Skip to main content
Log in

Post-Archean Nb-REE-U enrichment in the Superior craton recorded in metasomatised mantle rocks erupted in the 1.1 Ga Midcontinental Rift event

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Mantle xenoliths in a Mesoproterozoic lamprophyre dyke at Elliot Lake, Ontario, located on the east margin of the Midcontinent Rift (MCR), erupted at ~ 1.1 Ga. These xenoliths enable a study of critical metal enrichment in the sub-cratonic lithospheric mantle (SCLM). Whole-rock major and trace element data from a suite of peridotite xenoliths document a combination of melt depletion and cryptic metasomatic processes. Trace element whole-rock and mineral systematics show a specific endowment in Nb-U-REE (ca. 5–30 ppm mean value), linked to carbonated silicate metasomatism. Geochronological data from the lamprophyre host (Rb–Sr age of 1112.8 ± 4.95 Ma) and the mantle xenoliths (Re-Os) indicate that our samples document the state of the mantle during the earlier stages of magmatism of the MCR. Mineral thermobarometry reveals a hot geotherm reflecting the thinning of the Superior cratonic root to 110 km. Most of the Nb-U-REE deposits and anomalies associated with the MCR event are located around Lake Superior. Here we document for the first time north of Lake Huron, metasomatic processes in the lithosphere that may have created Nb-U-REE metal endowment. The mantle events documented here relate to other observations made in the Slave and North China craton and show how silico-carbonated mid-lithospheric metasomatism up-grades the cratonic lithospheric mantle into a fertile source. Comparison with other small degree melts such as kimberlites, and mantle metasomes related to the MARID suite, show that small degree melts are very efficient at transporting critical metals from the HFSE group plus U and Th, into Earth’s lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agranier A, Lee C-TA (2007) Quantifying trace element disequilibria in mantle xenoliths and abyssal peridotites. Earth Planet Sci Lett 257:290–298

    Article  Google Scholar 

  • Banks GJ, Walter BF, Marks MAW, Siegfried PR (2019) A workflow to define, map and name a carbonatite-or alkaline igneous-associated REE-HFSE mineral system: a case study from SW Germany. Minerals 9:97

    Article  Google Scholar 

  • Becker H, Horan MF, Walker RJ et al (2006) Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70:4528–4550. https://doi.org/10.1016/j.gca.2006.06.004

    Article  Google Scholar 

  • Bekker A, Kaufman AJ (2007) Oxidative forcing of global climate change: a biogeochemical record across the oldest Paleoproterozoic ice age in North America. Earth Planet Sci Lett 258:486–499

    Article  Google Scholar 

  • Bennett G, Dressler BO, Robertson JA, et al (1991) The Huronian Supergroup and associated intrusive rocks. In: Thurston PC, Williams HR, Sutcliffe RH, Stott GM (Eds) Geology of Ontario, vol 4. Ontario Geological Survey Special, pp 549–591

  • Bergen L, Fayek M (2012) Petrography and geochronology of the Pele Mountain quartz-pebble conglomerate uranium deposit, Elliot Lake District, Canada. Am Mineral 97:1274–1283

    Article  Google Scholar 

  • Bornhorst TJ, Mathur R (2017) Copper isotope constraints on the genesis of the Keweenaw Peninsula native copper district, Michigan, USA. Minerals 7:185

    Article  Google Scholar 

  • Boyd FR, Pokhilenko NP, Pearson DG et al (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib to Mineral Petrol 128:228–246

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Brooker RA, Kjarsgaard BA (2011) Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 0·1–2·5 GPa with applications to carbonatite genesis. J Petrol 52:1281–1305. https://doi.org/10.1093/petrology/egq081

    Article  Google Scholar 

  • Bussweiler Y, Stone RS, Pearson DG et al (2016) The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contrib to Mineral Petrol 171:1–25

    Article  Google Scholar 

  • Bussweiler Y, Brey GP, Pearson DG et al (2017) The aluminum-in-olivine thermometer for mantle peridotites—experimental versus empirical calibration and potential applications. Lithos 272:301–314

    Article  Google Scholar 

  • Bussweiler Y, Pearson DG, Stachel T, Kjarsgaard BA (2018) Cr-rich megacrysts of clinopyroxene and garnet from Lac de Gras kimberlites, Slave Craton, Canada–implications for the origin of clinopyroxene and garnet in cratonic lherzolites. Mineral Petrol 112:583–596

    Article  Google Scholar 

  • Bussweiler Y, Giuliani A, Greig A et al (2019) Trace element analysis of high-Mg olivine by LA-ICP-MS–characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites. Chem Geol 524:136–157

    Article  Google Scholar 

  • Castor SB (2008) Rare earth deposits of North America. Resour Geol 58:337–347. https://doi.org/10.1111/j.1751-3928.2008.00068.x

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Hinton RW et al (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165

    Article  Google Scholar 

  • Coogan LA, Saunders AD, Wilson RN (2014) Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chem Geol 368:1–10

    Article  Google Scholar 

  • Darbyshire FA, Eaton DW, Frederiksen AW, Ertolahti L (2007) New insights into the lithosphere beneath the Superior Province from Rayleigh wave dispersion and receiver function analysis. Geophys J Int 169:1043–1068

    Article  Google Scholar 

  • De Hoog JCM, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270:196–215

    Article  Google Scholar 

  • Dostal J (2017) Rare earth element deposits of alkaline igneous rocks. Resources 6:34

    Article  Google Scholar 

  • Doucet P, Moorhead J, Côté S (2002) Chapter 1C Southern Superior Province (Abitibi and Pontiac Subprovinces). In: The Abitibi subprovince, vol 16.  Gouvernement du Québec 

  • Easton RM, Thurston PC (1992) The Grenville Province and the Proterozoic history of central and southern Ontario. Geol Ontario Spec 4:714–904

    Google Scholar 

  • Edwards GH, Blackburn T (2018) Detecting the extent of ca. 1.1 Ga Midcontinent Rift plume heating using U-Pb thermochronology of the lower crust. Geology 46:911–914. https://doi.org/10.1130/G45150.1

    Article  Google Scholar 

  • Eggins SM, Rudnick RL, McDonough WF (1998) The composition of peridotites and their minerals: a laser-ablation ICP–MS study. Earth Planet Sci Lett 154:53–71

    Article  Google Scholar 

  • Fedo CM, Wayne Nesbitt H, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Article  Google Scholar 

  • Fischer-Gödde M, Becker H, Wombacher F (2011) Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem Geol 280:365–383

    Article  Google Scholar 

  • Frarey MJ (1978) Geology of the Huronian belt between Sault Ste. Marie and Blind river, Ontario. Geological Survey of Canada report 383:87

  • Geusebroek PA, Duke NA (2004) An update on the geology of the Lupin gold mine, Nunavut, Canada. Explor Min Geol 13:1–13. https://doi.org/10.2113/gsemg.13.1-4.1

    Article  Google Scholar 

  • Good DJ, Hollings P, Dunning G et al (2021) A new model for the Coldwell complex and associated dykes of the Midcontinent Rift. Canada J Petrol 62:036

    Google Scholar 

  • Griffin WL, Begg GC, O’reilly SY (2013) Continental-root control on the genesis of magmatic ore deposits. Nat Geosci 6:905–910

    Article  Google Scholar 

  • Groves DI, Santosh M (2021) Craton and thick lithosphere margins: the sites of giant mineral deposits and mineral provinces. Gondwana Res 100:195–222. https://doi.org/10.1016/j.gr.2020.06.008

    Article  Google Scholar 

  • Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307:59–70

    Article  Google Scholar 

  • Heaman LM, Machado N (1992) Timing and origin of midcontinent rift alkaline magmatism, North America: evidence from the Coldwell complex. Contrib to Mineral Petrol 110:289–303

    Article  Google Scholar 

  • Heaman LM, Easton RM, Hart TR et al (2007) Further refinement to the timing of Mesoproterozoic magmatism, Lake Nipigon region, Ontario. Can J Earth Sci 44:1055–1086

    Article  Google Scholar 

  • Heinrich CA, Candela PA (2014) Fluids and ore formation in the Earth’s crust. In: Treatise on geochemistry (second edition), vol 13. Elsevier, pp 1–28

  • Hoffman PF, Bally AW, Palmer AR (1989) Precambrian geology and tectonic history of North America. The geology of North America—an overview. Geological Society of America Boulder, CO, pp 447–512

    Chapter  Google Scholar 

  • Ionov DA, Doucet LS, Xu Y et al (2018) Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochim Cosmochim Acta 224:132–153. https://doi.org/10.1016/j.gca.2017.12.028

    Article  Google Scholar 

  • Johnson JS, Gibson SA, Thompson RN, Nowell GM (2005) Volcanism in the Vitim volcanic field, Siberia: geochemical evidence for a mantle plume beneath the Baikal rift zone. J Petrol 46:1309–1344

    Article  Google Scholar 

  • Kjarsgaard BA, de Wit M, Heaman LM et al (2022) A review of the geology of global diamond mines and deposits. Rev Mineral Geochemistry 88:1–117. https://doi.org/10.2138/rmg.2022.88.01

    Article  Google Scholar 

  • Kogarko LN, Lahaye Y, Brey GP (2010) Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics. Mineral Petrol 98:197–208. https://doi.org/10.1007/s00710-009-0066-1

    Article  Google Scholar 

  • Lawley CJM, McCafferty AE, Graham GE et al (2022) Data–driven prospectivity modelling of sediment–hosted Zn–Pb mineral systems and their critical raw materials. Ore Geol Rev 141:104635. https://doi.org/10.1016/j.oregeorev.2021.104635

    Article  Google Scholar 

  • Lawley CJM, Kjarsgaard BA, Jackson SE et al (2018) Olivine and clinopyroxene mantle xenocryst geochemistry from the Kirkland Lake kimberlite field. Ontario, Geological Survey of Canada report, p 8376

    Book  Google Scholar 

  • Lightfoot PC (2017) Chapter 2 - A synthesis of the geology of the Sudbury Structure. In: Nickel sulfide ores and impact melts, Elsevier, pp 68–189

  • Ling M-X, Liu Y-L, Williams IS et al (2013) Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Sci Rep 3:1776. https://doi.org/10.1038/srep01776

    Article  Google Scholar 

  • Long DGF, Ulrich T, Kamber BS (2011) Laterally extensive modified placer gold deposits in the Paleoproterozoic Mississagi Formation, Clement and Pardo Townships, Ontario. Can J Earth Sci 48:779–792

    Article  Google Scholar 

  • Long DGF (1986) Stratigraphic and depositional setting of placer gold concentrations in basal Huronian strata of the Cobalt Plain. Ontario Geological Survey report, p 5593

  • Lougheed HD, McClenaghan MB, Layton-Matthews D, Leybourne M (2020) Exploration potential of fine-fraction heavy mineral concentrates from till using automated mineralogy: a case study from the Izok Lake Cu–Zn–Pb–Ag VMS deposit, Nunavut. Canada Minerals 10:310. https://doi.org/10.3390/min10040310

    Article  Google Scholar 

  • Luguet A, Pearson G (2019) Dating mantle peridotites using Re-Os isotopes: the complex message from whole rocks, base metal sulfides, and platinum group minerals. Am Mineral J Earth Planet Mater 104:165–189

    Article  Google Scholar 

  • Luguet A, Nowell GM, Pearson DG (2008) 184Os/188Os and 186Os/188Os measurements by negative thermal ionisation mass spectrometry (N-TIMS): effects of interfering element and mass fractionation corrections on data accuracy and precision. Chem Geol 248:342–362. https://doi.org/10.1016/j.chemgeo.2007.10.013

    Article  Google Scholar 

  • Mahéo G, Blichert-Toft J, Pin C et al (2009) Partial melting of mantle and crustal sources beneath South Karakorum, Pakistan: implications for the Miocene geodynamic evolution of the India-Asia convergence zone. J Petrol 50:427–449

    Article  Google Scholar 

  • Martindale RD (1968) The concentration and distribution of gold in the uraniferous conglomerates of Elliot Lake. Dissertation, McMaster University, p 132

  • McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101:1–18

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Michaut C, Jaupart C, Mareschal J-C (2009) Thermal evolution of cratonic roots. Lithos 109:47–60. https://doi.org/10.1016/j.lithos.2008.05.008

    Article  Google Scholar 

  • Miller JD, Nicholson SW, Easton RM et al (2013) Geology and mineral deposits of the 1.1 Ga Midcontinent rift in the Lake Superior Region—an overview. F Guid to Copper-Nickel-Platinum Gr Elem Depos Lake Super Reg Ed by Miller, J Precambrian Res Cent Guideb 13:1–49

    Google Scholar 

  • Montsion RM, Thurston P, Ayer J (2018) 1: 2 000 000 scale geological compilation of the Superior craton - Version 1: Mineral Exploration Research Centre, Harquail School of Earth Sciences, Laurentian University Document Number MERC-ME-2018-017

  • Mossman DJ, Harron GA (1983) Origin and distribution of gold in the Huronian Supergroup, Canada—the case for Witwatersrand-type paleoplacers. In: Developments in Precambrian geology, vol 7. Elsevier, pp 435–475

  • Mungall JE (2014) Chapter 13.8 Geochemistry of magmatic ore deposits. In: Treatise on geochemistry, 2nd edn. pp 195–215

    Chapter  Google Scholar 

  • Muntean JL, Cline JS, Simon AC, Longo AA (2011) Magmatic–hydrothermal origin of Nevada’s Carlin-type gold deposits. Nat Geosci 4:122–127. https://doi.org/10.1038/ngeo1064

    Article  Google Scholar 

  • Nicholson SW, Shirey SB (1990) Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin. J Geophys Res Solid Earth 95:10851–10868

    Article  Google Scholar 

  • Nicholson SW, Cannon WF, Schulz KJ (1992) Metallogeny of the Midcontinent rift system of North America. Precambrian Res 58:355–386

    Article  Google Scholar 

  • Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib to Mineral Petrol 159:411–427

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib to Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Norman DI (1978) Ore deposits related to the Keweenawan rift. In: Petrology and geochemistry of continental rifts : Volume One of the Proceedings of the NATO Advanced Study Institute Paleorift Systems with Emphasis on the Permian Oslo Rift, held in Oslo, Norway, July 27–August 5, 1977. Dordrecht: Springer, Netherlands, pp 245–253

  • O’Reilly SY, Griffin WL (2013) Mantle metasomatism. In: Metasomatism and the chemical transformation of rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28394-9_12

  • Ono S, Fayek M (2011) Decoupling of O and Pb isotope systems of uraninite in the early Proterozoic conglomerates in the Elliot Lake district. Chem Geol 288:1–13. https://doi.org/10.1016/j.chemgeo.2010.03.015

    Article  Google Scholar 

  • Ottley CJ, Pearson DG, Irvine GJ (2003) A routine method for the dissolution of geological samples for the analysis of REE and trace elements via ICP-MS. In: Plasma source mass spectrometry: applications and emerging technologies, vol 288. Royal Society of Chemistry Cambridge,  p 221

  • Paton C, Hellstrom J, Paul B et al (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal at Spectrom 26:2508–2518

    Article  Google Scholar 

  • Pearson DG, Nowell GM (2002) The continental lithospheric mantle: characteristics and significance as a mantle reservoir. Philos Trans R Soc London Ser A Math Phys Eng Sci 360:2383–2410

    Article  Google Scholar 

  • Pearson DG, Wittig N (2008) Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J Geol Soc London 165:895–914. https://doi.org/10.1144/0016-76492008-003

    Article  Google Scholar 

  • Pearson DG, Woodland SJ (2000) Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re–Os isotopes in geological samples by isotope dilution ICP-MS. Chem Geol 165:87–107

    Article  Google Scholar 

  • Pearson DG, Carlson RW, Shirey SB et al (1995) Stabilisation of Archaean lithospheric mantle: a ReOs isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet Sci Lett 134:341–357. https://doi.org/10.1016/0012-821X(95)00125-V

    Article  Google Scholar 

  • Pearson DG, Irvine GJ, Carlson RW et al (2002) The development of lithospheric keels beneath the earliest continents: time constraints using PGE and Re-Os isotope systematics. Geol Soc London, Spec Publ 199:65–90

    Article  Google Scholar 

  • Pearson DG, Irvine GJ, Ionov DA et al (2004) Re–Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem Geol 208:29–59

    Article  Google Scholar 

  • Pearson DG, Wittig N (2014) Chapter 3.6 - The Formation and evolution of cratonic mantle lithosphere – evidence from mantle xenoliths. In: Treatise on Geochemistry, 2nd edn. Elsevier, pp 255–292. https://doi.org/10.1016/B978-0-08-095975-7.00205-9

    Chapter  Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2014) Chapter 3.5 - Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Treatise on Geochemistry, 3rd edn. Elsevier, pp 169–253. https://doi.org/10.1016/B978-0-08-095975-7.00216-3

    Chapter  Google Scholar 

  • Percival JA, Skulski T, Sanborn-Barrie M et al (2012) Geology and tectonic evolution of the Superior Province, Canada. Tecton Styles Canada Lithoprobe Perspect Spec Pap 49:321–378

    Google Scholar 

  • Pettke T, Oberli F, Heinrich CA (2010) The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet Sci Lett 296:267–277. https://doi.org/10.1016/j.epsl.2010.05.007

    Article  Google Scholar 

  • Potts PJ (2012) A handbook of silicate rock analysis. Springer Science & Business Media New York, p 622. https://doi.org/10.1007/978-1-4615-3270-5

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40:1–26. https://doi.org/10.1016/j.oregeorev.2011.05.006

    Article  Google Scholar 

  • Robertson JA (1976) The Blind River uranium deposits: the ores and their setting. Ontario Minist Nat Resour 8:45

    Google Scholar 

  • Robinson A, Spooner ETC (1982) Source of the detrital components of uraniferous conglomerates, Quirke ore zone, Elliot Lake, Ontario, Canada. Nature 299:622–624

    Article  Google Scholar 

  • Rock NMS (1991) Lamprophyres. Springer Science+Business Media New York, p 285. https://doi.org/10.1007/978-1-4757-0929-2

  • Rooney TO, Konter JG, Finlayson VA et al (2022) Constraining the isotopic endmembers contributing to 1.1 Ga Keweenawan large igneous province magmatism. Contrib to Mineral Petrol. 177:49. https://doi.org/10.1007/s00410-022-01907-8

    Article  Google Scholar 

  • Roscoe SM (1976) Huronian rocks and uraniferous conglomerates in the Canadian Shield. Geological Survey of Canada report,  pp 68–40

  • Rousell DH, Meyer W, Prevec SA et al (2002) Bedrock geology and mineral deposits. Spec Vol Ontario Geol Surv 5:21–55

    Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochemistry, Geophys Geosystems 5. https://doi.org/10.1029/2003GC000597

  • Schaeffer AJ, Lebedev S (2014) Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet Sci Lett 402:26–41

    Article  Google Scholar 

  • Scott JM, Liu J, Pearson DG, Waight TE (2016) Mantle depletion and metasomatism recorded in orthopyroxene in highly depleted peridotites. Chem Geol 441:280–291. https://doi.org/10.1016/j.chemgeo.2016.08.024

    Article  Google Scholar 

  • Seifert T (2008) Metallogeny and petrogenesis of lamprophyres in the Mid-European Variscides: post-collisional magmatism and its relationship to late-variscan ore forming processes in the Erzgebirge (Bohemian Massif). IOS press, p 304

  • Shirey SB, Walker RJ (1998) The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu Rev Earth Planet Sci 26:423–500

    Article  Google Scholar 

  • Shu Q, Brey GP (2015) Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet Sci Lett 418:27–39

    Article  Google Scholar 

  • Smit KV, Pearson DG, Stachel T, Seller M (2014) Peridotites from Attawapiskat, Canada: Mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the Northern Superior superterrane. J Petrol 55:1829–1863

    Article  Google Scholar 

  • Smith MP, Moore K, Kavecsánszki D et al (2016) From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements. Geosci Front 7:315–334. https://doi.org/10.1016/j.gsf.2015.12.006

    Article  Google Scholar 

  • Smyk MC, Franklin JM (2007) A synopsis of mineral deposits in the Archean and Proterozoic rocks of the Lake Nipigon Region, Thunder Bay District, Ontario. Can J Earth Sci 44:1041–1053

    Article  Google Scholar 

  • Sproule RA, Sutcliffe R, Tracanelli H, Lesher CM (2007) Palaeoproterozoic Ni–Cu–PGE mineralisation in the Shakespeare intrusion, Ontario, Canada: a new style of Nipissing gabbro-hosted mineralisation. Appl Earth Sci 116:188–200

    Article  Google Scholar 

  • Stachel T (2022) Excel spreadsheet to do geothermobarometry for mantle assemblages: developments up to date and recent calibrations in geothermobarometry of mantle rocks based on the PTEXL program written by Thomas Köhler. Unpubl Work

  • Stein S, Van Der Lee S, Jurdy D et al (2011) Learning from failure: the SPREE mid-continent rift experiment. GSA Today 21:5–7

    Article  Google Scholar 

  • Stein S, Stein CA, Elling R et al (2018) Insights from North America’s failed Midcontinent Rift into the evolution of continental rifts and passive continental margins. Tectonophysics 744:403–421. https://doi.org/10.1016/j.tecto.2018.07.021

    Article  Google Scholar 

  • Tang Y-J, Zhang H-F, Ying J-F et al (2008) Refertilization of ancient lithospheric mantle beneath the central North China Craton: evidence from petrology and geochemistry of peridotite xenoliths. Lithos 101:435–452

    Article  Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobaro-meter formulations for upper mantle peridotites with application to the ther-mobarometry of fertile lherzolite and garnet websterite. Neues Jahrb für Mineral 172(2–3):381–408

    Google Scholar 

  • Ulrich T, Long DGF, Kamber BS, Whitehouse MJ (2011) In situ trace element and sulfur isotope analysis of pyrite in a paleoproterozoic gold placer deposit, Pardo and Clement Townships, Ontario, Canada. Econ Geol 106:667–686

    Article  Google Scholar 

  • van Achterbergh E, Griffin WL, Ryan CG et al (2004) Melt inclusions from the deep Slave lithosphere: implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos 76:461–474. https://doi.org/10.1016/j.lithos.2004.04.007

    Article  Google Scholar 

  • Veglio C, Lawley CJM, Pearson DG et al (2022) Olivine xenocrysts reveal carbonated mid-lithosphere in the northern Slave craton. Lithos 414:106633

    Article  Google Scholar 

  • Vermeesch P (2018) IsoplotR: a free and open toolbox for geochronology. Geosci Front 9:1479–1493

    Article  Google Scholar 

  • Wang Z-Y, Fan H-R, Zhou L et al (2020) Carbonatite-Related REE Deposits: an Overview Minerals 10:965

    Google Scholar 

  • Waterton P, Pearson DG, Kjarsgaard B et al (2017) Age, origin, and thermal evolution of the ultra-fresh~ 1.9 Ga Winnipegosis Komatiites, Manitoba. Canada Lithos 268:114–130

    Article  Google Scholar 

  • Waterton P, Pearson DG, Mertzman SA et al (2020) A fractional crystallization link between komatiites, basalts, and dunites of the Palaeoproterozoic Winnipegosis Komatiite Belt, Manitoba. Canada J Petrol 61:052. https://doi.org/10.1093/petrology/egaa052

    Article  Google Scholar 

  • Waterton P, Mungall J, Pearson DG (2021) The komatiite-mantle platinum-group element paradox. Geochim Cosmochim Acta 313:214–242

    Article  Google Scholar 

  • Wittig N, Pearson DG, Webb M et al (2008) Origin of cratonic lithospheric mantle roots: a geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet Sci Lett 274:24–33

    Article  Google Scholar 

  • Woodruff LG, Schulz KJ, Nicholson SW, Dicken CL (2020) Mineral deposits of the Mesoproterozoic Midcontinent Rift system in the Lake Superior region – a space and time classification. Ore Geol Rev 126:103716. https://doi.org/10.1016/j.oregeorev.2020.103716

    Article  Google Scholar 

  • Wu F-Y, Mitchell RH, Li Q-L et al (2017) Emplacement age and isotopic composition of the Prairie Lake carbonatite complex, Northwestern Ontario, Canada. Geol Mag 154:217–236

    Article  Google Scholar 

  • Wyman DA, Kerrich R (1993) Archean shoshonitic lamprophyres of the Abitibi Subprovince, Canada: petrogenesis, age, and tectonic setting. J Petrol 34:1067–1109

    Article  Google Scholar 

  • Yamaguchi KE, Ohmoto H (2006) Evidence from sulfur isotope and trace elements in pyrites for their multiple post-depositional processes in uranium ores at the Stanleigh Mine, Elliot Lake, Ontario. Canada Mem Soc Am 198:143

    Google Scholar 

  • Yaxley GM, Anenburg M, Tappe S et al (2022) Carbonatites: classification, sources, evolution, and emplacement. Annu Rev Earth Planet Sci 50:261–293

    Article  Google Scholar 

  • Young GM (1991) Stratigraphy, sedimentology and tectonic setting of the Huronian Supergroup, Geological Association of Canada, Mineralogical Association of Canada. In: Field trip guidebook (Geological Association of Canada), B5, Geological Association of Canada, Toronto '91 Organizing Committee, Sudbury, Ont., Canada,  p 34

Download references

Acknowledgements

This contribution forms publication number MERC-ME-2023-22 for the CFREF METAL EARTH project.

Author information

Authors and Affiliations

Authors

Contributions

Hélène Legros: leader of project; Hélène Legros, Janina Czas, and Graham Pearson: writing of the manuscript; Yan Luo: LA-ICP-MS data acquisition; Sarah Woodland: PGE chemistry acquisition; Chiranjeeb Sarkar: Rb–Sr dating; Steven B. Shirey and Dan Schultze: sampling; All authors: revision of the manuscript.

Corresponding author

Correspondence to Hélène Legros.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: M. Fayek

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legros, H., Czas, J., Luo, Y. et al. Post-Archean Nb-REE-U enrichment in the Superior craton recorded in metasomatised mantle rocks erupted in the 1.1 Ga Midcontinental Rift event. Miner Deposita 59, 373–396 (2024). https://doi.org/10.1007/s00126-023-01214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-023-01214-7

Keywords

Navigation