Skip to main content
Log in

Finite element modeling and analysis of flexoelectric plates using gradient electromechanical theory

  • S.I. : Non-Classical Cont Mech
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This work presents the development of a two-way coupled flexoelectric plate theory starting from a 3D gradient electromechanical theory. The gradient electromechanical theory considers three mechanical length scale parameters and two electric length scale parameters to account for both mechanical and electrical size effects. Variational formulation is used to derive the plate governing equations and boundary conditions considering Kirchhoff’s assumptions. A computationally efficient \(C^2\) continuous non-conforming finite element is developed to solve the resulting plate equations. To assess the accuracy of the non-conforming finite element framework, the results are compared with Navier-type analytical solution for a simply supported flexoelectric plate. The finite element framework is also validated with experimental results in the existing literature for a passive micro-plate. The results show excellent agreement with both analytical and experimental results. Furthermore, computational efficiency of the non-conforming element is compared with the standard conforming element, which contains greater degrees of freedom and continuity across all elemental edges. It was observed that the non-conforming element is almost twice as fast as the conforming element without a significant loss of accuracy. The 2D finite element formulation is subsequently used to analyze the size-dependent response of flexoelectric composite plates operating in both sensor and actuator modes. Various parametric studies are performed to analyze the effect of boundary conditions, length scale parameters, size of the plate, flexoelectric layer thickness ratio, etc., on the response of flexoelectric plate-type sensors and actuators. It is found that the effective electromechanical coupling increases in a flexoelectric plate at microscale (due to the size effects), and it is higher than standard piezoelectric materials for plate thickness \(h \le 8\,{{\upmu }}\)m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. All the simulations are performed using MATLAB 2019 on a Windows 10 pro desktop computed with 8 core processor having base frequency of 3.70 GHz and 48 GB RAM.

References

  1. Wang, B., Gu, Y., Zhang, S., Chen, L.-Q.: Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019)

    Article  Google Scholar 

  2. Deng, Q., Liu, L., Sharma, P.: A continuum theory of flexoelectricity. In: Flexoelectricity in Solids: From Theory to Applications, pp. 111–167. World Scientific (2017)

  3. Majdoub, M., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77(12), 125424 (2008)

    Article  ADS  Google Scholar 

  4. Gregg, J.M.: Stressing ferroelectrics. Science 336(6077), 41–42 (2012)

    Article  ADS  Google Scholar 

  5. Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113(19), 194102 (2013)

    Article  ADS  Google Scholar 

  6. Zhuang, X., Nguyen, B.H., Nanthakumar, S.S., Tran, T.Q., Alajlan, N., Rabczuk, T.: Computational modeling of flexoelectricity—a review. Energies 13(6), 1326 (2020)

    Article  Google Scholar 

  7. Deng, B., Li, H., Tzou, H.: Optimal positions for multiple flexoelectric actuations on beams. In: ASME International Mechanical Engineering Congress and Exposition, vol. 57564, p. V013T16A008. American Society of Mechanical Engineers (2015)

  8. Zhang, X., Yu, W., Fu, J., Tzou, H.: Flexoelectric control of beams with atomic force microscope probe excitation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 234(13), 2537–2549 (2020)

    Article  Google Scholar 

  9. Hu, S., Li, H., Tzou, H.: Distributed flexoelectric structural sensing: theory and experiment. J. Sound Vib. 348, 126–136 (2015)

    Article  ADS  Google Scholar 

  10. Zhang, X., Li, H., Tzou, H.: Vibration control of a cantilever beam by metal-core flexoelectric and piezoelectric fibers. In: ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection (2014)

  11. Merupo, V.I., Guiffard, B., Seveno, R., Tabellout, M., Kassiba, A.: Flexoelectric response in soft polyurethane films and their use for large curvature sensing. J. Appl. Phys. 122(14), 144101 (2017)

    Article  ADS  Google Scholar 

  12. Dai, H., Yan, Z., Wang, L.: Nonlinear analysis of flexoelectric energy harvesters under force excitations. Int. J. Mech. Mater. Des. 16(1), 19–33 (2020)

    Article  Google Scholar 

  13. Liu, C., Hu, S., Shen, S.: Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire. Smart Mater. Struct. 21(11), 115024 (2012)

    Article  ADS  Google Scholar 

  14. Deng, Q., Kammoun, M., Erturk, A., Sharma, P.: Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct. 51(18), 3218–3225 (2014)

    Article  Google Scholar 

  15. Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mechanica 226(9), 3097–3110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, K., Wang, B.: An analytical model for nanoscale unimorph piezoelectric energy harvesters with flexoelectric effect. Compos. Struct. 153, 253–261 (2016)

    Article  Google Scholar 

  17. Ren, H., Sun, W.-F.: Characterizing dielectric permittivity of nanoscale dielectric films by electrostatic micro-probe technology: finite element simulations. Sensors 19(24), 5405 (2019)

    Article  ADS  Google Scholar 

  18. Sahin, E., Dost, S.: A strain-gradients theory of elastic dielectrics with spatial dispersion. Int. J. Eng. Sci. 26(12), 1231–1245 (1988)

    Article  Google Scholar 

  19. Maranganti, R., Sharma, N., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74(1), 014110 (2006)

    Article  ADS  Google Scholar 

  20. Hu, S., Shen, S.: Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Sci. China Phys. Mech. Astron. 53(8), 1497–1504 (2010)

    Article  ADS  Google Scholar 

  21. Romeo, M.: Micromorphic continuum model for electromagnetoelastic solids. Z. Angew. Math. Phys. 62(3), 513–527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Romeo, M.: Polarization in dielectrics modeled as micromorphic continua. Z. Angew. Math. Phys. 66(3), 1233–1247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Abdollahi, A., Domingo, N., Arias, I., Catalan, G.: Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials. Nat. Commun. 10(1), 1–6 (2019)

    Article  Google Scholar 

  24. Joshan, Y.S., Santapuri, S.: A gradient electromechanical theory for thin dielectric curved beams considering direct and converse flexoelectric effects. Z. Angew. Math. Phys. 73, 178 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, K., Wang, B.: Non-linear flexoelectricity in energy harvesting. Int. J. Eng. Sci. 116, 88–103 (2017)

    Article  Google Scholar 

  26. Yue, Y., Xu, K., Chen, T.: A micro scale timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Compos. Struct. 136, 278–286 (2016)

    Article  Google Scholar 

  27. Sharma, S., Kumar, A., Kumar, R., Talha, M., Vaish, R.: Geometry independent direct and converse flexoelectric effects in functionally graded dielectrics: an isogeometric analysis. Mech. Mater. 148, 103456 (2020)

    Article  Google Scholar 

  28. Tian, X., Xu, M., Deng, Q., Sladek, J., Sladek, V., Repka, M., Li, Q.: Size-dependent direct and converse flexoelectricity around a micro-hole. Acta Mech. 231(12), 4851–4865 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sharma, S., Kumar, R., Talha, M., Vaish, R.: Strategies to instigate superior electromechanical response in dielectric materials via converse flexoelectricity. Extreme Mech. Lett. 42, 101138 (2021)

    Article  Google Scholar 

  30. Haque, M.F., Snapp, P., Kim, J.M., Wang, M.C., Bae, H.J., Cho, C., Nam, S.: Strongly enhanced electromechanical coupling in atomically thin transition metal dichalcogenides. Mater. Today 47, 69–74 (2021)

    Article  Google Scholar 

  31. Zhang, Z., Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. J. Appl. Phys. 116(1), 014307 (2014)

    Article  ADS  Google Scholar 

  32. Li, A., Zhou, S., Qi, L.: Size-dependent electromechanical coupling behaviors of circular micro-plate due to flexoelectricity. Appl. Phys. A 122(10), 1–18 (2016)

    Article  ADS  Google Scholar 

  33. Ebrahimi, F., Barati, M.R.: Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects. Mech. Adv. Mater. Struct. 25(7), 611–621 (2018)

    Article  Google Scholar 

  34. Qi, L., Huang, S., Fu, G., Li, A., Zhou, S., Jiang, X.: Modeling of the flexoelectric annular microplate based on strain gradient elasticity theory. Mech. Adv. Mater. Struct. 26(23), 1958–1968 (2019)

    Article  Google Scholar 

  35. Chen, L., Pan, S., Fei, Y., Zhang, W., Yang, F.: Theoretical study of micro/nano-scale bistable plate for flexoelectric energy harvesting. Appl. Phys. A 125(4), 1–11 (2019)

    Article  Google Scholar 

  36. Amir, S., BabaAkbar-Zarei, H., Khorasani, M.: Flexoelectric vibration analysis of nanocomposite sandwich plates. Mech. Based Des. Struct. Mach. 48(2), 146–163 (2020)

    Article  Google Scholar 

  37. Abdollahi, A., Peco, C., Millan, D., Arroyo, M., Arias, I.: Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 116(9), 093502 (2014)

    Article  ADS  Google Scholar 

  38. Abdollahi, A., Millán, D., Peco, C., Arroyo, M., Arias, I.: Revisiting pyramid compression to quantify flexoelectricity: a three-dimensional simulation study. Phys. Rev. B 91(10), 104103 (2015)

    Article  ADS  Google Scholar 

  39. Liu, W., Deng, F., Xie, S., Shen, S., Li, J.: Electromechanical analysis of direct and converse flexoelectric effects under a scanning probe tip. J. Mech. Phys. Solids 142, 104020 (2020)

    Article  MathSciNet  Google Scholar 

  40. Yurkov, A., Yudin, P.: Continuum model for converse flexoelectricity in a thin plate. Int. J. Eng. Sci. 182, 103771 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sharma, S., Kumar, A., Kumar, R., Talha, M., Vaish, R.: Geometry independent direct and converse flexoelectric effects in functionally graded dielectrics: an isogeometric analysis. Mech. Mater. 148, 103456 (2020)

    Article  Google Scholar 

  42. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226(7), 2277–2294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nye, J.F., et al.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  44. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  ADS  MATH  Google Scholar 

  45. Qi, L., Zhou, S., Li, A.: Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain gradient elastic effect. Compos. Struct. 135, 167–175 (2016)

    Article  Google Scholar 

  46. Rupa, N.S., Ray, M.: Analysis of flexoelectric response in nanobeams using nonlocal theory of elasticity. Int. J. Mech. Mater. Des. 13(3), 453–467 (2017)

    Article  Google Scholar 

  47. Qu, Y., Zhang, G., Fan, Y., Jin, F.: A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I-reconsideration of curvature-based flexoelectricity theory. Math. Mech. Solids 26, 1647–1659 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. Danesh, H., Javanbakht, M.: Free vibration analysis of nonlocal nanobeams: a comparison of the one-dimensional nonlocal integral timoshenko beam theory with the two-dimensional nonlocal integral elasticity theory. Math. Mech. Solids 27, 557–577 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Dehkordi, S.F., Beni, Y.T.: Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. Int. J. Mech. Sci. 128, 125–139 (2017)

    Article  Google Scholar 

  50. Ghobadi, A., Beni, Y.T., Golestanian, H.: Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field. Int. J. Mech. Sci. 152, 118–137 (2019)

    Article  Google Scholar 

  51. Lee, C.K.: Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: governing equations and reciprocal relationships. J. Acoust. Soc. Am. 87(3), 1144–1158 (1990)

    Article  ADS  Google Scholar 

  52. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press (2004)

    MATH  Google Scholar 

  53. Carrera, E.: Historical review of zig-zag theories for multilayered plates and shells. Appl. Mech. Rev. 56(3), 287–308 (2003)

    Article  ADS  Google Scholar 

  54. Deng, Q., Shen, S.: The flexodynamic effect on nanoscale flexoelectric energy harvesting: a computational approach. Smart Mater. Struct. 27(10), 105001 (2018)

    Article  ADS  Google Scholar 

  55. Nguyen, B., Nanthakumar, S., Zhuang, X., Wriggers, P., Jiang, X., Rabczuk, T.: Dynamic flexoelectric effect on piezoelectric nanostructures. Eur. J. Mech. A Solids 71, 404–409 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Wang, Q., Quek, S.: Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator. Smart Mater. Struct. 9(1), 103 (2000)

    Article  ADS  Google Scholar 

  57. Wang, Q.: On buckling of column structures with a pair of piezoelectric layers. Eng. Struct. 24(2), 199–205 (2002)

    Article  Google Scholar 

  58. Joshan, Y.S., Santapuri, S., Grover, N.: Analysis of laminated piezoelectric composite plates using an inverse hyperbolic coupled plate theory. Appl. Math. Model. 82, 359–378 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  59. Reddy, J.N.: Energy and Variational Methods in Applied Mechanics: With an Introduction to the Finite Element Method. Wiley, New York (1984)

    MATH  Google Scholar 

  60. Reddy, J.N.: An Introduction to the Finite Element Method, vol. 1221. McGraw-Hill, New York (2010)

    Google Scholar 

  61. Babu, B., Patel, B.: On the finite element formulation for second-order strain gradient nonlocal beam theories. Mech. Adv. Mater. Struct. 26(15), 1316–1332 (2019)

    Article  Google Scholar 

  62. Deng, F., Deng, Q., Yu, W., Shen, S.: Mixed finite elements for flexoelectric solids. J. Appl. Mech. 84(8), 081004 (2017)

    Article  ADS  Google Scholar 

  63. Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R.: Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B 79(16), 165433 (2009)

    Article  ADS  Google Scholar 

  64. Thai, H.-T., Vo, T.P.: A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory. Compos. Struct. 96, 376–383 (2013)

    Article  Google Scholar 

  65. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.: An analytical solution for bending, buckling and vibration responses of FGM sandwich plates. J. Sandwich Struct. Mater. 21(2), 727–757 (2019)

    Article  Google Scholar 

  66. Joshan, Y.S., Santapuri, S., Srinivasa, A.: Finite element modeling and analysis of low symmetry piezoelectric shells for design of shear sensors. Int. J. Mech. Sci. 210, 106726 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushma Santapuri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Components of constitutive matrices: The components of \(\mathbf{\overline{H}}\), \(\mathbf{\overline{G}}\), \(\mathbf{\overline{D}}\), \(\mathbf{\overline{E}}\), \(\mathbf{\overline{B}}\) and \(\mathbf{\overline{K}}\) matrices defined in equations (51)–(54) are given as follows:

$$\begin{aligned} \mathbf{\overline{H}}&= \left[ \begin{array}{cccccccccccc} H_{111}&{}\quad H_{112}&{}\quad H_{113}&{}\quad H_{221}&{}\quad H_{222}&{}\quad H_{223}&{}\quad H_{121}&{}\quad H_{122}&{}\quad H_{123}\\ \end{array}\right] ^{\textrm{T}}, \end{aligned}$$
(98)
$$\begin{aligned} \mathbf{\overline{G}}&= \left[ \begin{array}{cccccccccccc} G_{111}&{}\quad G_{112}&{}\quad G_{113}&{}\quad G_{221}&{}\quad G_{222}&{}\quad G_{223}&{}\quad G_{121}&{}\quad G_{122}&{}\quad G_{123}\\ \end{array}\right] ^{\textrm{T}}, \end{aligned}$$
(99)
$$\begin{aligned} \mathbf{\overline{D}}&= \left[ \begin{array}{ccc} D_1&{}\quad D_2&{}\quad D_3\\ \end{array}\right] ^{\textrm{T}}, \quad \mathbf{\overline{E}}= \left[ \begin{array}{ccc} E_1&{}\quad E_2&{}\quad E_3\\ \end{array}\right] ^{\textrm{T}}, \end{aligned}$$
(100)
$$\begin{aligned} \mathbf{\overline{B}}&= \left[ \begin{array}{ccccccccc} B_{11}&{}\quad B_{22}&{}\quad B_{33}&{}\quad B_{12}&{}\quad B_{13}&{}\quad B_{23}\\ \end{array}\right] ^{\textrm{T}}, \end{aligned}$$
(101)
$$\begin{aligned} \mathbf{\overline{K}}&= \left[ \begin{array}{ccccccccc} K_{11}&{}\quad K_{22}&{}\quad K_{33}&{}\quad K_{12}&{}\quad K_{13}&{}\quad K_{23}\\ \end{array}\right] ^{\textrm{T}}. \end{aligned}$$
(102)

The components of material matrices \(\mathbf{\overline{Q}^c}\), \(\mathbf{\overline{Q}^g}\), \(\varvec{\overline{\epsilon }}\), \(\mathbf{\overline{k}}\), \(\mathbf{\overline{h}}\) and \(\mathbf{\overline{f}}\) defined in Eqs. (51)–(54) are given by:

$$\begin{aligned} \mathbf{\overline{Q}^c}= \left[ \begin{array}{cccc} \overline{Q}^c_{11}&{}\quad \overline{Q}^c_{12}&{}\quad 0\\ \overline{Q}^c_{21}&{}\quad \overline{Q}^c_{22}&{}\quad 0\\ 0&{}\quad 0&{}\quad \overline{Q}^c_{33}\\ \end{array}\right] , \end{aligned}$$
(103)

where \(\overline{Q}_{ij}^c\), \(i,j=1,2,3\) are the components of stiffness matrix and can be obtained in terms of Young’s modulus c and Poison’s ratio v using the plane stress assumptions [42].

$$\begin{aligned} \mathbf{\overline{h}}&= \left[ \begin{array}{ccccccccc} h_1+2h_2&{}\quad h_1&{}\quad h_1&{}\quad 0&{}\quad 0&{}\quad 0\\ h_1&{}\quad h_1+2h_2&{}\quad h_1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 2h_2&{}\quad 0&{}\quad 0\\ \end{array}\right] , \end{aligned}$$
(104)
$$\begin{aligned} \mathbf{\overline{Q}^g}&= \left[ \begin{array}{cccccccccccc} \overline{Q}^g_{11}&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{14}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{18}&{}\quad 0\\ 0 &{}\quad \overline{Q}^g_{22}&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{25}&{}\quad 0&{}\quad \overline{Q}^g_{27}&{}\quad 0&{}\quad 0\\ 0 &{}\quad 0&{}\quad \overline{Q}^g_{33}&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{36}&{}\quad 0&{}\quad 0&{}\quad 0\\ \overline{Q}^g_{41}&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{44}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{48}&{}\quad 0\\ 0 &{}\quad \overline{Q}^g_{52}&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{55}&{}\quad 0&{}\quad \overline{Q}^g_{57}&{}\quad 0&{}\quad 0\\ 0 &{}\quad 0&{}\quad \overline{Q}^g_{63}&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{66}&{}\quad 0&{}\quad 0&{}\quad 0\\ 0 &{}\quad \overline{Q}^g_{72}&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{75}&{}\quad 0&{}\quad \overline{Q}^g_{77}&{}\quad 0&{}\quad 0\\ \overline{Q}^g_{81}&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{84}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{88}&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad \overline{Q}^g_{99}\\ \end{array}\right] , \end{aligned}$$
(105)

where \(\overline{Q}^g_{11}=2(a_1+a_2+a_3+a_4+a_5)\), \(\overline{Q}^g_{14}=2a_1+a_2\), \(\overline{Q}^g_{18}=a_3+\frac{1}{2}a_2\), \(\overline{Q}^g_{22}=2a_1+2a_4\), \(\overline{Q}^g_{25}=\overline{Q}^g_{14}\), \(\overline{Q}^g_{27}=\frac{1}{2}a_2+a_5\), \(\overline{Q}^g_{33}=\overline{Q}^g_{22}\), \(\overline{Q}^g_{36}=2a_1\), \(\overline{Q}^g_{41}=\overline{Q}^g_{14}\), \(\overline{Q}^g_{44}=\overline{Q}^g_{22}\), \(\overline{Q}^g_{48}=\overline{Q}^g_{27}\), \(\overline{Q}^g_{52}=\overline{Q}^g_{25}\), \(\overline{Q}^g_{55}=\overline{Q}^g_{11}\), \(\overline{Q}^g_{57}=\overline{Q}^g_{18}\), \(\overline{Q}^g_{63}=\overline{Q}^g_{36}\), \(\overline{Q}^g_{66}=\overline{Q}^g_{33}\), \(\overline{Q}^g_{72}=\overline{Q}^g_{27}\), \(\overline{Q}^g_{75}=\overline{Q}^g_{57}\), \(\overline{Q}^g_{77}=a_3+2a_4+a_5\), \(\overline{Q}^g_{81}=\overline{Q}^g_{18}\), \(\overline{Q}^g_{84}=\overline{Q}^g_{48}\), \(\overline{Q}^g_{88}=\overline{Q}^g_{77}\) and \(\overline{Q}^g_{99}=2a_4\).

$$\begin{aligned} \mathbf{\overline{f}}&= \left[ \begin{array}{cccccccccccc} 2f_1+f_2&{}\quad 0&{}\quad 0\\ 0 &{}\quad f_2&{}\quad 0\\ 0 &{}\quad 0\quad f_2\\ f_2&{}\quad 0&{}\quad 0\\ 0 &{}\quad 2f_1+f_2&{}\quad 0\\ 0 &{}\quad 0&{}\quad f_2\\ 0 &{}\quad f_1&{}\quad 0\\ f_1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0\\ \end{array}\right] , \end{aligned}$$
(106)
$$\begin{aligned} {\varvec{\overline{\epsilon }}}&= \left[ \begin{array}{ccc} \epsilon _1&{}\quad 0&{}\quad 0\\ 0&{}\quad \epsilon _1&{}\quad 0\\ 0&{}\quad 0&{}\quad \epsilon _1\\ \end{array}\right] , \end{aligned}$$
(107)

and

$$\begin{aligned} \mathbf{\overline{k}}= \left[ \begin{array}{ccccccccc} k_1+2k_2&{}\quad k_1&{}\quad k_1&{}\quad 0&{}\quad 0&{}\quad 0\\ k_1&{}\quad k_1+2k_2&{}\quad k_1&{}\quad 0&{}\quad 0&{}\quad 0\\ k_1&{}\quad k_1&{}\quad k_1+2k_2&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 2k_2&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 2k_2&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 2k_2\\ \end{array}\right] . \end{aligned}$$
(108)

Appendix B

The matrices \(\textbf{D}^\textbf{SS}\), \(\textbf{D}^\textbf{SK}\), \(\textbf{D}^\textbf{GG}\), \(\textbf{D}^\textbf{GE}\), \(\textbf{D}^\textbf{EE}\), \(\textbf{D}^\textbf{EG}\), \(\textbf{D}^\textbf{KK}\) and \(\textbf{D}^\textbf{KS}\) defined in Eq. (84) are given by:

$$\begin{aligned} \textbf{D}^\textbf{SS}&=\int _{\alpha _3}{\mathbf{(H^S)}}^{\textrm{T}}{} \mathbf{\overline{Q}^c}{\mathbf{H^S}}\textrm{d}\alpha _3, \end{aligned}$$
(109)
$$\begin{aligned} \textbf{D}^\textbf{SK}&=\int _{\alpha _3}{\mathbf{(H^S)}}^{\textrm{T}}{} \mathbf{\overline{h}}{\mathbf{H^K}}\textrm{d}\alpha _3, \end{aligned}$$
(110)
$$\begin{aligned} \textbf{D}^\textbf{GG}&=\int _{\alpha _3}{\mathbf{(H^G)}}^{\textrm{T}}{} \mathbf{\overline{Q}^g}{\mathbf{H^G}}\textrm{d}\alpha _3, \end{aligned}$$
(111)
$$\begin{aligned} \textbf{D}^\textbf{GE}&=\int _{\alpha _3}{\mathbf{(H^G)}}^{\textrm{T}}{} \mathbf{\overline{f}}{\mathbf{H^E}}\textrm{d}\alpha _3, \end{aligned}$$
(112)
$$\begin{aligned} \textbf{D}^\textbf{EE}&=\int _{\alpha _3}{\mathbf{(H^E)}}^{\textrm{T}}{\varvec{\overline{\epsilon }} }{\mathbf{H^E}}\textrm{d}\alpha _3, \end{aligned}$$
(113)
$$\begin{aligned} \textbf{D}^\textbf{EG}&=\int _{\alpha _3}{\mathbf{(H^E)}}^{\textrm{T}}{} \mathbf{\overline{f} }^{\textrm{T}}{\mathbf{H^G}}\textrm{d}\alpha _3, \end{aligned}$$
(114)
$$\begin{aligned} \textbf{D}^\textbf{KK}&=\int _{\alpha _3}{\mathbf{(H^K)}}^{\textrm{T}}{} \mathbf{\overline{k} }{\mathbf{H^K}}\textrm{d}\alpha _3. \end{aligned}$$
(115)
$$\begin{aligned} \textbf{D}^\textbf{KS}&=\int _{\alpha _3}{\mathbf{(H^K)}}^{\textrm{T}}{} \mathbf{\overline{h} }^{\textrm{T}}{\mathbf{H^S}}\textrm{d}\alpha _3, \end{aligned}$$
(116)

The finite element matrices \(\textbf{K}^\textbf{SS}\), \(\textbf{K}^\textbf{SK}\), \(\textbf{K}^\textbf{GG}\), \(\textbf{K}^\textbf{GE}\), \(\textbf{K}^\textbf{EE}\), \(\textbf{K}^\textbf{EG}\), \(\textbf{K}^\textbf{KK}\) and \(\textbf{K}^\textbf{KS}\) defined in Eq. (85) are given by:

$$\begin{aligned} \textbf{K}^\textbf{SS}&=\int _{\alpha ^e_1}\int _{\alpha ^e_2}{\mathbf{(B^S)}}^{\textrm{T}}{} \mathbf{D^{SS}}{\mathbf{B^S}}\textrm{d}\alpha ^e_2\textrm{d}\alpha ^e_1, \end{aligned}$$
(117)
$$\begin{aligned} \textbf{K}^\textbf{SK}&=\int _{\alpha ^e_1}\int _{\alpha ^e_2}{\mathbf{(B^S)}}^{\textrm{T}}{} \mathbf{D^{SK}}{\mathbf{B^K}}\textrm{d}\alpha ^e_2\textrm{d}\alpha ^e_1, \end{aligned}$$
(118)
$$\begin{aligned} \textbf{K}^\textbf{GG}&=\int _{\alpha ^e_1}\int _{\alpha ^e_2}{\mathbf{(B^G)}}^{\textrm{T}}{} \mathbf{D^{GG}}{\mathbf{B^G}}\textrm{d}\alpha ^e_2\textrm{d}\alpha ^e_1, \end{aligned}$$
(119)
$$\begin{aligned} \textbf{K}^\textbf{GE}&=\int _{\alpha ^e_1}\int _{\alpha ^e_2}{\mathbf{(B^G)}}^{\textrm{T}}{} \mathbf{D^{GE}}{\mathbf{B^E}}\textrm{d}\alpha ^e_2\textrm{d}\alpha ^e_1, \end{aligned}$$
(120)
$$\begin{aligned} \textbf{K}^\textbf{EE}&=\int _{\alpha ^e_1}\int _{\alpha ^e_2}{\mathbf{(B^E)}}^{\textrm{T}}{} \mathbf{D^{EE}}{\mathbf{B^E}}\textrm{d}\alpha ^e_2\textrm{d}\alpha ^e_1, \end{aligned}$$
(121)
$$\begin{aligned} \textbf{K}^\textbf{EG}&=\int _{\alpha ^e_1}\int _{\alpha ^e_2}{\mathbf{(B^E)}}^{\textrm{T}}{} \mathbf{D^{EG}}{\mathbf{B^G}}\textrm{d}\alpha ^e_2\textrm{d}\alpha ^e_1, \end{aligned}$$
(122)
$$\begin{aligned} \textbf{K}^\textbf{KK}&=\int _{\alpha ^e_1}\int _{\alpha ^e_2}{\mathbf{(B^K)}}^{\textrm{T}}{} \mathbf{D^{KK}}{\mathbf{B^K}}\textrm{d}\alpha ^e_2\textrm{d}\alpha ^e_1, \end{aligned}$$
(123)
$$\begin{aligned} \textbf{K}^\textbf{KS}&=\int _{\alpha ^e_1}\int _{\alpha ^e_2}{\mathbf{(B^K)}}^{\textrm{T}}{} \mathbf{D^{KS}}{\mathbf{B^S}}\textrm{d}\alpha ^e_2\textrm{d}\alpha ^e_1, \end{aligned}$$
(124)

Appendix C

Analytical solution for simply supported flexoelectric composite plates: The derived governing equations for the classical flexoelectric plate are solved analytically for simply supported boundary conditions. The governing differential equations (62)–(66) are obtained in the explicit form using Eqs. (58)–(61). The Navier solution is used to express the primary variables in terms of series solution as follows:

$$\begin{aligned} u_0&= \sum _{m=1}^\infty \sum _{n=1}^\infty U_{mn}\textrm{cos}(p\alpha _1) \textrm{sin}(l\alpha _2) , \end{aligned}$$
(125)
$$\begin{aligned} v_0&= \sum _{m=1}^\infty \sum _{n=1}^\infty V_{mn}\textrm{sin}(p\alpha _1) \textrm{cos}(l\alpha _2), \end{aligned}$$
(126)
$$\begin{aligned} w_0&= \sum _{m=1}^\infty \sum _{n=1}^\infty W_{mn}\textrm{sin} (p\alpha _1) \textrm{sin}(l\alpha _2), \end{aligned}$$
(127)
$$\begin{aligned} \phi _1&=\sum _{m=1}^\infty \sum _{n=1}^\infty { \Phi }_{mn}\textrm{sin}(p\alpha _1) \textrm{sin}(l\alpha _2), \end{aligned}$$
(128)
$$\begin{aligned} \phi _0&=\sum _{m=1}^\infty \sum _{n=1}^\infty { \gamma }_{mn}\textrm{sin}(p\alpha _1) \textrm{sin}(l\alpha _2), \end{aligned}$$
(129)

where \(p=\pi m /a\) and \(l=\pi n /b\). The coefficients \(U_{mn},\, V_{mn},\, W_{mn},\) \(\Phi _{mn}\) and \(\gamma _{mn}\) are unknowns to be solved using the Navier solution technique.

In addition, transverse load \(q(\alpha _1,\alpha _2)\) is expressed in terms of Fourier series as

$$\begin{aligned} q=\sum _{m=1}^\infty \sum _{n=1}^\infty q_{mn}\,\textrm{sin}(p\alpha _1)\textrm{sin}(l\alpha _2), \end{aligned}$$
(130)

where

$$\begin{aligned} q_{mn} = \frac{4}{ab}\int _{0}^b\int _{0}^a q(\alpha _1,\alpha _2) \,\textrm{sin}(p\alpha _1)\,\textrm{sin}(l\alpha _2) \, \textrm{d}\alpha _1\textrm{d}\alpha _2, \end{aligned}$$
(131)

The series solutions (125)–(130) are substituted into the explicit form of governing equations, resulting in algebraic equations of the form:

$$\begin{aligned} \mathbf{R^g}{} \mathbf{U^g} \, = \, \mathbf{F^g}, \end{aligned}$$
(132)

where \(\mathbf{U^g}\) is the vector of unknowns to be solved, which is given by

$$\begin{aligned} \mathbf{U^g} = \begin{bmatrix} U_{mn}&V_{mn}&W_{mn}&\Phi _{mn}&\gamma _{mn} \end{bmatrix}^\textrm{T}, \end{aligned}$$

\(\mathbf{F^g}\) is the resultant force matrix, and \(\mathbf{R^g}\) is the \(5 \times 5\) resultant stiffness matrix. Equation (132) is solved to obtain the displacements and electrostatic potential in terms of Navier coefficients. This general formulation is used to analyze the flexoelectric plate, both in actuator and sensor modes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshan, Y.S., Santapuri, S. Finite element modeling and analysis of flexoelectric plates using gradient electromechanical theory. Continuum Mech. Thermodyn. (2023). https://doi.org/10.1007/s00161-023-01252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-023-01252-6

Keywords

Navigation