Skip to main content
Log in

Three-vessel coronary infusion of cardiosphere-derived cells for the treatment of heart failure with preserved ejection fraction in a pre-clinical pig model

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a major public health concern. Its outcome is poor and, as of today, barely any treatments have been able to decrease its morbidity or mortality. Cardiosphere-derived cells (CDCs) are heart cell products with anti-fibrotic, anti-inflammatory and angiogenic properties. Here, we tested the efficacy of CDCs in improving left ventricular (LV) structure and function in pigs with HFpEF. Fourteen chronically instrumented pigs received continuous angiotensin II infusion for 5 weeks. LV function was investigated through hemodynamic measurements and echocardiography at baseline, after 3 weeks of angiotensin II infusion before three-vessel intra-coronary CDC (n = 6) or placebo (n = 8) administration and 2 weeks after treatment (i.e., at completion of the protocol). As expected, arterial pressure was significantly and similarly increased in both groups. This was accompanied by LV hypertrophy that was not affected by CDCs. LV systolic function remained similarly preserved during the whole protocol in both groups. In contrast, LV diastolic function was impaired (increases in Tau, LV end-diastolic pressure as well as E/A, E/E’septal and E/E’lateral ratios) but CDC treatment significantly improved all of these parameters. The beneficial effect of CDCs on LV diastolic function was not explained by reduced LV hypertrophy or increased arteriolar density; however, interstitial fibrosis was markedly reduced. Three-vessel intra-coronary administration of CDCs improves LV diastolic function and reduces LV fibrosis in this hypertensive model of HFpEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available upon request.

References

  1. Aminzadeh MA, Tseliou E, Sun B, Cheng K, Malliaras K, Makkar RR, Marbán E (2015) Therapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy. Eur Heart J 36:751–762. https://doi.org/10.1093/eurheartj/ehu196

    Article  CAS  PubMed  Google Scholar 

  2. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, Brunner-La Rocca H-P, Choi D-J, Chopra V, Chuquiure-Valenzuela E, Giannetti N, Gomez-Mesa JE, Janssens S, Januzzi JL, Gonzalez-Juanatey JR, Merkely B, Nicholls SJ, Perrone SV, Piña IL, Ponikowski P, Senni M, Sim D, Spinar J, Squire I, Taddei S, Tsutsui H, Verma S, Vinereanu D, Zhang J, Carson P, Lam CSP, Marx N, Zeller C, Sattar N, Jamal W, Schnaidt S, Schnee JM, Brueckmann M, Pocock SJ, Zannad F, Packer M, EMPEROR-Preserved Trial Investigators (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385:1451–1461. https://doi.org/10.1056/NEJMoa2107038

    Article  CAS  PubMed  Google Scholar 

  3. Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103:530–541. https://doi.org/10.1093/cvr/cvu167

    Article  CAS  PubMed  Google Scholar 

  4. Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32:670–679. https://doi.org/10.1093/eurheartj/ehq426

    Article  PubMed  Google Scholar 

  5. Brouwers FP, de Boer RA, van der Harst P, Voors AA, Gansevoort RT, Bakker SJ, Hillege HL, van Veldhuisen DJ, van Gilst WH (2013) Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur Heart J 34:1424–1431. https://doi.org/10.1093/eurheartj/eht066

    Article  CAS  PubMed  Google Scholar 

  6. Chakravarty T, Henry TD, Kittleson M, Lima J, Siegel RJ, Slipczuk L, Pogoda JM, Smith RR, Malliaras K, Marbán L, Ascheim DD, Marbán E, Makkar RR (2020) Allogeneic cardiosphere-derived cells for the treatment of heart failure with reduced ejection fraction: the Dilated cardiomYopathy iNtervention with Allogeneic MyocardIally-regenerative Cells (DYNAMIC) trial. EuroIntervention 16:e293–e300. https://doi.org/10.4244/EIJ-D-19-00035

    Article  PubMed  Google Scholar 

  7. Cheng K, Shen D, Xie Y, Cingolani E, Malliaras K, Marbán E (2012) Brief report: Mechanism of extravasation of infused stem cells. Stem Cells 30:2835–2842. https://doi.org/10.1002/stem.1184

    Article  CAS  PubMed  Google Scholar 

  8. Cho H-J, Lee H-J, Youn S-W, Koh S-J, Won J-Y, Chung Y-J, Cho H-J, Yoon C-H, Lee S-W, Lee EJ, Kwon Y-W, Lee H-Y, Lee SH, Ho W-K, Park Y-B, Kim H-S (2012) Secondary sphere formation enhances the functionality of cardiac progenitor cells. Mol Ther J Am Soc Gene Ther 20:1750–1766. https://doi.org/10.1038/mt.2012.109

    Article  CAS  Google Scholar 

  9. Cho JH, Kilfoil PJ, Zhang R, Solymani RE, Bresee C, Kang EM, Luther K, Rogers RG, de Couto G, Goldhaber JI, Marbán E, Cingolani E (2018) Reverse electrical remodeling in rats with heart failure and preserved ejection fraction. JCI Insight 3:121123. https://doi.org/10.1172/jci.insight.121123

    Article  PubMed  Google Scholar 

  10. ClinicalTrials.gov Identifier: NCT05126758 A Study of CAP-1002 in Ambulatory and Non-Ambulatory Patients With Duchenne Muscular Dystrophy (HOPE-3)

  11. Cuijpers I, Simmonds SJ, van Bilsen M, Czarnowska E, González Miqueo A, Heymans S, Kuhn AR, Mulder P, Ratajska A, Jones EAV, Brakenhielm E (2020) Microvascular and lymphatic dysfunction in HFpEF and its associated comorbidities. Basic Res Cardiol 115:39. https://doi.org/10.1007/s00395-020-0798-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Couto G, Liu W, Tseliou E, Sun B, Makkar N, Kanazawa H, Arditi M, Marbán E (2015) Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Invest 125:3147–3162. https://doi.org/10.1172/JCI81321

    Article  PubMed  PubMed Central  Google Scholar 

  13. de Couto G, Mesquita T, Wu X, Rajewski A, Huang F, Akhmerov A, Na N, Wu D, Wang Y, Li L, Tran M, Kilfoil P, Cingolani E, Marbán E (2022) Cell therapy attenuates endothelial dysfunction in hypertensive rats with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol 323:H892–H903. https://doi.org/10.1152/ajpheart.00287.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gallet R, Tseliou E, Dawkins J, Middleton R, Valle J, Angert D, Reich H, Luthringer D, Kreke M, Smith R, Marbán L, Marbán E (2015) Intracoronary delivery of self-assembling heart-derived microtissues (cardiospheres) for prevention of adverse remodeling in a pig model of convalescent myocardial infarction. Circ Cardiovasc Interv 8:e002391. https://doi.org/10.1161/CIRCINTERVENTIONS.115.002391

    Article  PubMed  Google Scholar 

  15. Gallet R, de Couto G, Simsolo E, Valle J, Sun B, Liu W, Tseliou E, Zile MR, Marbán E (2016) Cardiosphere-derived cells reverse heart failure with preserved ejection fraction (HFpEF) in rats by decreasing fibrosis and inflammation. JACC Basic Transl Sci 1:14–28. https://doi.org/10.1016/j.jacbts.2016.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ghaleh B, Thireau J, Cazorla O, Soleti R, Scheuermann V, Bizé A, Sambin L, Roubille F, Andriantsitohaina R, Martinez MC, Lacampagne A (2020) Cardioprotective effect of sonic hedgehog ligand in pig models of ischemia reperfusion. Theranostics 10:4006–4016. https://doi.org/10.7150/thno.40461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grigorian-Shamagian L, Liu W, Fereydooni S, Middleton RC, Valle J, Cho JH, Marbán E (2017) Cardiac and systemic rejuvenation after cardiosphere-derived cell therapy in senescent rats. Eur Heart J 38:2957–2967. https://doi.org/10.1093/eurheartj/ehx454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heusch G (2022) Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol 117:1. https://doi.org/10.1007/s00395-022-00909-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hogg K, Swedberg K, McMurray J (2004) Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J Am Coll Cardiol 43:317–327. https://doi.org/10.1016/j.jacc.2003.07.046

    Article  PubMed  Google Scholar 

  20. Ibrahim AG-E, Cheng K, Marbán E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2:606–619. https://doi.org/10.1016/j.stemcr.2014.04.006

    Article  CAS  Google Scholar 

  21. Jozwiak M, Meli AC, Melka J, Rienzo M, d’Anglemont de Tassigny A, Saint N, Bizé A, Sambin L, Scheuermann V, Cazorla O, Hittinger L, Berdeaux A, Su J-B, Bouhemad B, Lacampagne A, Ghaleh B (2019) Concomitant systolic and diastolic alterations during chronic hypertension in pig. J Mol Cell Cardiol 131:155–163. https://doi.org/10.1016/j.yjmcc.2019.04.027

    Article  CAS  PubMed  Google Scholar 

  22. Kanazawa H, Tseliou E, Malliaras K, Yee K, Dawkins JF, De Couto G, Smith RR, Kreke M, Seinfeld J, Middleton RC, Gallet R, Cheng K, Luthringer D, Valle I, Chowdhury S, Fukuda K, Makkar RR, Marbán L, Marbán E (2015) Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circ Heart Fail 8:322–332. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001484

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kanazawa H, Tseliou E, Dawkins JF, De Couto G, Gallet R, Malliaras K, Yee K, Kreke M, Valle I, Smith RR, Middleton RC, Ho C-S, Dharmakumar R, Li D, Makkar RR, Fukuda K, Marbán L, Marbán E (2016) Durable benefits of cellular postconditioning: long-term effects of allogeneic cardiosphere-derived cells infused after reperfusion in pigs with acute myocardial infarction. J Am Heart Assoc 5:e002796. https://doi.org/10.1161/JAHA.115.002796

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kleinbongard P, Heusch G (2022) A fresh look at coronary microembolization. Nat Rev Cardiol 19:265–280. https://doi.org/10.1038/s41569-021-00632-2

    Article  PubMed  Google Scholar 

  25. Lam CSP, Donal E, Kraigher-Krainer E, Vasan RS (2011) Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail 13:18–28. https://doi.org/10.1093/eurjhf/hfq121

    Article  PubMed  Google Scholar 

  26. Liang H-Y, Cauduro SA, Pellikka PA, Bailey KR, Grossardt BR, Yang EH, Rihal C, Seward JB, Miller FA, Abraham TP (2006) Comparison of usefulness of echocardiographic Doppler variables to left ventricular end-diastolic pressure in predicting future heart failure events. Am J Cardiol 97:866–871. https://doi.org/10.1016/j.amjcard.2005.09.136

    Article  PubMed  Google Scholar 

  27. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marbán L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marbán E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904. https://doi.org/10.1016/S0140-6736(12)60195-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Makkar RR, Kereiakes DJ, Aguirre F, Kowalchuk G, Chakravarty T, Malliaras K, Francis GS, Povsic TJ, Schatz R, Traverse JH, Pogoda JM, Smith RR, Marbán L, Ascheim DD, Ostovaneh MR, Lima JAC, DeMaria A, Marbán E, Henry TD (2020) Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial. Eur Heart J 41:3451–3458. https://doi.org/10.1093/eurheartj/ehaa541

    Article  CAS  PubMed  Google Scholar 

  29. Malliaras K, Li T-S, Luthringer D, Terrovitis J, Cheng K, Chakravarty T, Galang G, Zhang Y, Schoenhoff F, Van Eyk J, Marbán L, Marbán E (2012) Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 125:100–112. https://doi.org/10.1161/CIRCULATIONAHA.111.042598

    Article  CAS  PubMed  Google Scholar 

  30. Malliaras K, Smith RR, Kanazawa H, Yee K, Seinfeld J, Tseliou E, Dawkins JF, Kreke M, Cheng K, Luthringer D, Ho C-S, Blusztajn A, Valle I, Chowdhury S, Makkar RR, Dharmakumar R, Li D, Marbán L, Marbán E (2013) Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circulation 128:2764–2775. https://doi.org/10.1161/CIRCULATIONAHA.113.002863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, ESC Scientific Document Group (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726. https://doi.org/10.1093/eurheartj/ehab368

    Article  CAS  PubMed  Google Scholar 

  32. McDonald CM, Marbán E, Hendrix S, Hogan N, Ruckdeschel Smith R, Eagle M, Finkel RS, Tian C, Janas J, Harmelink MM, Varadhachary AS, Taylor MD, Hor KN, Mayer OH, Henricson EK, Furlong P, Ascheim DD, Rogy S, Williams P, Marbán L, HOPE-2 Study Group (2022) Repeated intravenous cardiosphere-derived cell therapy in late-stage Duchenne muscular dystrophy (HOPE-2): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 399:1049–1058. https://doi.org/10.1016/S0140-6736(22)00012-5

    Article  CAS  PubMed  Google Scholar 

  33. Melka J, Rienzo M, Bizé A, Jozwiak M, Sambin L, Hittinger L, Su JB, Berdeaux A, Ghaleh B (2016) Improvement of left ventricular filling by ivabradine during chronic hypertension: involvement of contraction-relaxation coupling. Basic Res Cardiol 111:30. https://doi.org/10.1007/s00395-016-0550-9

    Article  CAS  PubMed  Google Scholar 

  34. Nagueh SF (2021) Heart failure with preserved ejection fraction: insights into diagnosis and pathophysiology. Cardiovasc Res 117:999–1014. https://doi.org/10.1093/cvr/cvaa228

    Article  CAS  PubMed  Google Scholar 

  35. Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271. https://doi.org/10.1016/j.jacc.2013.02.092

    Article  PubMed  Google Scholar 

  36. Rienzo M, Bizé A, Pongas D, Michineau S, Melka J, Chan HL, Sambin L, Su JB, Dubois-Randé J-L, Hittinger L, Berdeaux A, Ghaleh B (2012) Impaired left ventricular function in the presence of preserved ejection in chronic hypertensive conscious pigs. Basic Res Cardiol 107:298. https://doi.org/10.1007/s00395-012-0298-9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rienzo M, Melka J, Bizé A, Sambin L, Jozwiak M, Su JB, Hittinger L, Berdeaux A, Ghaleh B (2015) Ivabradine improves left ventricular function during chronic hypertension in conscious pigs. Hypertension 65:122–129. https://doi.org/10.1161/HYPERTENSIONAHA.114.04323

    Article  CAS  PubMed  Google Scholar 

  38. Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F (2022) Heart failure with preserved ejection fraction: heterogeneous syndrome, diverse preclinical models. Circ Res 130:1906–1925. https://doi.org/10.1161/CIRCRESAHA.122.320257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma GVRK, Woods PA, Lindsey N, O’Connell C, Connolly L, Joseph J, McIntyre KM (2011) Noninvasive monitoring of left ventricular end-diastolic pressure reduces rehospitalization rates in patients hospitalized for heart failure: a randomized controlled trial. J Card Fail 17:718–725. https://doi.org/10.1016/j.cardfail.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  40. Sharp TE, Scarborough AL, Li Z, Polhemus DJ, Hidalgo HA, Schumacher JD, Matsuura TR, Jenkins JS, Kelly DP, Goodchild TT, Lefer DJ (2021) Novel göttingen miniswine model of heart failure with preserved ejection fraction integrating multiple comorbidities. JACC Basic Transl Sci 6:154–170. https://doi.org/10.1016/j.jacbts.2020.11.012

    Article  PubMed  PubMed Central  Google Scholar 

  41. Silva KAS, Emter CA (2020) Large animal models of heart failure: a translational bridge to clinical success. JACC Basic Transl Sci 5:840–856. https://doi.org/10.1016/j.jacbts.2020.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  42. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908. https://doi.org/10.1161/CIRCULATIONAHA.106.655209

    Article  CAS  PubMed  Google Scholar 

  43. Spevack DM, Karl J, Yedlapati N, Goldberg Y, Garcia MJ (2013) Echocardiographic left ventricular end-diastolic pressure volume loop estimate predicts survival in congestive heart failure. J Card Fail 19:251–259. https://doi.org/10.1016/j.cardfail.2013.02.003

    Article  PubMed  Google Scholar 

  44. Suzuki G, Weil BR, Leiker MM, Ribbeck AE, Young RF, Cimato TR, Canty JM (2014) Global intracoronary infusion of allogeneic cardiosphere-derived cells improves ventricular function and stimulates endogenous myocyte regeneration throughout the heart in swine with hibernating myocardium. PloS One 9:e113009. https://doi.org/10.1371/journal.pone.0113009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suzuki G, Weil BR, Young RF, Fallavollita JA, Canty JM (2019) Nonocclusive multivessel intracoronary infusion of allogeneic cardiosphere-derived cells early after reperfusion prevents remote zone myocyte loss and improves global left ventricular function in swine with myocardial infarction. Am J Physiol Heart Circ Physiol 317:H345–H356. https://doi.org/10.1152/ajpheart.00124.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Techiryan G, Weil BR, Young RF, Canty JM (2022) Widespread intracoronary allogeneic cardiosphere-derived cell therapy with and without cyclosporine in reperfused myocardial infarction. Am J Physiol Heart Circ Physiol 323:H904–H916. https://doi.org/10.1152/ajpheart.00373.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tseliou E, Pollan S, Malliaras K, Terrovitis J, Sun B, Galang G, Marbán L, Luthringer D, Marbán E (2013) Allogeneic cardiospheres safely boost cardiac function and attenuate adverse remodeling after myocardial infarction in immunologically mismatched rat strains. J Am Coll Cardiol 61:1108–1119. https://doi.org/10.1016/j.jacc.2012.10.052

    Article  PubMed  Google Scholar 

  48. Tseliou E, Fouad J, Reich H, Slipczuk L, de Couto G, Aminzadeh M, Middleton R, Valle J, Weixin L, Marbán E (2015) Fibroblasts rendered antifibrotic, antiapoptotic, and angiogenic by priming with cardiosphere-derived extracellular membrane vesicles. J Am Coll Cardiol 66:599–611. https://doi.org/10.1016/j.jacc.2015.05.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tseliou E, Kanazawa H, Dawkins J, Gallet R, Kreke M, Smith R, Middleton R, Valle J, Marbán L, Kar S, Makkar R, Marbán E (2016) Widespread myocardial delivery of heart-derived stem cells by nonocclusive triple-vessel intracoronary infusion in porcine ischemic cardiomyopathy: superior attenuation of adverse remodeling documented by magnetic resonance imaging and histology. PloS One 11:e0144523. https://doi.org/10.1371/journal.pone.0144523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Ham WB, Kessler EL, Oerlemans MIFJ, Handoko ML, Sluijter JPG, van Veen TAB, den Ruijter HM, de Jager SCA (2022) Clinical phenotypes of heart failure with preserved ejection fraction to select preclinical animal models. JACC Basic Transl Sci 7:844–857. https://doi.org/10.1016/j.jacbts.2021.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vatner SF, Braunwald E (1975) Cardiovascular control mechanisms in the conscious state. N Engl J Med 293:970–976. https://doi.org/10.1056/NEJM197511062931906

    Article  CAS  PubMed  Google Scholar 

  52. Weil BR, Suzuki G, Leiker MM, Fallavollita JA, Canty JM (2015) Comparative efficacy of intracoronary allogeneic mesenchymal stem cells and cardiosphere-derived cells in swine with hibernating myocardium. Circ Res 117:634–644. https://doi.org/10.1161/CIRCRESAHA.115.306850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wollert KC, Meyer GP, Müller-Ehmsen J, Tschöpe C, Bonarjee V, Larsen AI, May AE, Empen K, Chorianopoulos E, Tebbe U, Waltenberger J, Mahrholdt H, Ritter B, Pirr J, Fischer D, Korf-Klingebiel M, Arseniev L, Heuft H-G, Brinchmann JE, Messinger D, Hertenstein B, Ganser A, Katus HA, Felix SB, Gawaz MP, Dickstein K, Schultheiss H-P, Ladage D, Greulich S, Bauersachs J (2017) Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST-2 randomised placebo-controlled clinical trial. Eur Heart J 38:2936–2943. https://doi.org/10.1093/eurheartj/ehx188

    Article  CAS  PubMed  Google Scholar 

  54. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959. https://doi.org/10.1056/NEJMoa032566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jackelyn VALLE for her technical help.

Funding

This study was supported by a grant from a “Subvention Transplantation et Thérapie Cellulaire 2018 FRM” [PME20180639527].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Ghaleh.

Ethics declarations

Conflict of interest

EM holds founder’s equity in Capricor Therapeutics.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1592 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallet, R., Su, JB., Corboz, D. et al. Three-vessel coronary infusion of cardiosphere-derived cells for the treatment of heart failure with preserved ejection fraction in a pre-clinical pig model. Basic Res Cardiol 118, 26 (2023). https://doi.org/10.1007/s00395-023-00995-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-023-00995-2

Keywords

Navigation