skip to main content
research-article

NeLT: Object-Oriented Neural Light Transfer

Published:29 August 2023Publication History
Skip Abstract Section

Abstract

This article presents object-oriented neural light transfer (NeLT), a novel neural representation of the dynamic light transportation between an object and the environment. Our method disentangles the global illumination of a scene into individual objects’ light transportation represented via neural networks, then composes them explicitly. It therefore enables flexible rendering with dynamic lighting, cameras, materials, and objects. Our rendering features various important global illumination effects, such as diffuse illumination, glossy illumination, dynamic shadowing, and indirect illumination, which completes the capability of existing neural object representation. Experiments show that NeLT does not require path tracing or shading results as input but achieves rendering quality comparable to state-of-the-art rendering frameworks, including the recent deep learning based denoisers.

Skip Supplemental Material Section

Supplemental Material

REFERENCES

  1. Aliev Kara-Ali, Sevastopolsky Artem, Kolos Maria, Ulyanov Dmitry, and Lempitsky Victor. 2020. Neural point-based graphics. In Computer Vision—ECCV 2020. Lecture Notes in Computer Science, Vol. 12367. Springer, 696–712.Google ScholarGoogle Scholar
  2. Bako Steve, Vogels Thijs, McWilliams Brian, Meyer Mark, Novák Jan, Harvill Alex, Sen Pradeep, Derose Tony, and Rousselle Fabrice. 2017. Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Transactions on Graphics 36, 4 (2017), Article 97, 1–14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ben-Artzi Aner, Egan Kevin, Durand Frédo, and Ramamoorthi Ravi. 2008. A precomputed polynomial representation for interactive BRDF editing with global illumination. ACM Transactions on Graphics 27, 2 (2008), 113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ben-Artzi Aner, Overbeck Ryan, and Ramamoorthi Ravi. 2006. Real-time BRDF editing in complex lighting. ACM Transactions on Graphics 25, 3 (2006), 945954.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Blumer Adrian, Novák Jan, Habel Ralf, Nowrouzezahrai Derek, and Jarosz Wojciech. 2016. Reduced aggregate scattering operators for path tracing. Computer Graphics Forum 35 (2016), 461473.Google ScholarGoogle Scholar
  6. Chaitanya Chakravarty R. Alla, Kaplanyan Anton S., Schied Christoph, Salvi Marco, Lefohn Aaron, Nowrouzezahrai Derek, and Aila Timo. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics 36, 4 (2017), Article 98, 1–12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cho In-Young, Yuchi Huo, and Sung-Eui Yoon. 2021. Weakly-supervised contrastive learning in path manifold for monte carlo image reconstruction. ACM Trans. Graph. 40, 4 (2021), 38–1.Google ScholarGoogle Scholar
  8. Dachsbacher Carsten and Stamminger Marc. 2005. Reflective shadow maps. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games. 203231.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dachsbacher Carsten, Stamminger Marc, Drettakis George, and Durand Frédo. 2007. Implicit visibility and antiradiance for interactive global illumination. ACM Transactions on Graphics 26, 3 (2007), 61–es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Datta Sayantan, Nowrouzezahrai Derek, Schied Christoph, and Dong Zhao. 2022. Neural shadow mapping. In Proceedings of the ACM SIGGRAPH 2022 Conference (SIGGRAPH’22). 19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Diolatzis Stavros, Philip Julien, and Drettakis George. 2022. Active exploration for neural global illumination of variable scenes. ACM Transactions on Graphics 41, 5 (2022), Article 171, 18 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Eslami S. M. Ali, Rezende Danilo Jimenez, Besse Frederic, Viola Fabio, Morcos Ari S., Garnelo Marta, Ruderman Avraham, et al. 2018. Neural scene representation and rendering. Science 360, 6394 (2018), 12041210.Google ScholarGoogle ScholarCross RefCross Ref
  13. Fan Hangming, Wang Rui, Huo Yuchi, and Bao Hujun. 2021. Real-time Monte Carlo denoising with weight sharing kernel prediction network. Computer Graphics Forum 40 (2021), 15–27.Google ScholarGoogle Scholar
  14. Gharbi Michaël, Li Tzu-Mao, Aittala Miika, Lehtinen Jaakko, and Durand Frédo. 2019. Sample-based Monte Carlo denoising using a kernel-splatting network. ACM Transactions on Graphics 38, 4 (2019), 112.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Granskog Jonathan, Rousselle Fabrice, Papas Marios, and Novák Jan. 2020. Compositional neural scene representations for shading inference. ACM Transactions on Graphics 39, 4 (2020), Article 135, 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Granskog Jonathan, Schnabel Till N., Rousselle Fabrice, and Novák Jan. 2021. Neural scene graph rendering. ACM Transactions on Graphics 40, 4 (2021), 111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Guo Jie, Li Mengtian, Li Quewei, Qiang Yuting, Hu Bingyang, Guo Yanwen, and Yan Ling-Qi. 2019. GradNet: Unsupervised deep screened Poisson reconstruction for gradient-domain rendering. ACM Transactions on Graphics 38, 6 (2019), 113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Guo Michelle, Fathi Alireza, Wu Jiajun, and Funkhouser Thomas. 2020. Object-centric neural scene rendering. arXiv preprint arXiv:2012.08503 (2020).Google ScholarGoogle Scholar
  19. Ha David, Dai Andrew M., and Le Quoc V.. 2017. Hyper networks. In Proceedings of the 5th International Conference on Learning Representations: Conference Track (ICLR’17).Google ScholarGoogle Scholar
  20. Hadadan Saeed, Chen Shuhong, and Zwicker Matthias. 2021. Neural radiosity. ACM Transactions on Graphics 40, 6 (2021), 111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hermosilla Pedro, Maisch Sebastian, Ritschel Tobias, and Ropinski Timo. 2019. Deep-learning the latent space of light transport. Computer Graphics Forum 38 (2019), 207–217).Google ScholarGoogle Scholar
  22. Huo Yuchi, Wang Rui, Zheng Ruzahng, Xu Hualin, Bao Hujun, and Yoon Sung-Eui. 2020. Adaptive incident radiance field sampling and reconstruction using deep reinforcement learning. ACM Transactions on Graphics 39, 1 (2020), 117.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Huo Yuchi and Yoon Sung-Eui. 2021. A survey on deep learning-based Monte Carlo denoising. Computational Visual Media 7 (2021), 169185.Google ScholarGoogle ScholarCross RefCross Ref
  24. Kallweit Simon, Müller Thomas, McWilliams Brian, Gross Markus, and Novák Jan. 2017. Deep scattering: Rendering atmospheric clouds with radiance-predicting neural networks. ACM Transactions on Graphics 36, 6 (2017), 111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Karis Brian. 2014. High-quality temporal supersampling. In Proceedings of the ACM SIGGRAPH 2014 Conference: Advances in Real-Time Rendering in Games(SIGGRAPH’14).Google ScholarGoogle Scholar
  26. Kautz Jan, Lehtinen Jaakko, and Aila Timo. 2004. Hemispherical rasterization for self-shadowing of dynamic objects. In Proceedings of the 15th Eurographics Conference on Rendering Techniques (EGSR’04). 179–184.Google ScholarGoogle Scholar
  27. Kingma Diederik P. and Ba Jimmy. 2015. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR’15): Conference Track.Google ScholarGoogle Scholar
  28. Kontkanen Janne and Laine Samuli. 2005. Ambient occlusion fields. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games. 4148.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kristensen Anders Wang, Akenine-Möller Tomas, and Jensen Henrik Wann. 2005. Precomputed local radiance transfer for real-time lighting design. ACM Transactions on Graphics 24, 3 (2005), 12081215.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lombardi Stephen, Simon Tomas, Saragih Jason, Schwartz Gabriel, Lehrmann Andreas, and Sheikh Yaser. 2019. Neural volumes: Learning dynamic renderable volumes from images. ACM Transactions on Graphics 38, 4 (July 2019), Article 65, 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Loos Bradford J., Antani Lakulish, Mitchell Kenny, Nowrouzezahrai Derek, Jarosz Wojciech, and Sloan Peter-Pike. 2011. Modular radiance transfer. In Proceedings of the 2011 SIGGRAPH Asia Conference. 110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Loos Bradford J., Nowrouzezahrai Derek, Jarosz Wojciech, and Sloan Peter-Pike. 2012. Delta radiance transfer. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 191196.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mildenhall Ben, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM 65, 1 (2021), 99–106.Google ScholarGoogle Scholar
  34. Müller Thomas. 2021. Tiny CUDA Neural Network Framework. Retrieved May 18, 2023 from https://github.com/nvlabs/tiny-cuda-nn.Google ScholarGoogle Scholar
  35. Müller Thomas, Rousselle Fabrice, Novák Jan, and Keller Alexander. 2021. Real-time neural radiance caching for path tracing. ACM Transactions on Graphics 40, 4 (2021), 116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Nalbach Oliver, Arabadzhiyska Elena, Mehta Dushyant, Seidel H.-P., and Ritschel Tobias. 2017. Deep shading: Convolutional neural networks for screen space shading. Computer Graphics Forum 36 (2017), 6578.Google ScholarGoogle Scholar
  37. Niemeyer Michael and Geiger Andreas. 2021. GIRAFFE: Representing scenes as compositional generative neural feature fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21).Google ScholarGoogle ScholarCross RefCross Ref
  38. Ost Julian, Mannan Fahim, Thuerey Nils, Knodt Julian, and Heide Felix. 2021. Neural scene graphs for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 28562865.Google ScholarGoogle ScholarCross RefCross Ref
  39. Parker Steven G., Bigler James, Dietrich Andreas, Friedrich Heiko, Hoberock Jared, Luebke David, McAllister David, et al. 2010. Optix: A general purpose ray tracing engine. ACM Transactions on Graphics 29, 4 (2010), 113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Paszke Adam, Gross Sam, Massa Francisco, Lerer Adam, Bradbury James, Chanan Gregory, Killeen Trevor, et al. 2019. PyTorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems (NIPS’19). 8026–8037.Google ScholarGoogle Scholar
  41. Pharr Matt, Jakob Wenzel, and Humphreys Greg. 2020. Physically Based Rendering: From Theory to Implementation (4th ed). MIT Press, Cambridge, MA. https://github.com/mmp/pbrt-v4.Google ScholarGoogle Scholar
  42. Rematas Konstantinos and Ferrari Vittorio. 2020. Neural voxel renderer: Learning an accurate and controllable rendering tool. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 54175427.Google ScholarGoogle ScholarCross RefCross Ref
  43. Ren Peiran, Wang Jiaping, Gong Minmin, Lin Stephen, Tong Xin, and Guo Baining. 2013. Global illumination with radiance regression functions. ACM Transactions on Graphics 32, 4 (2013), Article 130, 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Ritschel Tobias, Grosch Thorsten, and Seidel Hans-Peter. 2009. Approximating dynamic global illumination in image space. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games. 7582.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sanzenbacher Paul, Mescheder Lars, and Geiger Andreas. 2020. Learning neural light transport. arXiv preprint arXiv:2006.03427 (2020).Google ScholarGoogle Scholar
  46. Shanmugam Perumaal and Arikan Okan. 2007. Hardware accelerated ambient occlusion techniques on GPUs. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games. 7380.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Sloan Peter-Pike, Kautz Jan, and Snyder John. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’02). 527536.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Sun Xin, Zhou Kun, Chen Yanyun, Lin Stephen, Shi Jiaoying, and Guo Baining. 2007. Interactive relighting with dynamic BRDFs. ACM Transactions on Graphics 26, 3 (2007), 27–es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Tatarchenko Maxim, Dosovitskiy Alexey, and Brox Thomas. 2016. Multi-view 3D models from single images with a convolutional network. In Proceedings of the European Conference on Computer Vision. 322337.Google ScholarGoogle ScholarCross RefCross Ref
  50. Vicini Delio, Koltun Vladlen, and Jakob Wenzel. 2019. A learned shape-adaptive subsurface scattering model. ACM Transactions on Graphics 38, 4 (2019), 115.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Vogels Thijs, Rousselle Fabrice, McWilliams Brian, Röthlin Gerhard, Harvill Alex, Adler David, Meyer Mark, and Novák Jan. 2018. Denoising with kernelprediction and asymmetric loss functions. ACM Transactions on Graphics 37, 4 (2018), 115.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Walter Bruce, Fernandez Sebastian, Arbree Adam, Bala Kavita, Donikian Michael, and Greenberg Donald P.. 2005. Lightcuts: A scalable approach to illumination. ACM Transactions on Graphics 24, 3 (2005), 1098–1107.Google ScholarGoogle Scholar
  53. Walter Bruce, Marschner Stephen R., Li Hongsong, and Torrance Kenneth E.. 2007. Microfacet models for refraction through rough surfaces. In Proceedings of the 18th Eurographics Conference on Rendering Techniques (EGSR’07). 195–206.Google ScholarGoogle Scholar
  54. Xin Hanggao, Shaokun Zheng, Kun Xu, and Ling-Qi Yan. 2022. Lightweight bilateral convolutional neural networks for interactive single-bounce diffuse indirect illumination. IEEE Transactions on Visualization and Computer Graphics 28, 4 (2022), 1824–1834.Google ScholarGoogle Scholar
  55. Xu Bing, Zhang Junfei, Wang Rui, Xu Kun, Yang Yong-Liang, Li Chuan, and Tang Rui. 2019. Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation. ACM Transactions on Graphics 38, 6 (2019), Article 224, 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Yu Jiaqi, Nie Yongwei, Long Chengjiang, Xu Wenjun, Zhang Qing, and Li Guiqing. 2021. Monte Carlo denoising via auxiliary feature guided self-attention. ACM Transactions on Graphics 40, 6 (2021), Article 273, 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Zheng Chuankun, Zheng Ruzhang, Wang Rui, Zhao Shuang, and Bao Hujun. 2021. A compact representation of measured BRDFs using neural processes. ACM Transactions on Graphics 41, 2 (2021), 115.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Zhou Kun, Hu Yaohua, Lin Stephen, Guo Baining, and Shum Heung-Yeung. 2005. Precomputed shadow fields for dynamic scenes. ACM Transactions on Graphics 24, 3 (2005), 11961201.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Zhu Junqiu, Bai Yaoyi, Xu Zilin, Bako Steve, Velázquez-Armendáriz Edgar, Wang Lu, Sen Pradeep, Hašan Miloš, and Yan Ling-Qi. 2021. Neural complex luminaires: Representation and rendering. ACM Transactions on Graphics 40, 4 (2021), 112.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. NeLT: Object-Oriented Neural Light Transfer

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 42, Issue 5
        October 2023
        195 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3607124
        Issue’s Table of Contents

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 29 August 2023
        • Online AM: 10 May 2023
        • Accepted: 22 April 2023
        • Revised: 17 April 2023
        • Received: 2 December 2022
        Published in tog Volume 42, Issue 5

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text