Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 3, 2023

A comprehensive review on the photocatalysis of Congo red dye for wastewater treatment

  • Nida Siddique , Muhammad Imran Din ORCID logo EMAIL logo , Rida Khalid and Zaib Hussain

Abstract

Congo red (CR) dye, due to its structural stability and non-degradable nature, is hazardous for humans and the aquatic environment. Among various methods used for degradation of CR, photocatalysis have been widely reported as a cost effective and environment-friendly method. Besides, extensive studies have been carried out regarding the use of nanomaterial-based photocatalyst for degradation of CR. This review describes the basics of photocatalysis along with the factors affecting the process, mechanism, and kinetics in detail. Additionally, literature related to synthetic and bio-based stabilizing mediums in photocatalytic assemblies have been arranged in a systematic manner. Advanced hybrid materials, i.e., metal–organic frameworks (MOFs) have also been described briefly. Future directions are discussed to address existing shortcomings in this field and also to expand research in this area.


Corresponding author: Muhammad Imran Din, School of Chemistry, University of Punjab, New Campus, Lahore 54590, Pakistan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None received.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abukhadra, M.R., Adlii, A., and Bakry, B.M. (2019). Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water. Int. J. Biol. Macromol. 126: 402–413, https://doi.org/10.1016/j.ijbiomac.2018.12.225.Search in Google Scholar PubMed

Abuzeid, H., Youssef, A., Yakout, S., Elnahrawy, A., and Hashem, A. (2021). Green synthesized α-MnO2 as a photocatalytic reagent for methylene blue and Congo red degradation. J. Electron. Mater. 50: 2171–2181, https://doi.org/10.1007/s11664-020-08683-w.Search in Google Scholar

Adam, R.E., Pozina, G., Willander, M., and Nur, O. (2018). Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photon. Nanostruct: Fundam. Appl. 32: 11–18, https://doi.org/10.1016/j.photonics.2018.08.005.Search in Google Scholar

Aditya, M., Chellapandi, T., Prasad, G.K., Venkatesh, M.J.P., Khan, M.M.R., Madhumitha, G., and Roopan, S.M. (2022). Biosynthesis of rod shaped Gd2O3 on g-C3N4 as nanocomposite for visible light mediated photocatalytic degradation of pollutants and RSM optimization. Diamond Relat. Mater. 121: 108790, https://doi.org/10.1016/j.diamond.2021.108790.Search in Google Scholar

Aghabeygi, S., Modaresi-Tehrani, M., and Ahmadi, S. (2021). Enhancing the photocatalytic properties of ZrO2/ZnO nanocomposite supported on montmorillonite clay for photodegradation of Congo red. J. Electron. Mater. 50: 2870–2878, https://doi.org/10.1007/s11664-021-08805-y.Search in Google Scholar

Akika, F., Benamira, M., Lahmar, H., Tibera, A., Chabi, R., Avramova, I., Suzer, Ş., and Trari, M. (2018). Structural and optical properties of Cu-substitution of NiAl2O4 and their photocatalytic activity towards congo red under solar light irradiation. J. Photochem. Photobiol. A 364: 542–550, https://doi.org/10.1016/j.jphotochem.2018.06.049.Search in Google Scholar

Alamelu, K., Raja, V., Shiamala, L., and Ali, B.J. (2018). Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes. Appl. Surf. Sci. 430: 145–154, https://doi.org/10.1016/j.apsusc.2017.05.054.Search in Google Scholar

Alenizi, M., Kumar, R., Aslam, M., Alseroury, F., and Barakat, M. (2019). Construction of a ternary g-C3N4/TiO2@ polyaniline nanocomposite for the enhanced photocatalytic activity under solar light. Sci. Rep. 9: 1–8, https://doi.org/10.1038/s41598-019-48516-3.Search in Google Scholar PubMed PubMed Central

Ali, N., Said, A., Ali, F., Raziq, F., Ali, Z., Bilal, M., Reinert, L., Begum, T., and Iqbal, H. (2020). Photocatalytic degradation of Congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance. Water Air Soil Pollut. 231: 1–16, https://doi.org/10.1007/s11270-020-4410-8.Search in Google Scholar

Alsamhary, K., Al-Enazi, N.M., Alhomaidi, E., and Alwakeel, S. (2022). Spirulina platensis mediated biosynthesis of Cuo NPs and photocatalytic degradation of toxic azo dye Congo red and kinetic studies. Environ. Res. 207: 112172, https://doi.org/10.1016/j.envres.2021.112172.Search in Google Scholar PubMed

Arellano, U., Wang, J., Chen, L., Asomoza, M., Guzmán, A., Solís, S., Estrella, A., Cipagauta, S., and Noreña, L. (2020). Transition metal oxides dispersed on Ti-MCM-41 hybrid core-shell catalysts for the photocatalytic degradation of Congo red colorant. Catal. Today 349: 128–140, https://doi.org/10.1016/j.cattod.2018.05.017.Search in Google Scholar

Askarniya, Z., Baradaran, S., Sonawane, S.H., and Boczkaj, G. (2022). A comparative study on the decolorization of Tartrazine, Ponceau 4R, and Coomassie Brilliant Blue using persulfate and hydrogen peroxide based advanced oxidation processes combined with hydrodynamic cavitation. Chem. Eng. Process. 181: 109160, https://doi.org/10.1016/j.cep.2022.109160.Search in Google Scholar

Barua, S., Zakaria, B.S., Chung, T., Hai, F.I., Haile, T., Al-Mamun, A., and Dhar, B.R. (2019). Microbial electrolysis followed by chemical precipitation for effective nutrients recovery from digested sludge centrate in WWTPs. Chem. Eng. J. 361: 256–265, https://doi.org/10.1016/j.cej.2018.12.067.Search in Google Scholar

Baruah, M., Ezung, S.L., Supong, A., Bhomick, P.C., Kumar, S., and Sinha, D. (2021). Synthesis, characterization of novel Fe-doped TiO2 activated carbon nanocomposite towards photocatalytic degradation of Congo red, E. coli, and S. aureus. Korean J. Chem. Eng. 38: 1277–1290, https://doi.org/10.1007/s11814-021-0830-4.Search in Google Scholar

Bhagat, M., Anand, R., Datt, R., Gupta, V., and Arya, S. (2019). Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J. Inorg. Organomet. Polym. Mater. 29: 1039–1047, https://doi.org/10.1007/s10904-018-0994-5.Search in Google Scholar

Bhagwat, U.O., Wu, J.J., Asiri, A.M., and Anandan, S. (2018). Photocatalytic degradation of congo red using PbTiO3 nanorods synthesized via a sonochemical approach. ChemistrySelect 3: 11851–11858, https://doi.org/10.1002/slct.201802303.Search in Google Scholar

Bhat, S.A., Zafar, F., Mondal, A.H., Kareem, A., Mirza, A.U., Khan, S., Mohammad, A., Haq, Q.M.R., and Nishat, N. (2020). Photocatalytic degradation of carcinogenic congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. J. Iran. Chem. Soc. 17: 215–227, https://doi.org/10.1007/s13738-019-01767-3.Search in Google Scholar

Boczkaj, G. and Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem. Eng. J. 320: 608–633, https://doi.org/10.1016/j.cej.2017.03.084.Search in Google Scholar

Borthakur, P., Boruah, P.K., Darabdhara, G., Sengupta, P., Das, M.R., Boronin, A.I., Kibis, L.S., Kozlova, M.N., and Fedorov, V.E. (2016). Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. J. Environ. Chem. Eng. 4: 4600–4611, https://doi.org/10.1016/j.jece.2016.10.023.Search in Google Scholar

Boudiaf, S., Nasrallah, N., Mellal, M., Belhamdi, B., Belabed, C., Djilali, M., and Trari, M. (2021). Kinetic studies of congo red photodegradation on the hetero-system CoAl2O4/ZnO with a stirred reactor under solar light. J. Environ. Chem. Eng. 9: 105572, https://doi.org/10.1016/j.jece.2021.105572.Search in Google Scholar

Boutra, B., Güy, N., Özacar, M., and Trari, M. (2020). Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of congo red under visible light. J. Magn. Magn. Mater. 497: 165994, https://doi.org/10.1016/j.jmmm.2019.165994.Search in Google Scholar

Cako, E., Gunasekaran, K.D., Soltani, R.D.C., and Boczkaj, G. (2020). Ultrafast degradation of brilliant cresyl blue under hydrodynamic cavitation based advanced oxidation processes (AOPs). Water Resour. Ind. 24: 100134, https://doi.org/10.1016/j.wri.2020.100134.Search in Google Scholar

Castellanos, N.J., Martinez Rojas, Z., Camargo, H.A., Biswas, S., and Granados-Oliveros, G. (2019). Congo red decomposition by photocatalytic formation of hydroxyl radicals (· OH) using titanium metal–organic frameworks. Transit. Met. Chem. 44: 77–87, https://doi.org/10.1007/s11243-018-0271-z.Search in Google Scholar

Chakraborty, S., Farida, J.J., Simon, R., Kasthuri, S., and Mary, N. (2020). Averrhoe carrambola fruit extract assisted green synthesis of zno nanoparticles for the photodegradation of Congo red dye. Surf. Interfaces 19: 100488, https://doi.org/10.1016/j.surfin.2020.100488.Search in Google Scholar

Chand, K., Jiao, C., Lakhan, M.N., Shah, A.H., Kumar, V., Fouad, D.E., Chandio, M.B., Maitlo, A.A., Ahmed, M., and Cao, D. (2021). Green synthesis, characterization and photocatalytic activity of silver nanoparticles synthesized with Nigella sativa seed extract. Chem. Phys. Lett. 763: 138218, https://doi.org/10.1016/j.cplett.2020.138218.Search in Google Scholar

Chandra, R. and Nath, M. (2020). Controlled synthesis of AgNPs@ ZIF-8 composite: efficient heterogeneous photocatalyst for degradation of methylene blue and Congo red. J. Water Process Eng. 36: 101266, https://doi.org/10.1016/j.jwpe.2020.101266.Search in Google Scholar

Chankhanittha, T., Watcharakitti, J., and Nanan, S. (2019). PVP-assisted synthesis of rod-like ZnO photocatalyst for photodegradation of reactive red (RR141) and Congo red (CR) azo dyes. J. Mater. Sci.: Mater. Electron. 30: 17804–17819, https://doi.org/10.1007/s10854-019-02132-z.Search in Google Scholar

Chate, V.R., Desai, V.G.M., Dodagoudar, G., Guimarães, J.R., and Kulkarni, R.M. (2022). Development of a novel photocatalyst: titania nanostructure bunches decorated on graphene oxide for enhanced photocatalytic efficiency. Mater. Res. Bull. 146: 111601, https://doi.org/10.1016/j.materresbull.2021.111601.Search in Google Scholar

Chong, M.N., Lei, S., Jin, B., Saint, C., and Chow, C.W. (2009). Optimisation of an annular photoreactor process for degradation of congo red using a newly synthesized titania impregnated kaolinite nano-photocatalyst. Sep. Purif. Technol. 67: 355–363, https://doi.org/10.1016/j.seppur.2009.04.001.Search in Google Scholar

Chowdhury, S. and Bhattacharyya, K.G. (2019). Oxidative degradation of congo red using zeolite Y as a support for Co (II), Ni (II) and Cu (II) ions. SN Appl. Sci. 1: 1–12, https://doi.org/10.1007/s42452-019-1261-2.Search in Google Scholar

Dat, N.M., Long, P.N.B., Nhi, D.C.U., Minh, N.N., Nam, H.M., Phong, M.T., Hieu, N.H., and Hieu, N.H. (2020). Synthesis of silver/reduced graphene oxide for antibacterial activity and catalytic reduction of organic dyes. Synth. Met. 260: 116260, https://doi.org/10.1016/j.synthmet.2019.116260.Search in Google Scholar

Deebansok, S., Amornsakchai, T., Sae-ear, P., Siriphannon, P., and Smith, S.M. (2021). Sphere-like and flake-like ZnO immobilized on pineapple leaf fibers as easy-to-recover photocatalyst for the degradation of congo red. J. Environ. Chem. Eng. 9: 104746, https://doi.org/10.1016/j.jece.2020.104746.Search in Google Scholar

Din, M.I., Najeeb, J., Hussain, Z., Khalid, R., and Ahmad, G. (2020). Biogenic scale up synthesis of ZnO nano-flowers with superior nano-photocatalytic performance. Inorg. Nano-Met. Chem. 50: 613–619, https://doi.org/10.1080/24701556.2020.1723026.Search in Google Scholar

Ding, C., Peng-fei, F., and Fu-hua, W. (2019). Preparation of Fe (III)-MOFs by microwave-assisted ball for efficiently removing organic dyes in aqueous solutions under natural light. Chem. Eng. Process. 135: 63–67, https://doi.org/10.1016/j.cep.2018.11.013.Search in Google Scholar

Djebli, K., Tebani, H., Abdessemed, A., and Keghouche, N. (2019). Structural, optical and photocatalytic properties of ZnS/zeolite Y nanoparticles synthesized by γ-ray irradiation. Mater. Sci. Semicond. Process. 103: 104599, https://doi.org/10.1016/j.mssp.2019.104599.Search in Google Scholar

Ebrahimzadeh, M.A., Mortazavi-Derazkola, S., and Zazouli, M.A. (2020). Eco-friendly green synthesis of novel magnetic Fe3O4/SiO2/ZnO-Pr6O11 nanocomposites for photocatalytic degradation of organic pollutant. J. Rare Earths 38: 13–20, https://doi.org/10.1016/j.jre.2019.07.004.Search in Google Scholar

Ekennia, A., Uduagwu, D., Olowu, O., Nwanji, O., Oje, O., Daniel, B., Mgbii, S., and Emma-Uba, C. (2021). Biosynthesis of zinc oxide nanoparticles using leaf extracts of Alchornea laxiflora and its tyrosinase inhibition and catalytic studies. Micron 141: 102964, https://doi.org/10.1016/j.micron.2020.102964.Search in Google Scholar PubMed

Ekennia, A.C., Uduagwu, D.N., Nwaji, N.N., Olowu, O.J., Nwanji, O.L., Ejimofor, M., Sonde, C.U., Oje, O.O., and Igwe, D.O. (2022). Green synthesis of silver nanoparticles using leaf extract of Euphorbia sanguine: an in vitro study of its photocatalytic and melanogenesis inhibition activity. Inorg. Nano-Met. Chem. 52: 195–203, https://doi.org/10.1080/24701556.2021.1891100.Search in Google Scholar

El-Sayed, M.M., Elsayed, R.E., Attia, A., Farghal, H.H., Azzam, R.A., and Madkour, T.M. (2021). Novel nanoporous membranes of bio-based cellulose acetate, poly (lactic acid) and biodegradable polyurethane in-situ impregnated with catalytic cobalt nanoparticles for the removal of methylene blue and congo red dyes from wastewater. Carbohydr. Polym. Technol. Appl. 2: 100123, https://doi.org/10.1016/j.carpta.2021.100123.Search in Google Scholar

Eltaweil, A.S., Elshishini, H.M., Ghatass, Z.F., and Elsubruiti, G.M. (2021). Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-doped UiO-66 MOF. Powder Technol. 379: 407–416, https://doi.org/10.1016/j.powtec.2020.10.084.Search in Google Scholar

Erdemoğlu, S., Aksu, S.K., Sayılkan, F., Izgi, B., Asiltürk, M., Sayılkan, H., Frimmel, F., and Güçer, Ş. (2008). Photocatalytic degradation of congo red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC–MS. J. Hazard. Mater. 155: 469–476, https://doi.org/10.1016/j.jhazmat.2007.11.087.Search in Google Scholar PubMed

Estrella González, A., Asomoza, M., Arellano, U., Cipagauta Díaz, S., and Solís, S. (2017). Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of congo red. Front. Mater. Sci. 11: 250–261, https://doi.org/10.1007/s11706-017-0389-5.Search in Google Scholar

Fardood, S.T., Moradnia, F., and Ramazani, A. (2019). Green synthesis and characterisation of ZnMn2O4 nanoparticles for photocatalytic degradation of congo red dye and kinetic study. Micro Nano Lett. 14: 986–991, https://doi.org/10.1049/mnl.2019.0071.Search in Google Scholar

Fatima, S., Ali, S.I., Iqbal, M.Z., and Rizwan, S. (2020). Congo red dye degradation by graphene nanoplatelets/doped bismuth ferrite nanoparticle hybrid catalysts under dark and light conditions. Catalysts 10: 367, https://doi.org/10.3390/catal10040367.Search in Google Scholar

Fedorov, K., Dinesh, K., Sun, X., Soltani, R.D.C., Wang, Z., Sonawane, S., and Boczkaj, G. (2022). Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon: a review. Chem. Eng. J. 432: 134191, https://doi.org/10.1016/j.cej.2021.134191.Search in Google Scholar

Fedorov, K., Rayaroth, M.P., Shah, N.S., and Boczkaj, G. (2023). Activated sodium percarbonate-ozone (SPC/O3) hybrid hydrodynamic cavitation system for advanced oxidation processes (AOPs) of 1, 4-dioxane in water. Chem. Eng. J. 456: 141027, https://doi.org/10.1016/j.cej.2022.141027.Search in Google Scholar

Fei, X., Tan, H., Cheng, B., Zhu, B., and Zhang, L. (2021). 2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations. Acta Phys.-Chim. Sin. 37: 2010027.10.3866/PKU.WHXB202010027Search in Google Scholar

Feng, Y., Wang, H., Xu, J., Du, X., Cheng, X., Du, Z., and Wang, H. (2021). Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr (VI) and congo red from aqueous solution. J. Hazard. Mater. 416: 125777, https://doi.org/10.1016/j.jhazmat.2021.125777.Search in Google Scholar PubMed

Gągol, M., Cako, E., Fedorov, K., Soltani, R.D.C., Przyjazny, A., and Boczkaj, G. (2020). Hydrodynamic cavitation based advanced oxidation processes: studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants. J. Mol. Liq. 307: 113002, https://doi.org/10.1016/j.molliq.2020.113002.Search in Google Scholar

Garg, A. and Chopra, L. (2022). Dye waste: a significant environmental hazard. Mater. Today: Proc. 48: 1310–1315, https://doi.org/10.1016/j.matpr.2021.09.003.Search in Google Scholar

Gogoi, D., Makkar, P., Korde, R., Das, M.R., and Ghosh, N.N. (2022). Exfoliated gC3N4 supported CdS nanorods as a S-scheme heterojunction photocatalyst for the degradation of various textile dyes. Adv. Powder Technol. 33: 103801, https://doi.org/10.1016/j.apt.2022.103801.Search in Google Scholar

Gu, J., Liu, H., Wang, S., Zhang, M., and Liu, Y. (2019). An innovative anaerobic MBR-reverse osmosis-ion exchange process for energy-efficient reclamation of municipal wastewater to NEWater-like product water. J. Clean. Prod. 230: 1287–1293, https://doi.org/10.1016/j.jclepro.2019.05.198.Search in Google Scholar

Gupta, P., Rajkumar, S., and Gopinath, P. (2020). Development of sunlight-driven reduced graphene oxide (rGO)/CeO2-CuO nanofibrous photocatalyst for efficient removal of organic dyes. J. Nanosci. Nanotechnol. 20: 7480–7494, https://doi.org/10.1166/jnn.2020.18739.Search in Google Scholar PubMed

Habibi, M.H. and Rahmati, M.H. (2015). The effect of operational parameters on the photocatalytic degradation of congo red organic dye using ZnO–CdS core–shell nano-structure coated on glass by Doctor Blade method. Spectrochim. Acta Part A 137: 160–164, https://doi.org/10.1016/j.saa.2014.08.110.Search in Google Scholar PubMed

Hairom, N.H.H., Mohammad, A.W., and Kadhum, A.A.H. (2014). Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for congo red dye treatment. Sep. Purif. Technol. 137: 74–81, https://doi.org/10.1016/j.seppur.2014.09.027.Search in Google Scholar

Hammud, H.H., Traboulsi, H., Karnati, R.K., and Bakir, E.M. (2022). Photodegradation of congo red by modified P25-titanium dioxide with cobalt-carbon supported on SiO2 matrix. DFT studies of chemical reactivity. Catalysts 12: 248, https://doi.org/10.3390/catal12030248.Search in Google Scholar

Hariani, P.L., Said, M., Rachmat, A., Riyanti, F., Pratiwi, H.C., and Rizki, W.T. (2021). Preparation of NiFe2O4 nanoparticles by solution combustion method as photocatalyst of Congo red. Bull. Chem. React. Eng. Catal. 16: 481–490, https://doi.org/10.9767/bcrec.16.3.10848.481-490.Search in Google Scholar

Helmiyati, H., Fitriana, N., Chaerani, M.L., and Dini, F.W. (2022). Green hybrid photocatalyst containing cellulose and γ–Fe2O3–ZrO2 heterojunction for improved visible-light driven degradation of congo red. Opt. Mater. 124: 111982, https://doi.org/10.1016/j.optmat.2022.111982.Search in Google Scholar

Hernández-Zamora, M. and Martínez-Jerónimo, F. (2019). Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos. Environ. Sci. Pollut. Res. 26: 11743–11755, https://doi.org/10.1007/s11356-019-04589-1.Search in Google Scholar PubMed

Hitkari, G., Chowdhary, P., Kumar, V., Singh, S., and Motghare, A. (2022). Potential of copper-zinc oxide nanocomposite for photocatalytic degradation of congo red dye. Chem. Eng. Technol. 1: 100003, https://doi.org/10.1016/j.clce.2022.100003.Search in Google Scholar

Huang, X., Deng, Q., Liao, H., Deng, H., Jiang, J., Zhang, L., and Yao, X. (2021). Synthesis of recyclable 3D LC/h-ZIF-8 by Zn (Ⅱ) containing wastewater for photocatalytic degradation of mixed-dye under UV-vis irradiation. J. Environ. Chem. Eng. 9: 104978, https://doi.org/10.1016/j.jece.2020.104978.Search in Google Scholar

Hussain, S.M., Hussain, T., Faryad, M., Ali, Q., Ali, S., Rizwan, M., Hussain, A.I., Ray, M.B., and Chatha, S.A. (2021). Emerging aspects of photo-catalysts (TiO2 & ZnO) doped zeolites and advanced oxidation processes for degradation of azo dyes: a review. Curr. Anal. Chem. 17: 82–97, https://doi.org/10.2174/1573411016999200711143225.Search in Google Scholar

Indira, K., Shanmugam, S., Hari, A., Vasantharaj, S., Sathiyavimal, S., Brindhadevi, K., El Askary, A., Elfasakhany, A., and Pugazhendhi, A. (2021). Photocatalytic degradation of congo red dye using nickel–titanium dioxide nanoflakes synthesized by Mukia madrasapatna leaf extract. Environ. Res. 202: 111647, https://doi.org/10.1016/j.envres.2021.111647.Search in Google Scholar PubMed

Iqbal, M.A., Ali, S.I., Amin, F., Tariq, A., Iqbal, M.Z., and Rizwan, S. (2019a). La-and Mn-codoped bismuth ferrite/Ti3C2 MXene composites for efficient photocatalytic degradation of congo red dye. ACS Omega 4: 8661–8668, https://doi.org/10.1021/acsomega.9b00493.Search in Google Scholar PubMed PubMed Central

Iqbal, M.A., Tariq, A., Zaheer, A., Gul, S., Ali, S.I., Iqbal, M.Z., Akinwande, D., and Rizwan, S. (2019b). Ti3C2-MXene/bismuth ferrite nanohybrids for efficient degradation of organic dyes and colorless pollutants. ACS Omega 4: 20530–20539, https://doi.org/10.1021/acsomega.9b02359.Search in Google Scholar PubMed PubMed Central

Jabbar, Z.H., Okab, A.A., Graimed, B.H., Issa, M.A., and Ammar, S.H. (2023). Photocatalytic destruction of congo red dye in wastewater using a novel Ag2WO4/Bi2S3 nanocomposite decorated g-C3N4 nanosheet as ternary S-scheme heterojunction: improving the charge transfer efficiency. Diamond Relat. Mater. 133: 109711, https://doi.org/10.1016/j.diamond.2023.109711.Search in Google Scholar

Jacob, J.M., Sinharoy, A., and Lens, P.N. (2020). Photocatalytic degradation of congo red by zinc sulfide quantum dots produced by anaerobic granular sludge. Environ. Technol. 43: 1–10, https://doi.org/10.1080/09593330.2020.1856940.Search in Google Scholar PubMed

Jasrotia, R., Kumari, N., Kumar, R., Naushad, M., Dhiman, P., and Sharma, G. (2021). Photocatalytic degradation of environmental pollutant using nickel and cerium ions substituted Co0.6Zn0.4Fe2O4 nanoferrites. Environ. Earth Sci. 5: 399–417, https://doi.org/10.1007/s41748-021-00214-9.Search in Google Scholar

Javed, M. and Hussain, S. (2020). Synthesis, characterization and photocatalytic applications of p (aac) microgels and its composites of ni doped ZnO nanorods. Dig. J. Nanomater. Biostruct. 15: 217–230, https://doi.org/10.15251/djnb.2020.151.217.Search in Google Scholar

Jha, A.K. and Chakraborty, S. (2020). Photocatalytic degradation of congo red under UV irradiation by zero valent iron nano particles (nZVI) synthesized using Shorea robusta (Sal) leaf extract. Water Sci. Technol. 82: 2491–2502, https://doi.org/10.2166/wst.2020.517.Search in Google Scholar PubMed

Jiang, R., Zhu, H.-Y., Jiang, S.-T., Fu, Y.-Q., Zong, E.-M., Li, J.-B., and Zeng, G.-M. (2019). Magnetically separable Fe3O4/BiOBr microspheres: synthesis, characterization, and photocatalytic performance for removal of anionic azo dye. Environ. Eng. Sci. 36: 466–477, https://doi.org/10.1089/ees.2018.0278.Search in Google Scholar

Jiang, R., Zhu, H., Fu, Y., Jiang, S., Zong, E., and Yao, J. (2020). Photocatalytic decolorization of congo red wastewater by magnetic ZnFe2O4/graphene nanosheets composite under simulated solar light irradiation. Ozone: Sci. Eng. 42: 174–182, https://doi.org/10.1080/01919512.2019.1635432.Search in Google Scholar

Jiang, R., Zhu, H.-Y., Fu, Y.-Q., Jiang, S.-T., Zong, E.-M., Zhu, J.-Q., Zhu, Y.-Y., and Chen, L.-F. (2021). Colloidal CdS sensitized nano-ZnO/chitosan hydrogel with fast and efficient photocatalytic removal of congo red under solar light irradiation. Int. J. Biol. Macromol. 174: 52–60, https://doi.org/10.1016/j.ijbiomac.2021.01.077.Search in Google Scholar PubMed

Kaur, M., Kaur, M., Singh, D., Oliveira, A.C., Garg, V.K., and Sharma, V.K. (2021). Synthesis of CaFe2O4-NGO nanocomposite for effective removal of heavy metal ion and photocatalytic degradation of organic pollutants. Nanomaterials 11: 1471, https://doi.org/10.3390/nano11061471.Search in Google Scholar PubMed PubMed Central

Kaushik, J., Kumar, V., Tripathi, K.M., and Sonkar, S.K. (2022). Sunlight-promoted photodegradation of congo red by cadmium-sulfide decorated graphene aerogel. Chemosphere 287: 132225, https://doi.org/10.1016/j.chemosphere.2021.132225.Search in Google Scholar PubMed

Khairnar, S.D., Patil, M.R., and Shrivastava, V.S. (2018). Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of congo red and methylene blue. Iran. J. Catal. 8: 143–150.Search in Google Scholar

Khalid, M.U., Khan, S.R., and Jamil, S. (2018). Morphologically controlled synthesis of cubes like tin oxide nanoparticles and study of its application as photocatalyst for congo red degradation and as fuel additive. J. Inorg. Organomet. Polym. Mater. 28: 168–176, https://doi.org/10.1007/s10904-017-0687-5.Search in Google Scholar

Khan, A., Naeem, A., and Mahmood, T. (2020). Kinetic studies of methyl orange and congo red adsorption and photocatalytic degradation onto PVP-functionalized ZnO. Kinet. Catal. 61: 730–739, https://doi.org/10.1134/s0023158420050055.Search in Google Scholar

Khan, S., Khan, A., Ali, N., Ahmad, S., Ahmad, W., Malik, S., Ali, N., Khan, H., Shah, S., and Bilal, M. (2021a). Degradation of congo red dye using ternary metal selenide-chitosan microspheres as robust and reusable catalysts. Environ. Technol. Innovation 22: 101402, https://doi.org/10.1016/j.eti.2021.101402.Search in Google Scholar

Khan, Z.U.H., Khan, A., Shah, N.S., Din, I.U., Salam, M.A., Iqbal, J., Muhammad, N., Imran, M., Ali, M., Sayed, M., et al.. (2021b). Photocatalytic and biomedical investigation of green synthesized NiONPs: toxicities and degradation pathways of congo red dye. Surf. Interfaces 23: 100944, https://doi.org/10.1016/j.surfin.2021.100944.Search in Google Scholar

Khan, R.R.M., Qamar, H., Hameed, A., Pervaiz, M., Saeed, Z., Adnan, A., and Ch, A.R. (2022). Biological and photocatalytic degradation of congo red, a diazo sulfonated substituted dye: a review. Water Air Soil Pollut. 233: 1–30, https://doi.org/10.1007/s11270-022-05935-9.Search in Google Scholar

Konstantinou, I.K. and Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49: 1–14, https://doi.org/10.1016/j.apcatb.2003.11.010.Search in Google Scholar

Krishnan, T. and Mansor, W.S.W. (2020). Photocatalytic degradation of dyes by TiO2 process in batch photoreactor. Lett. Appl. NanoBioSci. 9: 1502–1512.10.33263/LIANBS94.15021512Search in Google Scholar

Kuang, C., Tan, P., Bahadur, A., Iqbal, S., Javed, M., Qamar, M.A., Fayyaz, M., Liu, G., Alzahrani, O.M., Alzahrani, E., et al. (2022). Dye degradation study by incorporating Cu-doped ZnO photocatalyst into polyacrylamide microgel. J. Mater. Sci.: Mater. Electron. 33: 1–11, https://doi.org/10.1007/s10854-022-07984-6.Search in Google Scholar

Kumar, O.P., Ahmad, M., Nazir, M.A., Anum, A., Jamshaid, M., Shah, S.S.A., and Rehman, A. (2022). Strategic combination of metal–organic frameworks and C3N4 for expeditious photocatalytic degradation of dye pollutants. Environ. Sci. Pollut. Res. 29: 1–14, https://doi.org/10.1007/s11356-021-17366-w.Search in Google Scholar PubMed

Landge, V., Sonawane, S., Sivakumar, M., Sonawane, S., Babu, G.U.B., and Boczkaj, G. (2021). S-scheme heterojunction Bi2O3-ZnO/bentonite clay composite with enhanced photocatalytic performance. Sustain. Energy Technol. Assessments 45: 101194, https://doi.org/10.1016/j.seta.2021.101194.Search in Google Scholar

Li, F., Sun, S., Jiang, Y., Xia, M., Sun, M., and Xue, B. (2008). Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral. J. Hazard. Mater. 152: 1037–1044, https://doi.org/10.1016/j.jhazmat.2007.07.114.Search in Google Scholar PubMed

Li, X., Peng, K., Chen, H., and Wang, Z. (2018). TiO2 nanoparticles assembled on kaolinites with different morphologies for efficient photocatalytic performance. Sci. Rep. 8: 1–11, https://doi.org/10.1038/s41598-018-29563-8.Search in Google Scholar PubMed PubMed Central

Liang, C., Wei, D., Zhang, S., Ren, Q., Shi, J., and Liu, L. (2021). Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment. Ecotoxicol. Environ. Saf. 210: 111885, https://doi.org/10.1016/j.ecoenv.2020.111885.Search in Google Scholar PubMed

Lin, D., Fu, Y., Li, X., Wang, L., Hou, M., Hu, D., Li, Q., Zhang, Z., Xu, C., Qiu, S., et al. (2022). Application of persulfate-based oxidation processes to address diverse sustainability challenges: a critical review. J. Hazard. Mater. 440: 129722, https://doi.org/10.1016/j.jhazmat.2022.129722.Search in Google Scholar PubMed

Liu, X., Liu, Y., Lu, S., Guo, W., and Xi, B. (2018). Performance and mechanism into TiO2/zeolite composites for sulfadiazine adsorption and photodegradation. Chem. Eng. J. 350: 131–147, https://doi.org/10.1016/j.cej.2018.05.141.Search in Google Scholar

Liu, J., Li, J., Wei, F., Zhao, X., Su, Y., and Han, X. (2019). Ag–ZnO submicrometer rod arrays for high-efficiency photocatalytic degradation of congo red and disinfection. ACS Sustainable Chem. Eng. 7: 11258–11266, https://doi.org/10.1021/acssuschemeng.9b00610.Search in Google Scholar

Liu, K., Yang, Y., Sun, F., Liu, Y., Tang, M., and Chen, J. (2022). Rapid degradation of congo red wastewater by Rhodopseudomonas palustris intimately coupled carbon nanotube-silver modified titanium dioxide photocatalytic composite with sodium alginate. Chemosphere 299: 134417, https://doi.org/10.1016/j.chemosphere.2022.134417.Search in Google Scholar PubMed

Lorenc-Grabowska, E., Gryglewicz, G.J.D., and pigments (2007). Adsorption characteristics of congo red on coal-based mesoporous activated carbon. Dyes Pigm. 74: 34–40, https://doi.org/10.1016/j.dyepig.2006.01.027.Search in Google Scholar

Luo, Y., Chen, D., Wei, F., and Liang, Z. (2018). Synthesis of Cu‐BTC metal‐organic framework by ultrasonic wave‐assisted ball milling with enhanced congo red removal property. ChemistrySelect 3: 11435–11440, https://doi.org/10.1002/slct.201802067.Search in Google Scholar

Ma, C.M., Hong, G.B., and Lee, S.C. (2020). Facile synthesis of tin dioxide nanoparticles for photocatalytic degradation of congo red dye in aqueous solution. Catalysts 10: 792, https://doi.org/10.3390/catal10070792.Search in Google Scholar

Magdalane, C.M., Priyadharsini, G.M.A., Kaviyarasu, K., Jothi, A.I., and Simiyon, G.G. (2021). Synthesis and characterization of TiO2 doped cobalt ferrite nanoparticles via microwave method: investigation of photocatalytic performance of congo red degradation dye. Surf. Interfaces 25: 101296, https://doi.org/10.1016/j.surfin.2021.101296.Search in Google Scholar

Mandal, S., Adhikari, S., Pu, S., Wang, X., Kim, D.-H., and Patel, R.K. (2019). Interactive Fe2O3/porous SiO2 nanospheres for photocatalytic degradation of organic pollutants: kinetic and mechanistic approach. Chemosphere 234: 596–607, https://doi.org/10.1016/j.chemosphere.2019.06.092.Search in Google Scholar PubMed

Manjari, G., Saran, S., Radhakrishanan, S., Rameshkumar, P., Pandikumar, A., and Devipriya, S.P. (2020). Facile green synthesis of Ag–Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions. J. Environ. Manage. 262: 110282, https://doi.org/10.1016/j.jenvman.2020.110282.Search in Google Scholar PubMed

Mardiroosi, A., Mahjoub, A.R., and Fakhri, H. (2017). Efficient visible light photocatalytic activity based on magnetic graphene oxide decorated ZnO/NiO. J. Mater. Sci.: Mater. Electron. 28: 11722–11732, https://doi.org/10.1007/s10854-017-6976-5.Search in Google Scholar

Maruthapandi, M., Saravanan, A., Manohar, P., Luong, J.H., and Gedanken, A. (2021). Photocatalytic degradation of organic dyes and antimicrobial activities by polyaniline–nitrogen-doped carbon dot nanocomposite. Nanomaterials 11: 1128, https://doi.org/10.3390/nano11051128.Search in Google Scholar PubMed PubMed Central

Maruthupandy, M., Muneeswaran, T., Vennila, T., Anand, M., Cho, W.-S., and Quero, F. (2022). Development of chitosan decorated Fe3O4 nanospheres for potential enhancement of photocatalytic degradation of congo red dye molecules. Spectrochim. Acta Part A 267: 120511, https://doi.org/10.1016/j.saa.2021.120511.Search in Google Scholar PubMed

Masoomi, M.Y., Bagheri, M., and Morsali, A. (2016). High efficiency of mechanosynthesized Zn-based metal–organic frameworks in photodegradation of congo red under UV and visible light. RSC Adv. 6: 13272–13277, https://doi.org/10.1039/c5ra24238j.Search in Google Scholar

Mehraj, O., Sofi, F.A., Moosvi, S.K., Naqash, W., and Majid, K. (2018). Synthesis of novel silver chromate incorporated copper-metal-organic framework composites with exceptionally high photocatalytic activity and stability. J. Mater. Sci.: Mater. Electron. 29: 3358–3369, https://doi.org/10.1007/s10854-017-8271-x.Search in Google Scholar

Merah, C. (2020). Electrosynthesis of silver oxide deposited onto hot spring mud with enhanced degradation of congo red. Malaysian J. Anal. Sci. 24: 266–275.Search in Google Scholar

Mironyuk, I., Danyliuk, N., Tatarchuk, T., Mykytyn, I., and Kotsyubynsky, V. (2021). Photocatalytic degradation of congo red dye using Fe-doped TiO2 nanocatalysts. Phys. Chem. Solid State 22: 697–710, https://doi.org/10.15330/pcss.22.4.697-710.Search in Google Scholar

Mohammed, A.M., Mohtar, S.S., Aziz, F., Aziz, M., and Ul-Hamid, A. (2021). Cu2O/ZnO-PANI ternary nanocomposite as an efficient photocatalyst for the photodegradation of congo red dye. J. Environ. Chem. Eng. 9: 105065, https://doi.org/10.1016/j.jece.2021.105065.Search in Google Scholar

Moradzadeh, A., Mahjoub, A., Sadjadi, M.S., Sadr, M.H., and Farhadyar, N. (2019). Investigation on synthesis, characterization and photo catalytic degradation of congo red by Zn-doped CdTiO3/TiO2. Polyhedron 170: 404–411, https://doi.org/10.1016/j.poly.2019.05.060.Search in Google Scholar

Mukherjee, A. and Dhak, D. (2020). Photodegradation of congo red using Cu2+ engrafted MgAl. J. Indian Chem. Soc. 97: 2889–2896.Search in Google Scholar

Mustapha, S., Tijani, J., Ndamitso, M., Abdulkareem, S., Shuaib, D., Mohammed, A., and Sumaila, A. (2020). The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci. Rep. 10: 1–22, https://doi.org/10.1038/s41598-020-69808-z.Search in Google Scholar PubMed PubMed Central

Namdarian, A., Tabrizi, A.G., Arsalani, N., Khataee, A., and Mohammadi, A. (2020). Synthesis of PANi nanoarrays anchored on 2D BiOCl nanoplates for photodegradation of congo red in visible light region. J. Ind. Eng. Chem. 81: 228–236, https://doi.org/10.1016/j.jiec.2019.09.012.Search in Google Scholar

Nasir, J.A., Gul, S., Khan, A., Shah, Z.H., Ahmad, A., Khan, R., Liu, Z., Chen, W., Lin, D.-J., et al.. (2018). Efficient solar light driven photocatalytic degradation of congo red dye on CdS nanostructures derived from single source precursor. J. Nanosci. Nanotechnol. 18: 7405–7413, https://doi.org/10.1166/jnn.2018.16038.Search in Google Scholar

Natarajan, T.S., Natarajan, K., Bajaj, H.C., and Tayade, R.J. (2011). Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application. Ind. Eng. Chem. Res. 50: 7753–7762, https://doi.org/10.1021/ie200493k.Search in Google Scholar

Nezamzadeh-Ejhieh, A. and Karimi-Shamsabadi, M. (2013). Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J. 228: 631–641, https://doi.org/10.1016/j.cej.2013.05.035.Search in Google Scholar

Noman, M., Shahid, M., Ahmed, T., Niazi, M.B.K., Hussain, S., Song, F., and Manzoor, I. (2020). Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environ. Pollut. 257: 113514, https://doi.org/10.1016/j.envpol.2019.113514.Search in Google Scholar PubMed

Ong, C.B., Mohammad, A.W., and Ng, L.Y. (2019). Integrated adsorption-solar photocatalytic membrane reactor for degradation of hazardous congo red using Fe-doped ZnO and Fe-doped ZnO/rGO nanocomposites. Environ. Sci. Pollut. Res. 26: 33856–33869, https://doi.org/10.1007/s11356-018-2557-2.Search in Google Scholar PubMed

Pang, Y.L., Tee, S.F., Lim, S., Abdullah, A.Z., Ong, H.C., Wu, C.H., Chong, W.C., Mohammadu, A.W., and Mahmoudi, E. (2018). Enhancement of photocatalytic degradation of organic dyes using ZnO decorated on reduced graphene oxide (rGO). Desalin. Water Treat. 108: 311–321, https://doi.org/10.5004/dwt.2018.21947.Search in Google Scholar

Pascariu, P., Cojocaru, C., Olaru, N., Samoila, P., Airinei, A., Ignat, M., Sacarescu, L., and Timpu, D. (2019). Novel rare earth (RE-La, Er, Sm) metal doped ZnO photocatalysts for degradation of congo-red dye: synthesis, characterization and kinetic studies. J. Environ. Manage. 239: 225–234, https://doi.org/10.1016/j.jenvman.2019.03.060.Search in Google Scholar PubMed

Pathania, D., Gupta, D., Ala’a, H., Sharma, G., Kumar, A., Naushad, M., Ahamad, T., and Alshehri, S.M. (2016). Photocatalytic degradation of highly toxic dyes using chitosan-g-poly (acrylamide)/ZnS in presence of solar irradiation. J. Photochem. Photobiol. A 329: 61–68, https://doi.org/10.1016/j.jphotochem.2016.06.019.Search in Google Scholar

Patil, S., Deshmukh, S., More, K., Shevale, V., Mullani, S., Dhodamani, A., and Delekar, S. (2019). Sulfated TiO2/WO3 nanocomposite: an efficient photocatalyst for degradation of congo red and methyl red dyes under visible light irradiation. Mater. Chem. Phys. 225: 247–255, https://doi.org/10.1016/j.matchemphys.2018.12.041.Search in Google Scholar

Pawar, R. and Lee, C. (2015). Heterogeneous photocatalysts based on organic/inorganic semiconductor. In: Heterogeneous nanocomposite-photocatalysis for water purification. William Andrew Publishing, Boston, pp. 43–96.10.1016/B978-0-323-39310-2.00003-5Search in Google Scholar

Phuong, V.T.L., Van Nang, L., Van Toan, N., Van Duy, N., Hoa, N.D., and Duc Hoa, N. (2022). Synthesis of CuO/rGO nanocomposites for carcinogenic congo red photodegradation. Adv. Nat. Sci.: Nanosci. Nanotechnol. 12: 045014, https://doi.org/10.1088/2043-6262/ac4994.Search in Google Scholar

Prashanth, V. and Remya, N. (2021). Synthesis of TiO2 using Calotropis gigantea for visible light excitation and degradation of congo red dye. J. Hazard Toxic Radioact. Waste 25: 04021026, https://doi.org/10.1061/(asce)hz.2153-5515.0000632.Search in Google Scholar

Prihod’ko, R., Stolyarova, I., Gündüz, G., Taran, O., Yashnik, S., Parmon, V., and Goncharuk, V. (2011). Fe-exchanged zeolites as materials for catalytic wet peroxide oxidation. Degradation of Rodamine G dye. Appl. Catal. B 104: 201–210, https://doi.org/10.1016/j.apcatb.2011.02.004.Search in Google Scholar

Purkait, M.K., Maiti, A., Dasgupta, S., and De, S. (2007). Removal of congo red using activated carbon and its regeneration. J. Hazard. Mater. 145: 287–295, https://doi.org/10.1016/j.jhazmat.2006.11.021.Search in Google Scholar PubMed

Racles, C., Zaltariov, M.-F., Iacob, M., Silion, M., Avadanei, M., and Bargan, A. (2017). Siloxane-based metal–organic frameworks with remarkable catalytic activity in mild environmental photodegradation of azo dyes. Appl. Catal. B 205: 78–92, https://doi.org/10.1016/j.apcatb.2016.12.034.Search in Google Scholar

Rahnama, F., Ashrafi, H., Akhond, M., and Absalan, G. (2021). Introducing Ag2O-Ag2CO3/rGO nanoadsorbents for enhancing photocatalytic degradation rate and efficiency of congo red through surface adsorption. Colloids Surf. A Physicochem. Eng. Asp. 613: 126068, https://doi.org/10.1016/j.colsurfa.2020.126068.Search in Google Scholar

Rajakumar, M. and Padiyan, P. (2021). Effect of hydrothermal temperature on the photocatalytic activity of anatase TiO2 nanoparticles. J. Theor. Appl. Phys. 15: 1–7.Search in Google Scholar

Rajeswari, A., Christy, E.J.S., and Pius, A. (2018). New insight of hybrid membrane to degrade congo red and reactive yellow under sunlight. J. Photochem. Photobiol. B 179: 7–17, https://doi.org/10.1016/j.jphotobiol.2017.12.024.Search in Google Scholar PubMed

Ramadhani, S. and Helmiyati, H. (2020). Alginate/CMC/ZnO nanocomposite for photocatalytic degradation of congo red dye. In: AIP conference proceedings, 2242. AIP Publishing LLC, Depok, Indonesia, p. 040026.10.1063/5.0008095Search in Google Scholar

Ramadoss, G., Suriyaraj, S.P., Sivaramakrishnan, R., Pugazhendhi, A., and Rajendran, S. (2021). Mesoporous ferromagnetic manganese ferrite nanoparticles for enhanced visible light mineralization of azoic dye into nontoxic by-products. Sci. Total Environ. 765: 142707, https://doi.org/10.1016/j.scitotenv.2020.142707.Search in Google Scholar PubMed

Ravi, K., Mohan, B.S., Sree, G.S., Raju, I.M., Basavaiah, K., and Rao, B.V. (2018). ZnO/RGO nanocomposite via hydrothermal route for photocatalytic degradation of dyes in presence of visible light. Int. J. Chem. Stud. 6: 20–26.Search in Google Scholar

Rayaroth, M.P., Aravindakumar, C.T., Shah, N.S., and Boczkaj, G. (2022). Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions-a serious environmental issue: a review. Chem. Eng. J. 430: 133002, https://doi.org/10.1016/j.cej.2021.133002.Search in Google Scholar

Raza, N., Raza, W., Gul, H., Azam, M., Lee, J., Vikrant, K., and Kim, K.-H. (2020). Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye. J. Clean. Prod. 254: 120031, https://doi.org/10.1016/j.jclepro.2020.120031.Search in Google Scholar

Rehman, R., Raza, A., Noor, W., Batool, A., and Maryem, H. (2021). Photocatalytic degradation of alizarin red S, amaranth, congo red, and rhodamine B dyes using UV light modified reactor and ZnO, TiO2, and SnO2 as catalyst. J. Chem 2021: 1–9, https://doi.org/10.1155/2021/6655070.Search in Google Scholar

Ren, Q., Wei, F., Chen, H., Chen, D., and Ding, B. (2021). Preparation of Zn-MOFs by microwave-assisted ball milling for removal of tetracycline hydrochloride and congo red from wastewater. Green Process. Synth. 10: 125–133, https://doi.org/10.1515/gps-2021-0020.Search in Google Scholar

Roopan, S.M., Elango, G., Priya, D.D., Asharani, I., Kishore, B., Vinayprabhakar, S., Pragatheshwaran, N., Mohanraj, K., Harshpriya, R., Shanavas, S., et al.. (2019). Sunlight mediated photocatalytic degradation of organic pollutants by statistical optimization of green synthesized NiO NPs as catalyst. J. Mol. Liq. 293: 111509, https://doi.org/10.1016/j.molliq.2019.111509.Search in Google Scholar

Rupa, E.J., Kaliraj, L., Abid, S., Yang, D.-C., and Jung, S.-K. (2019). Synthesis of a zinc oxide nanoflower photocatalyst from sea buckthorn fruit for degradation of industrial dyes in wastewater treatment. Nanomaterials 9: 1692, https://doi.org/10.3390/nano9121692.Search in Google Scholar PubMed PubMed Central

Saedi, Z. and Hajinia, N. (2021). Concurrent first-and second-order photodegradation of azo dyes using TMU-16 pillared-layer microporous metal organic framework under visible light. J. Solid State Chem. 300: 122210, https://doi.org/10.1016/j.jssc.2021.122210.Search in Google Scholar

Sagadevan, S., Lett, J.A., Weldegebrieal, G.K., Imteyaz, S., and Johan, M.R. (2021). Synthesis, characterization, and photocatalytic activity of PPy/SnO2 nanocomposite. Chem. Phys. Lett. 783: 139051, https://doi.org/10.1016/j.cplett.2021.139051.Search in Google Scholar

Saikumari, N., Preethi, T., Abarna, B., and Rajarajeswari, G. (2019). Ecofriendly, green tea extract directed sol–gel synthesis of nano titania for photocatalytic application. J. Mater. Sci.: Mater. Electron. 30: 6820–6831, https://doi.org/10.1007/s10854-019-00994-x.Search in Google Scholar

Sarkar, S., Ponce, N.T., Banerjee, A., Bandopadhyay, R., Rajendran, S., and Lichtfouse, E. (2020). Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environ. Chem. Lett. 18: 1–12, https://doi.org/10.1007/s10311-020-01021-w.Search in Google Scholar PubMed PubMed Central

Sarkar, C., Basu, J.K., and Samanta, A.N. (2021). Synthesis of novel ZnO/geopolymer nanocomposite photocatalyst for degradation of congo red dye under visible light. Environ. Nanotechnol. Monit. Manage 16: 100521, https://doi.org/10.1016/j.enmm.2021.100521.Search in Google Scholar

Sayed, M.A., Abo-Aly, M., Aziz, A.A.A., Hassan, A., and Salem, A.N.M. (2021). A facile hydrothermal synthesis of novel CeO2/CdSe and CeO2/CdTe nanocomposites: spectroscopic investigations for economically feasible photocatalytic degradation of congo red dye. Inorg. Chem. Commun. 130: 108750, https://doi.org/10.1016/j.inoche.2021.108750.Search in Google Scholar

Sebuso, D.P., Kuvarega, A.T., Lefatshe, K., King’ondu, C.K., Numan, N., Maaza, M., and Muiva, C.M. (2022). Corn husk multilayered graphene/ZnO nanocomposite materials with enhanced photocatalytic activity for organic dyes and doxycycline degradation. Mater. Res. Bull. 151: 111800, https://doi.org/10.1016/j.materresbull.2022.111800.Search in Google Scholar

Shaban, M., Abukhadra, M.R., and Hamd, A. (2018). Recycling of glass in synthesis of MCM-48 mesoporous silica as catalyst support for Ni2O3 photocatalyst for Congo red dye removal. Clean Technol. Environ. Policy 20: 13–28, https://doi.org/10.1007/s10098-017-1447-5.Search in Google Scholar

Shekardasht, M.B., Givianrad, M.H., Gharbani, P., Mirjafary, Z., and Mehrizad, A. (2020). Preparation of a novel Z-scheme g-C3N4/RGO/Bi2Fe4O9 nanophotocatalyst for degradation of congo red dye under visible light. Diamond Relat. Mater. 109: 108008, https://doi.org/10.1016/j.diamond.2020.108008.Search in Google Scholar

Shen, S., Wang, H., and Fu, J. (2021). A nanoporous three-dimensional graphene aerogel doped with a carbon quantum dot-TiO2 composite that exhibits superior activity for the catalytic photodegradation of organic pollutants. Appl. Surf. Sci. 569: 151116, https://doi.org/10.1016/j.apsusc.2021.151116.Search in Google Scholar

Shiva Shankar, Y., Ankur, K., Bhushan, P., and Mohan, D. (2019). Utilization of water treatment plant (WTP) sludge for pretreatment of dye wastewater using coagulation/flocculation. In: Advances in waste management. Springer, Singapore, pp. 107–121.10.1007/978-981-13-0215-2_8Search in Google Scholar

Sibel, Z. and Budak, B. (2020). Investigation of the effect of PAn and PAn/ZnO photocatalysts on 100 % degradation of congo red under UV visible light irradiation and lightless environment. Turk. J. Chem. 44: 486–501, https://doi.org/10.3906/kim-1907-30.Search in Google Scholar PubMed PubMed Central

Singh, J., Kukkar, P., Sammi, H., Rawat, M., Singh, G., and Kukkar, D. (2019). Enhanced catalytic reduction of 4-nitrophenol and congo red dye by silver nanoparticles prepared from Azadirachta indica leaf extract under direct sunlight exposure. Part. Sci. Technol. 37: 434–443, https://doi.org/10.1080/02726351.2017.1390512.Search in Google Scholar

Stiadi, Y., Yeni Stiadi, R., and Adril, A. (2018). Utilization of natural zeolite Clipnotilolit-Ca as a support of ZnO catalyst for congo-red degradation and congo-red waste applications with photolysis. Orient. J. Chem. 34: 887, https://doi.org/10.13005/ojc/340237.Search in Google Scholar

Su, Y., Zhao, X., Bi, Y., and Han, X. (2019). ZnO/Ag–Ag2O microstructures for high-performance photocatalytic degradation of organic pollutants. Clean Technol. Environ. Policy 21: 367–378, https://doi.org/10.1007/s10098-018-1641-0.Search in Google Scholar

Sun, J.-h., Wang, Y.-k., Sun, R.-x., and Dong, S.-y. (2009). Photodegradation of azo dye congo red from aqueous solution by the WO3–TiO2/activated carbon (AC) photocatalyst under the UV irradiation. Mater. Chem. Phys. 115: 303–308, https://doi.org/10.1016/j.matchemphys.2008.12.008.Search in Google Scholar

Syam Babu, D., Anantha Singh, T., Nidheesh, P., and Suresh Kumar, M. (2020). Industrial wastewater treatment by electrocoagulation process. Sep. Sci. Technol. 55: 3195–3227, https://doi.org/10.1080/01496395.2019.1671866.Search in Google Scholar

Taghavi Fardood, S., Moradnia, F., Moradi, S., Forootan, R., Yekke Zare, F., and Heidari, M. (2019). Eco-friendly synthesis and characterization of α-Fe2O3 nanoparticles and study of their photocatalytic activity for degradation of congo red dye. Nanochem. Res. 4: 140–147.Search in Google Scholar

Tahir, M.B., Sohaib, M., Sagir, M., and Rafique, M. (2020). Role of nanotechnology in photocatalysis. Mater. Sci. Eng 2022: 578–589.10.1016/B978-0-12-815732-9.00006-1Search in Google Scholar

Taj, M.B., Alkahtani, M.D., Raheel, A., Shabbir, S., Fatima, R., Aroob, S., Alelwani, W., Alahmadi, N., Abualnaja, M., Noor, S., et al.. (2021). Bioconjugate synthesis, phytochemical analysis, and optical activity of NiFe2O4 nanoparticles for the removal of ciprofloxacin and congo red from water. Sci. Rep. 11: 1–19, https://doi.org/10.1038/s41598-021-84983-3.Search in Google Scholar PubMed PubMed Central

Tang, A.Y., Lo, C.K., and Kan, C.w. (2018). Textile dyes and human health: a systematic and citation network analysis review. Color. Technol. 134: 245–257, https://doi.org/10.1111/cote.12331.Search in Google Scholar

Tariq, A., Ali, S.I., Akinwande, D., and Rizwan, S. (2018). Efficient visible-light photocatalysis of 2D-MXene nanohybrids with Gd3+-and Sn4+-codoped bismuth ferrite. ACS Omega 3: 13828–13836, https://doi.org/10.1021/acsomega.8b01951.Search in Google Scholar PubMed PubMed Central

Titus, D. and Samuel, E. (2019). Photocatalytic degradation of azo dye using biogenic SnO2 nanoparticles with antifungal property: RSM optimization and kinetic study. J. Cluster Sci. 30: 1335–1345, https://doi.org/10.1007/s10876-019-01585-w.Search in Google Scholar

Tu, N.T.T., Sy, P.C., Minh, T.T., Thanh, H.T.M., Thien, T.V., Long, H.T., and Khieu, D.Q. (2019). Synthesis of (Zn/Co)-based zeolite imidazole frameworks and their applications in visible light-driven photocatalytic degradation of congo red. J. Inclusion Phenom. Macrocyclic Chem. 95: 99–110, https://doi.org/10.1007/s10847-019-00925-7.Search in Google Scholar

Ullah, I., Haider, A., Khalid, N., Ali, S., Ahmed, S., Khan, Y., Ahmed, N., and Zubair, M. (2018). Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of congo red dye. Spectrochim. Acta Part A 204: 150–157, https://doi.org/10.1016/j.saa.2018.06.046.Search in Google Scholar PubMed

Ullah, H., Khan, Z., Nasir, J.A., Balkan, T., Butler, I.S., Kaya, S., and Rehman, Z.U. (2021). Green synthesis of mesoporous MoS2 nanoflowers for efficient photocatalytic degradation of congo red dye. J. Coord. Chem. 74: 2302–2314, https://doi.org/10.1080/00958972.2021.1962523.Search in Google Scholar

Vats, S., Srivastava, S., Maurya, N., Saxena, S., Mudgil, B., Yadav, S., and Chandra, R. (2022). Advances in dye contamination: health hazards, biodegradation, and bioremediation. In: Biological approaches to controlling pollutants. Elsevier, Woodhead Publishing, Sawston, UK, pp. 139–162.10.1016/B978-0-12-824316-9.00020-3Search in Google Scholar

Vidya, C., Manjunatha, C., Chandraprabha, M., Rajshekar, M., and MAL, A.R. (2017). Hazard free green synthesis of ZnO nano-photo-catalyst using Artocarpus heterophyllus leaf extract for the degradation of congo red dye in water treatment applications. J. Environ. Chem. Eng. 5: 3172–3180, https://doi.org/10.1016/j.jece.2017.05.058.Search in Google Scholar

Wang, P., Qi, C., Hao, L., Wen, P., and Xu, X. (2019a). Sepiolite/Cu2O/Cu photocatalyst: preparation and high performance for degradation of organic dye. J. Mater. Sci. Technol. 35: 285–291, https://doi.org/10.1016/j.jmst.2018.03.023.Search in Google Scholar

Wang, X., Mu, B., Hui, A., and Wang, A. (2019b). Comparative study on photocatalytic degradation of congo red using different clay mineral/CdS nanocomposites. J. Mater. Sci.: Mater. Electron. 30: 5383–5392, https://doi.org/10.1007/s10854-019-00831-1.Search in Google Scholar

Wang, J., Wang, G., Cheng, B., Yu, J., and Fan, J. (2021). Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for congo red photodegradation. Chinese J. Catal. 42: 56–68, https://doi.org/10.1016/s1872-2067(20)63634-8.Search in Google Scholar

Wei, F.-H., Chen, D., Liang, Z., Zhao, S.-Q., and Luo, Y. (2017). Synthesis and characterization of metal–organic frameworks fabricated by microwave-assisted ball milling for adsorptive removal of congo red from aqueous solutions. RSC Adv. 7: 46520–46528, https://doi.org/10.1039/c7ra09243a.Search in Google Scholar

Wei, Y.-Y., Sun, X.-T., and Xu, Z.-R. (2018). One-step synthesis of bifunctional PEGDA/TiO2 composite film by photopolymerization for the removal of congo red. Appl. Surf. Sci. 445: 437–444, https://doi.org/10.1016/j.apsusc.2018.03.149.Search in Google Scholar

Wei, F.H., Ren, Q.H., Liang, Z., and Chen, D. (2019). Synthesis of graphene oxide/metal‐organic frameworks composite materials for removal of congo red from wastewater. ChemistrySelect 4: 5755–5762, https://doi.org/10.1002/slct.201900363.Search in Google Scholar

Wei, F., Zheng, T., Ren, Q., Chen, H., Peng, J., Ma, Y., Liu, Z., Liang, Z., and Chen, D. (2022). Preparation of metal–organic frameworks by microwave-assisted ball milling for the removal of CR from wastewater. Green Process. Synth. 11: 595–603, https://doi.org/10.1515/gps-2022-0060.Search in Google Scholar

Weldegebrieal, G.K. (2020). Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: a review. Inorg. Chem. Commun. 120: 108140, https://doi.org/10.1016/j.inoche.2020.108140.Search in Google Scholar

Xiao, Z., Zhou, Y., Xin, X., Zhang, Q., Zhang, L., Wang, R., and Sun, D. (2016). Iron (III) porphyrin‐based porous material as photocatalyst for highly efficient and selective degradation of congo red. Macromol. Chem. Phys. 217: 599–604, https://doi.org/10.1002/macp.201500404.Search in Google Scholar

Xu, Q., Wageh, S., Al-Ghamdi, A.A., and Li, X. (2022). Design principle of S-scheme heterojunction photocatalyst. J. Mater. Sci. Technol. 124: 171–173, https://doi.org/10.1016/j.jmst.2022.02.016.Search in Google Scholar

Yadav, S., Chauhan, M., Mathur, D., Jain, A., and Malhotra, P. (2021). Sugarcane bagasse-facilitated benign synthesis of Cu2O nanoparticles and its role in photocatalytic degradation of toxic dyes: a trash to treasure approach. Environ. Dev. Sustain. 23: 2071–2091, https://doi.org/10.1007/s10668-020-00664-7.Search in Google Scholar

Yang, Y., Ali, N., Khan, A., Khan, S., Khan, S., Khan, H., Xiaoqi, S., Ahmad, W., Uddin, S., Ali, N., et al.. (2021). Chitosan-capped ternary metal selenide nanocatalysts for efficient degradation of congo red dye in sunlight irradiation. Int. J. Biol. Macromol. 167: 169–181, https://doi.org/10.1016/j.ijbiomac.2020.11.167.Search in Google Scholar PubMed

Yang, Y., Liu, K., Sun, F., Liu, Y., and Chen, J. (2022). Enhanced performance of photocatalytic treatment of congo red wastewater by CNTs-Ag-modified TiO2 under visible light. Environ. Sci. Pollut. Res. 29: 15516–15525, https://doi.org/10.1007/s11356-021-16734-w.Search in Google Scholar PubMed

Yashni, G., Al-Gheethi, A., Mohamed, R.M.S.R., Dai-Viet, N.V., Al-Kahtani, A.A., Al-Sahari, M., Hazhar, N.J.N., Noman, E., and Alkhadher, S. (2021). Bio-inspired ZnO NPs synthesized from Citrus sinensis peels extract for congo red removal from textile wastewater via photocatalysis: optimization, mechanisms, techno-economic analysis. Chemosphere 281: 130661, https://doi.org/10.1016/j.chemosphere.2021.130661.Search in Google Scholar PubMed

Yibeltal, A.W., Beyene, B.B., Admassie, S., and Taddesse, A.M. (2020). MWCNTs/Ag-ZnO nanocomposite for efficient photocatalytic degradation of congo red. Bull. Chem. Soc. Ethiop. 34: 55–66, https://doi.org/10.4314/bcse.v34i1.5.Search in Google Scholar

Yoonus, J., Resmi, R., and Beena, B. (2021). Photocatalytic degradation of congo red azo dye using green synthesized calcium oxide nanoparticles. SPAST Abstracts 1.Search in Google Scholar

You, J., Liu, C., Feng, X., Lu, B., Xia, L., and Zhuang, X. (2022). In situ synthesis of ZnS nanoparticles onto cellulose/chitosan sponge for adsorption–photocatalytic removal of congo red. Carbohydr. Polym. 288: 119332, https://doi.org/10.1016/j.carbpol.2022.119332.Search in Google Scholar PubMed

Zada, N., Khan, I., Shah, T., Gul, T., Khan, N., and Saeed, K. (2020). Ag–Co oxides nanoparticles supported on carbon nanotubes as an effective catalyst for the photodegradation of congo red dye in aqueous medium. Inorg. Nano-Met. Chem. 50: 333–340, https://doi.org/10.1080/24701556.2020.1713159.Search in Google Scholar

Zaib, M., Akhtar, A., Maqsood, F., and Shahzadi, T. (2021). Green synthesis of carbon dots and their application as photocatalyst in dye degradation studies. Arabian J. Sci. Eng. 46: 437–446, https://doi.org/10.1007/s13369-020-04904-w.Search in Google Scholar

Zamani, A., Sadjadi, M.S., Mahjoub, A., Yousefi, M., and Farhadyar, N. (2020a). Synthesis, characterization and investigation of photocatalytic activity of ZnFe2O4@ MnO–GO and ZnFe2O4@ MnO–rGO nanocomposites for degradation of dye congo red from wastewater under visible light irradiation. Res. Chem. Intermed. 46: 33–61, https://doi.org/10.1007/s11164-019-03934-w.Search in Google Scholar

Zamani, A., Sadjadi, M.S., Mahjoub, A., Yousefi, M., and Farhadyar, N. (2020b). Synthesis, characterization and investigation of photocatalytic activity of ZnMnO3/Fe3O4 nanocomposite for degradation of dye congo red under visible light irradiation. Int. J. Ind. Chem. 11: 205–216, https://doi.org/10.1007/s40090-020-00215-z.Search in Google Scholar

Zamani, A., Seyed Sadjadi, M., Mahjoub, A.R., Yousefi, M., and Farhadyar, N. (2020c). Synthesis and characterization ZnFe2O4@ MnO and MnFe2O4@ ZnO magnetic nanocomposites: investigation of photocatalytic activity for the degradation of congo red under visible light irradiation. Int. J. Nano Dimens. 11: 58–73.Search in Google Scholar

Zhang, L., Zhang, J., Yu, H., and Yu, J. (2022). Emerging S‐scheme photocatalyst. Adv. Mater. 34: 2107668, https://doi.org/10.1002/adma.202107668.Search in Google Scholar PubMed

Zhao, S., Chen, D., Wei, F., Chen, N., Liang, Z., and Luo, Y. (2017). Removal of congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling. Ultrason. Sonochem. 39: 845–852, https://doi.org/10.1016/j.ultsonch.2017.06.013.Search in Google Scholar PubMed

Zheng, M., Yao, C., and Xu, Y. (2020). Fe3O4 nanoparticles decorated with UIO-66 metal–organic framework particles and encapsulated in a triazine-based covalent organic framework matrix for photodegradation of anionic dyes. ACS Appl. Nano Mater. 3: 11307–11314, https://doi.org/10.1021/acsanm.0c02401.Search in Google Scholar

Zhou, L., Zhou, H., and Yang, X. (2019). Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment. Sep. Purif. Technol. 210: 93–99, https://doi.org/10.1016/j.seppur.2018.07.089.Search in Google Scholar

Zhu, H., Jiang, R., Xiao, L., Chang, Y., Guan, Y., Li, X., and Zeng, G. (2009). Photocatalytic decolorization and degradation of congo red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Hazard. Mater. 169: 933–940, https://doi.org/10.1016/j.jhazmat.2009.04.037.Search in Google Scholar PubMed

Zor, S. and Budak, B. (2020). Photocatalytic degradation of congo red by using PANI and PANI/ZrO2: under UV-A light irradiation and dark environment. Desalin. Water Treat. 201: 420–430, https://doi.org/10.5004/dwt.2020.26065.Search in Google Scholar

Received: 2022-12-11
Accepted: 2023-05-30
Published Online: 2023-08-03
Published in Print: 2024-05-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2022-0076/html
Scroll to top button