skip to main content
research-article

Fast GPU-based Two-way Continuous Collision Handling

Published:28 July 2023Publication History
Skip Abstract Section

Abstract

Step-and-project is a popular method to simulate non-penetrating deformable bodies in physically based animation. The strategy is to first integrate the system in time without considering contacts and then resolve potential intersections, striking a good balance between plausibility and efficiency. However, existing methods can be defective and unsafe when using large time steps, taking risks of failure or demanding repetitive collision testing and resolving that severely degrade performance. In this article, we propose a novel two-way method for fast and reliable continuous collision handling. Our method launches an optimization from both ends of the intermediate time-integrated state and the previous intersection-free state. It progressively generates a piecewise linear path and eventually obtains a feasible solution for the next time step. The algorithm efficiently alternates between a forward step and a backward step until the result is conditionally converged. Thanks to a set of unified volume-based contact constraints, our method offers flexible and reliable handling of various codimensional deformable bodies, including volumetric bodies, cloth, hair, and sand. Experimental results demonstrate the safety, robustness, physical fidelity, and numerical efficiency of our method, making it particularly suitable for scenarios involving large deformations or large time steps.

Skip Supplemental Material Section

Supplemental Material

tog-22-0049-file003.mp4

mp4

186.9 MB

REFERENCES

  1. Ainsley Samantha, Vouga Etienne, Grinspun Eitan, and Tamstorf Rasmus. 2012. Speculative parallel asynchronous contact mechanics. ACM Trans. Graph. 31, 6, Article 151 (Nov.2012), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andrews Sheldon, Erleben Kenny, and Ferguson Zachary. 2022. Contact and friction simulation for computer graphics. In Proceedings of the ACM SIGGRAPH Courses (SIGGRAPH’22). ACM, New York, NY, Article 3, 172 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baraff David, Witkin Andrew, and Kass Michael. 2003. Untangling cloth. ACM Trans. Graph. 22, 3 (July2003), 862870.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barbič Jernej and James Doug L.. 2010. Subspace self-collision culling. In Proceedings of the ACM SIGGRAPH (SIGGRAPH’10). ACM, New York, NY, Article 81, 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bergou Miklos, Wardetzky Max, Harmon David, Zorin Denis, and Grinspun Eitan. 2006. A quadratic bending model for inextensible surfaces. In Proceedings of the 4th Eurographics Symposium on Geometry Processing (SGP’06). Eurographics Association, Goslar, DEU, 227230.Google ScholarGoogle Scholar
  6. Bertails-Descoubes Florence, Cadoux Florent, Daviet Gilles, and Acary Vincent. 2011. A nonsmooth newton solver for capturing exact coulomb friction in fiber assemblies. ACM Trans. Graph. 30, 1, Article 6 (Feb.2011), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bridson Robert, Fedkiw Ronald, and Anderson John. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July2002), 594603.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bridson R., Marino S., and Fedkiw R.. 2005. Simulation of clothing with folds and wrinkles. In Proceedings of the ACM SIGGRAPH 2005 Courses (SIGGRAPH’05). ACM, New York, NY, 2836.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen Yunuo, Li Minchen, Lan Lei, Su Hao, Yang Yin, and Jiang Chenfanfu. 2022. A unified newton barrier method for multibody dynamics. ACM Trans. Graph. 41, 4, Article 66 (July2022), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Choi Kwang-Jin and Ko Hyeong-Seok. 2002. Stable but responsive cloth. ACM Trans. Graph. 21, 3 (July 2002), 604611.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Conn Andrew R., Gould Nicholas I. M., and Toint Ph L.. 1988. Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25, 2 (1988), 433460.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Daviet Gilles. 2020. Simple and scalable frictional contacts for thin nodal objects. ACM Trans. Graph. 39, 4, Article 61 (July 2020), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Desbrun Mathieu, Meyer Mark, Schröder Peter, and Barr Alan H.. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99). ACM Press/Addison-Wesley Publishing Co., 317324.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Erleben Kenny. 2013. Numerical methods for linear complementarity problems in physics-based animation. In Proceedings of the ACM SIGGRAPH (SIGGRAPH’13). ACM, New York, NY, Article 8, 42 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Etzmuß Olaf, Keckeisen Michael, and Straßer Wolfgang. 2003. A fast finite element solution for cloth modelling. In Proceedings of the 11th Pacific Conference on Computer Graphics and Applications. IEEE, 244251.Google ScholarGoogle ScholarCross RefCross Ref
  16. Fang Yu, Li Minchen, Jiang Chenfanfu, and Kaufman Danny M.. 2021. Guaranteed globally injective 3D deformation processing. ACM Trans. Graph. 40, 4, Article 75 (July 2021), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fratarcangeli Marco, Tibaldo Valentina, and Pellacini Fabio. 2016. Vivace: A practical Gauss-Seidel method for stable soft body dynamics. ACM Trans. Graph. 35, 6, Article 214 (Nov. 2016), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gao Ming, Wang Xinlei, Wu Kui, Pradhana Andre, Sifakis Eftychios, Yuksel Cem, and Jiang Chenfanfu. 2018. GPU optimization of material point methods. ACM Trans. Graph. 37, 6, Article 254 (Dec. 2018), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Grinspun Eitan, Hirani Anil N., Desbrun Mathieu, and Schröder Peter. 2003. Discrete shells. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’03). Eurographics Association, Goslar, DEU, 6267.Google ScholarGoogle Scholar
  20. Harmon David, Vouga Etienne, Smith Breannan, Tamstorf Rasmus, and Grinspun Eitan. 2009. Asynchronous contact mechanics. ACM Trans. Graph. 28, 3, Article 87 (July 2009), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Harmon David, Vouga Etienne, Tamstorf Rasmus, and Grinspun Eitan. 2008. Robust treatment of simultaneous collisions. ACM Trans. Graph. 27, 3 (Aug. 2008), 14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Harmon David, Zhou Qingnan, and Zorin Denis. 2011. Asynchronous integration with phantom meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’11). ACM, New York, NY, 247256.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kane Couro, Repetto Eduardo A, Ortiz Michael, and Marsden Jerrold E.. 1999. Finite element analysis of nonsmooth contact. Comput. Methods Appl. Mech. Eng. 180, 1-2 (1999), 126.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lan Lei, Ma Guanqun, Yang Yin, Zheng Changxi, Li Minchen, and Jiang Chenfanfu. 2022. Penetration-free projective dynamics on the GPU. ACM Trans. Graph. 41, 4, Article 69 (July 2022), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lauterbach Christian, Mo Qi, and Manocha Dinesh. 2010. gProximity: Hierarchical GPU-based operations for collision and distance queries. In Proceedings of Eurographics, Vol. 29. 419428.Google ScholarGoogle ScholarCross RefCross Ref
  26. Li Cheng, Tang Min, Tong Ruofeng, Cai Ming, Zhao Jieyi, and Manocha Dinesh. 2020b. P-Cloth: Interactive complex cloth simulation on multi-GPU systems using dynamic matrix assembly and pipelined implicit integrators. ACM Trans. Graph. 39, 6, Article 180 (Nov. 2020), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Li Minchen, Ferguson Zachary, Schneider Teseo, Langlois Timothy, Zorin Denis, Panozzo Daniele, Jiang Chenfanfu, and Kaufman Danny M.. 2020a. Incremental potential contact: Intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4, Article 49 (July 2020), 20 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Li Minchen, Kaufman Danny M., and Jiang Chenfanfu. 2021. Codimensional incremental potential contact. ACM Trans. Graph. 40, 4, Article 170 (July 2021), 24 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lin Chih-Jen and Moré Jorge J. 1999. Newton’s method for large bound-constrained optimization problems. SIAM J. Optimiz. 9, 4 (1999), 11001127.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ly Mickaël, Jouve Jean, Boissieux Laurence, and Bertails-Descoubes Florence. 2020. Projective dynamics with dry frictional contact. ACM Trans. Graph. 39, 4, Article 57 (July 2020), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Macklin Miles, Erleben Kenny, Müller Matthias, Chentanez Nuttapong, Jeschke Stefan, and Makoviychuk Viktor. 2019. Non-smooth newton methods for deformable multi-body dynamics. ACM Trans. Graph. 38, 5, Article 140 (Oct. 2019), 20 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Macklin Miles and Muller Matthias. 2021. A constraint-based formulation of stable neo-hookean materials. In Proceedings of the Conference on Motion, Interaction and Games (MIG’21). ACM, New York, NY, Article 12, 7 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Martin Sebastian, Thomaszewski Bernhard, Grinspun Eitan, and Gross Markus. 2011. Example-based elastic materials. In Proceedings of the ACM SIGGRAPH (SIGGRAPH’11). ACM, New York, NY, Article 72, 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Melax Stan. 2017. 3x3 Matrix Diagonalization. Retrieved from http://melax.github.io/diag.html.Google ScholarGoogle Scholar
  35. Meyer Mark, Desbrun Mathieu, Schröder Peter, and Barr Alan H. 2003. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III. Springer, 3557.Google ScholarGoogle ScholarCross RefCross Ref
  36. Mirtich Brian. 2000. Timewarp rigid body simulation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’00). ACM Press/Addison-Wesley Publishing Co., 193200.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mirtich Brian and Canny John. 1995. Impulse-based dynamic simulation. In Proceedings of the Workshop on Algorithmic Foundations of Robotics (WAFR). A. K. Peters, Ltd., 407418.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Müller Matthias. 2008. Hierarchical position based dynamics. In Proceedings of Virtual Reality Interactions and Physical Simulations. Grenoble.Google ScholarGoogle Scholar
  39. Müller Matthias, Chentanez Nuttapong, Kim Tae-Yong, and Macklin Miles. 2015. Air meshes for robust collision handling. ACM Trans. Graph. 34, 4, Article 133 (July 2015), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Narain Rahul, Samii Armin, and O’Brien James F.. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Nocedal Jorge and Wright Stephen J.. 2006. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  42. Pabst Simon, Koch Artur, and Straßer Wolfgang. 2010. Fast and scalable CPU/GPU collision detection for rigid and deformable surfaces. Comput. Graph. Forum 29, 5 (2010), 16051612.Google ScholarGoogle ScholarCross RefCross Ref
  43. Pinkall Ulrich and Polthier Konrad. 1993. Computing discrete minimal surfaces and their conjugates. Exper. Math. 2, 1 (1993), 1536.Google ScholarGoogle ScholarCross RefCross Ref
  44. Provot Xavier. 1997. Collision and self-collision handling in cloth model dedicated to design garments. In Computer Animation and Simulation. 177189.Google ScholarGoogle Scholar
  45. Sifakis Eftychios, Marino Sebastian, and Teran Joseph. 2008. Globally coupled collision handling using volume preserving impulses. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’08). Eurographics Association, Goslar, DEU, 147153.Google ScholarGoogle Scholar
  46. Smith Breannan, Goes Fernando De, and Kim Theodore. 2019. Analytic eigensystems for isotropic distortion energies. ACM Trans. Graph. 38, 1, Article 3 (Feb. 2019), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Smith Jason and Schaefer Scott. 2015. Bijective parameterization with free boundaries. ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Stam Jos. 2009. Nucleus: Towards a unified dynamics solver for computer graphics. In Proceedings of the 11th IEEE International Conference on Computer-Aided Design and Computer Graphics.Google ScholarGoogle ScholarCross RefCross Ref
  49. Tang Min, Kim Young J., and Manocha Dinesh. 2010. Continuous collision detection for non-rigid contact computations using local advancement. In Proceedings of the IEEE Robotics & Automation Society Conference (ICRA’10). 40164021.Google ScholarGoogle Scholar
  50. Tang Min, Liu Zhongyuan, Tong Ruofeng, and Manocha Dinesh. 2018a. PSCC: Parallel self-collision culling with spatial hashing on GPUs. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 18 (July 2018), 18 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Tang Min, Manocha Dinesh, Lin Jiang, and Tong Ruofeng. 2011a. Collision-streams: Fast GPU-based collision detection for deformable models. In Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D’11). ACM, New York, NY, 6370.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Tang Min, Manocha Dinesh, Yoon Sung-Eui, Du Peng, Heo Jae-Pil, and Tong Ruo-Feng. 2011b. VolCCD: Fast continuous collision culling between deforming volume meshes. ACM Trans. Graph. 30, 5, Article 111 (Oct. 2011), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Tang Min, Tong Ruofeng, Wang Zhendong, and Manocha Dinesh. 2014. Fast and exact continuous collision detection with bernstein sign classification. ACM Trans. Graph. 33, 6, Article 186 (Nov. 2014), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Tang Min, Wang Huamin, Tang Le, Tong Ruofeng, and Manocha Dinesh. 2016. CAMA: Contact-aware matrix assembly with unified collision handling for GPU-based cloth simulation. Comput. Graph. Forum (Eurographics) 35, 2 (May 2016), 511521.Google ScholarGoogle ScholarCross RefCross Ref
  55. Tang Min, Wang Tongtong, Liu Zhongyuan, Tong Ruofeng, and Manocha Dinesh. 2018b. I-Cloth: Incremental collision handling for GPU-based interactive cloth simulation. ACM Trans. Graph. 37, 6, Article 204 (Dec. 2018), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Teran Joseph, Sifakis Eftychios, Irving Geoffrey, and Fedkiw Ronald. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’05). ACM, New York, NY, 181–190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Teschner Matthias, Heidelberger Bruno, Müller Matthias, Pomerantes Danat, and Gross Markus H.. 2003. Optimized spatial hashing for collision detection of deformable objects. In Proceedings of Vision, Modeling, Visualization, Vol. 3. 4754.Google ScholarGoogle Scholar
  58. Thomaszewski Bernhard, Pabst Simon, and Straßer Wolfgang. 2008. Asynchronous cloth simulation. In Proceedings of Computer Graphics International.Google ScholarGoogle Scholar
  59. Verschoor Mickeal and Jalba Andrei C.. 2019. Efficient and accurate collision response for elastically deformable models. ACM Trans. Graph. 38, 2, Article 17 (Mar. 2019), 20 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Volino Pascal and Magnenat-Thalmann Nadia. 2006. Resolving surface collisions through intersection contour minimization. In Proceedings of the ACM SIGGRAPH Papers (SIGGRAPH’06). ACM, New York, NY, 11541159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Herzen Brian Von, Barr Alan H., and Zatz Harold R.. 1990. Geometric collisions for time-dependent parametric surfaces. SIGGRAPH Comput. Graph. 24, 4 (Sep. 1990), 3948.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Wang Bolun, Ferguson Zachary, Schneider Teseo, Jiang Xin, Attene Marco, and Panozzo Daniele. 2021. A large-scale benchmark and an inclusion-based algorithm for continuous collision detection. ACM Trans. Graph. 40, 5 (2021), 116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Wang Huamin. 2014. Defending continuous collision detection against errors. ACM Trans. Graph. 33, 4, Article 122 (July 2014), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Wang Huamin. 2015. A chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Trans. Graph. 34, 6, Article 246 (Oct. 2015), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Wang Huamin and Yang Yin. 2016. Descent methods for elastic body simulation on the GPU. ACM Trans. Graph. 35, 6, Article 212 (Nov. 2016), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Wang Tongtong, Liu Zhihua, Tang Min, Tong Ruofeng, and Manocha Dinesh. 2017. Efficient and reliable self-collision culling using unprojected normal cones. Comput. Graph. Forum (Eurographics) 36, 8 (2017), 487498.Google ScholarGoogle ScholarCross RefCross Ref
  67. Wicke Martin, Lanker Hermes, and Gross Markus. 2006. Untangling cloth with boundaries. In Proceedings of the Conference on Vision, Modeling, and Visualization. 349356.Google ScholarGoogle Scholar
  68. Wu Longhua, Wu Botao, Yang Yin, and Wang Huamin. 2020. A safe and fast repulsion method for GPU-based cloth self collisions. ACM Trans. Graph. 40, 1, Article 5 (Dec. 2020), 18 pages.Google ScholarGoogle Scholar
  69. Yuksel Cem. 2022. A fast and robust solution for cubic and higher-order polynomials. In Proceedings of the ACM SIGGRAPH Talks (SIGGRAPH’22). ACM, New York, NY, Article 28, 2 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Zheng Changxi and James Doug L.. 2012. Energy-based self-collision culling for arbitrary mesh deformations. ACM Trans. Graph. 31, 4, Article 98 (July 2012), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast GPU-based Two-way Continuous Collision Handling

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 42, Issue 5
      October 2023
      195 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3607124
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 July 2023
      • Online AM: 13 June 2023
      • Accepted: 17 May 2023
      • Revised: 19 April 2023
      • Received: 23 July 2022
      Published in tog Volume 42, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)683
      • Downloads (Last 6 weeks)64

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text