMLR, Cambridge, MA, USA, 726747. https://proceedings.mlr.press/v155/zeng21a.html.Google ScholarGoogle Scholar
  79. Zhang Chi, Xu Mao-Feng, Chai Shuangming, and Fu Xiao-Ming. 2020. Robust atlas generation via angle-based segmentation. Computer Aided Geometric Design 79 (2020), 101854. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  80. Zhao Hang, She Qijin, Zhu Chenyang, Yang Yin, and Xu Kai. 2021. Online 3D bin packing with constrained deep reinforcement learning. In AAAI Conference on Artificial Intelligence. AAAI Press, 741749. https://ojs.aaai.org/index.php/AAAI/article/view/16155.Google ScholarGoogle ScholarCross RefCross Ref
  81. Zhao Hang, Yu Yang, and Xu Kai. 2022a. Learning efficient online 3D bin packing on packing configuration trees. In International Conference on Learning Representations. https://openreview.net/forum?id=bfuGjlCwAq.Google ScholarGoogle Scholar
  82. Zhao Hang, Zhu Chenyang, Xu Xin, Huang Hui, and Xu Kai. 2022b. Learning practically feasible policies for online 3D bin packing. Science China Information Sciences 65, 1 (2022). DOI:Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Learning Physically Realizable Skills for Online Packing of General 3D Shapes

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 42, Issue 5
      October 2023
      195 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3607124
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 July 2023
      • Online AM: 6 June 2023
      • Accepted: 29 May 2023
      • Revised: 12 April 2023
      • Received: 5 December 2022
      Published in tog Volume 42, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)582
      • Downloads (Last 6 weeks)39

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text