Skip to main content
Log in

Gaussian Beam Ansatz for Finite Difference Wave Equations

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This work is concerned with the construction of Gaussian Beam (GB) solutions for the numerical approximation of wave equations, semi-discretized in space by finite difference schemes. GB are high-frequency solutions whose propagation can be described, both at the continuous and at the semi-discrete levels, by microlocal tools along the bi-characteristics of the corresponding Hamiltonian. Their dynamics differ in the continuous and the semi-discrete setting, because of the high-frequency gap between the Hamiltonians. In particular, numerical high-frequency solutions can exhibit spurious pathological behaviors, such as lack of propagation in space, contrary to the classical space-time propagation properties of continuous waves. This gap between the behavior of continuous and numerical waves introduces also significant analytical difficulties, since classical GB constructions cannot be immediately extrapolated to the finite difference setting, and need to be properly tailored to accurately detect the propagation properties in discrete media. Our main objective in this paper is to present a general and rigorous construction of the GB ansatz for finite difference wave equations, and corroborate this construction through accurate numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. We recall that, given two vectors \(\varvec{v} = (v_1,v_2,\ldots ,v_d)\in \mathbb {R}^d\) and \(\varvec{w} = (w_1,w_2,\ldots ,w_d)\in \mathbb {R}^d\), their Hadamard product is the vector \(\varvec{v}\odot \varvec{w} = \varvec{z} = (z_1,z_2,\ldots ,z_d)\in \mathbb {R}^d\) with \(z_i=v_iw_i\) for all \(i\in \{1,\ldots ,d\}\).

References

  1. J. A. Arnaud. Hamiltonian theory of beam mode propagation. In Progress in Optics, volume 11, pages 247–304. Elsevier, 1973.

  2. V. Babich. The higher-dimensional WKB method or ray method. its analogues and generalizations. In Partial Differential Equations V, pages 91–131. Springer, 1999.

  3. V. M. Babich and V. S. Buldyrev. Short-wavelength diffraction theory: asymptotic methods. Nauka, Moscow, 1972.

    Google Scholar 

  4. C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–1065, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. U. Biccari, A. Marica, and E. Zuazua. Propagation of one- and two-dimensional discrete waves under finite difference approximation. Found. Comput. Math., 20(6):1401–1438, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Brillouin. La mécanique ondulatoire de Schrödinger; une méthode générale de résolution par approximations successives. Compt. Rend. Acad. Sci, 183(11):24–26, 1926.

    MATH  Google Scholar 

  7. N. Burq and P. Gérard. Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C.R. Acad. Sci. Paris Sér. I, 325(7):749–752, 1997.

  8. N. Burq and J.-M. Schlenker. Contrôle de l’équation des ondes dans des ouverts comportant des coins. Bull. Soc. Math. France, 126(4):601, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Castro and S. Micu. Boundary controllability of a linear semi-discrete 1d wave equation derived from a mixed finite element method. Numer. Math., 102(3):413–462, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Červenỳ, M. M. Popov, and I. Pšenčík. Computation of wave fields in inhomogeneous media - gaussian beam approach. Geophys. J. Int., 70(1):109–128, 1982.

    Article  MATH  Google Scholar 

  11. B. Engquist and O. Runborg. Computational high frequency wave propagation. Acta Num., 12:181–266, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Ervedoza. Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes. ESAIM: Control Optim. Calc. Var., 16(2):298–326, 2010.

  13. S. Ervedoza, A. Marica, and E. Zuazua. Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal., 36(2):503–542, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Gérard. Microlocal defect measures. Comm. Partial Differential Equations, 16(11):1761–1794, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Glowinski, W. Kinton, and M. F. Wheeler. A mixed finite element formulation for the boundary controllability of the wave equation. Internat. J.Numer. Methods Engrg, 27(3):623–635, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. R. Hill. Prestack Gaussian-beam depth migration. Geophys., 66(4):1240–1250, 2001.

    Google Scholar 

  17. L. V. Hörmander. On the existence and the regularity of solutions of linear pseudodifferential equations. Enseign. Math., 17:99–163, 1971.

    MathSciNet  MATH  Google Scholar 

  18. S. Jin, H. Wu, and X. Yang. Gaussian beam methods for the Schrödinger equation in the semi-classical regime: Lagrangian and Eulerian formulations. Commun. Math. Sci., 6(4):995–1020, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. B. Keller. Geometrical theory of diffraction. J. Opt. Soc. Amer., 52(2):116–130, 1962.

    Article  MathSciNet  Google Scholar 

  20. S. Leung and J. Qian. Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime. J. Comput. Phys., 228(8):2951–2977, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  21. P.-L. Lions and T. Paul. Sur les mesures de Wigner. Rev. Mat. Iberoamericana, 9(3):553–618, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Liu and J. Ralston. Recovery of high frequency wave fields from phase space-based measurements. Multiscale Model. Simul., 8(2):622–644, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Liu, J. Ralston, O. Runborg, and N. M. Tanushev. Gaussian beam methods for the Helmholtz equation. SIAM J. Appl. Math., 74(3):771–793, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Liu, O. Runborg, and N. Tanushev. Error estimates for Gaussian beam superpositions. Math. Comput., 82(282):919–952, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Liu, O. Runborg, and N. M. Tanushev. Sobolev and max norm error estimates for Gaussian beam superpositions. Commun. Math. Sci., 14(7):2037–2072, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Macià. Propagación y control de vibraciones en medios discretos y continuos. PhD thesis, Universidad Complutense de Madrid, 2002.

  27. F. Macià and E. Zuazua. On the lack of observability for wave equations: a Gaussian beam approach. Asympt. Anal., 32(1):1–26, 2002.

    MathSciNet  MATH  Google Scholar 

  28. A. Marica and E. Zuazua. Propagation of 1d waves in regular discrete heterogeneous media: a Wigner measure approach. Found. Comp. Math., 15(6):1571–1636, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Markowich, N. Mauser, and F. Poupaud. A Wigner-function approach to (semi) classical limits: Electrons in a periodic potential. J. Math. Phys., 35(3):1066–1094, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Motamed and O. Runborg. Taylor expansion and discretization errors in Gaussian beam superposition. Wave motion, 47(7):421–439, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Ralston. Gaussian beams and the propagation of singularities. Studies in partial differential equations, 23(206):C248, 1982.

    MathSciNet  MATH  Google Scholar 

  32. O. Runborg. Mathematical models and numerical methods for high frequency waves. Commun. Comput. Phys, 2(5):827–880, 2007.

    MathSciNet  MATH  Google Scholar 

  33. N. M. Tanushev. Superpositions and higher order Gaussian beams. Commun. Math. Sci., 6(2):449–475, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  34. N. M. Tanushev, J. Qian, and J. V. Ralston. Mountain waves and Gaussian beams. Multiscale Model. Simul., 6(2):688–709, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sec. A, 115(3-4):193–230, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  36. L. N. Trefethen. Group velocity in finite difference schemes. SIAM rev., 24(2):113–136, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. N. Trefethen. Wave propagation and stability for finite difference schemes. PhD thesis, Stanford University, 1982.

  38. R. Vichnevetsky. Propagation properties of semi-discretizations of hyperbolic equations. Math. Comp. Simul., 22(2):98–102, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Vichnevetsky. Energy and group velocity in semi discretizations of hyperbolic equations. Math. Comp. Simul., 23(4):333–343, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Vichnevetsky. Propagation through numerical mesh refinement for hyperbolic equations. Math. Comp. Simul., 23(4):344–353, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Vichnevetsky. Wave propagation and reflection in irregular grids for hyperbolic equations. Appl. Numer. Math., 3:133–166, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Vichnevetsky and J. B. Bowles. Fourier analysis of numerical approximations of hyperbolic equations, volume 5. Siam, 1982.

  43. W. R. Weiss and G. A. Hagedorn. Reflection and transmission of high frequency pulses at an interface. Transp. Theory Stat. Phys., 14(5):539–565, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  44. E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40(5):749, 1932.

    Article  MATH  Google Scholar 

  45. E. Zuazua. Propagation, observation, control and numerical approximation of waves. SIAM Rev., 47(2):197–243, 2005.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Dr. Konstantin Zerulla (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany) for his careful revision and precious comments on early versions of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Biccari.

Additional information

Communicated by Endre Süli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

E. Zuazua has been funded by the Alexander von Humboldt-Professorship program, the ModConFlex Marie Curie Action, HORIZON-MSCA-2021-DN-01, the COST Action MAT-DYN-NET, the Transregio 154 Project “Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks” of the DFG, Grants PID2020-112617GB-C22 and TED2021-131390B-I00 of MINECO (Spain), and by the Madrid Government—UAM Agreement for the Excellence of the University Research Staff in the context of the V PRICIT (Regional Programme of Research and Technological Innovation)

Appendices

Appendix A. Proof of Theorem 4.1

We give here the proof of Theorem 4.1, concerning the construction of a GB ansatz for the wave equation (1.1). To this end, we shall first need the following technical result.

Proposition A.1

Let \({\varvec{x}}_0\in \mathbb {R}^d\), \(N\in \mathbb {N}\) and \(f\in L^\infty (\mathbb {R}^d)\) be a function satisfying

$$\begin{aligned} |{\varvec{x}}-{\varvec{x}}_0|^{-N} f({\varvec{x}})\in L^\infty (\mathbb {R}^d). \end{aligned}$$
(A.1)

Then, for any positive constant \(0<\beta \in \mathbb {R}\), we have

$$\begin{aligned} \int _{\mathbb {R}^d} \left| f({\varvec{x}})e^{-k\beta |{\varvec{x}}-{\varvec{x}}_0|^2}\right| ^2\,\textrm{d}{\varvec{x}}\le \mathcal Ck^{-\frac{d}{2}-N} \end{aligned}$$
(A.2)

for some \(\mathcal C= \mathcal C(d,N,\beta ) > 0\) that does not depend on k.

Proof

Using (A.1), we have that there exists a function \(g\in L^\infty (\mathbb {R}^d)\) such that

$$\begin{aligned} f({\varvec{x}}) = |{\varvec{x}}-{\varvec{x}}_0|^N g({\varvec{x}}). \end{aligned}$$

In view of this, we can apply the Hölder inequality to estimate

$$\begin{aligned} \int _{\mathbb {R}^d} \left| f({\varvec{x}})e^{-k\beta |{\varvec{x}}-{\varvec{x}}_0|^2}\right| ^2\,\textrm{d}{\varvec{x}}&= \int _{\mathbb {R}^d} \left| |{\varvec{x}}-{\varvec{x}}_0|^Ng({\varvec{x}})e^{-k\beta |{\varvec{x}}-{\varvec{x}}_0|^2}\right| ^2\,\textrm{d}{\varvec{x}}\\&\le \mathcal C(d) \int _{\mathbb {R}^d} |{\varvec{x}}-{\varvec{x}}_0|^{2N} e^{-2k\beta |{\varvec{x}}-{\varvec{x}}_0|^2}\,\textrm{d}{\varvec{x}}. \end{aligned}$$

Now, by means of the change of variable \(\varvec{y} = \sqrt{2k\beta }({\varvec{x}}-{\varvec{x}}_0)\), we obtain that

$$\begin{aligned} \int _{\mathbb {R}^d} |{\varvec{x}}-{\varvec{x}}_0|^{2N} e^{-2k\beta |{\varvec{x}}-{\varvec{x}}_0|^2}\,\textrm{d}{\varvec{x}}= (2k\beta )^{-\frac{d}{2}-N} \int _{\mathbb {R}^d} |\varvec{y}|^{2N} e^{-|\varvec{y}|^2}\,\textrm{d}\varvec{y}. \end{aligned}$$

Finally, by employing polar coordinates, we can compute

$$\begin{aligned} \int _{\mathbb {R}^d} |\varvec{y}|^{2N} e^{-|\varvec{y}|^2}\,\textrm{d}\varvec{y}&= \int _{\mathbb {S}^{d-1}} \int _0^{+\infty } r^{2N+d-1} e^{-r^2}\,\textrm{d}r d\sigma = \frac{1}{2}|\mathbb {S}^{d-1}| \int _0^{+\infty } \rho ^{N+\frac{d}{2}-1} e^{-\rho }\,\textrm{d}\rho \\&= \frac{d\pi ^{\frac{d}{2}}}{2\Gamma \left( \frac{d}{2}+1\right) } \int _0^{+\infty } \rho ^{N+\frac{d}{2}-1} e^{-\rho }\,\textrm{d}\rho = \frac{d\pi ^{\frac{d}{2}}}{2}\frac{\Gamma \left( \frac{d}{2}+N\right) }{\Gamma \left( \frac{d}{2}+1\right) }, \end{aligned}$$

where \(\Gamma \) denotes the Euler gamma function. Putting everything together, we finally obtain that

$$\begin{aligned} \int _{\mathbb {R}^d} \left| f({\varvec{x}})e^{-k\beta |{\varvec{x}}-{\varvec{x}}_0|^2}\right| ^2\,\textrm{d}{\varvec{x}}\le \mathcal C(d) \left[ (2\beta )^{-\frac{d}{2}-N} \frac{d\pi ^{\frac{d}{2}}}{2}\frac{\Gamma \left( \frac{d}{2}+N\right) }{\Gamma \left( \frac{d}{2}+1\right) }\right] k^{-\frac{d}{2}-N}. \end{aligned}$$

\(\square \)

Proof of Theorem 4.1

We organize the proof in three steps, one for each statement of the theorem.

Step 1: proof of (4.7). Starting from (4.14), we have that

$$\begin{aligned} \left\| \square _c u^k\right\| _{L^2(\mathbb {R}^d)}^2 =&\,\int _{\mathbb {R}^d} |\square _c u^k|^2\,\textrm{d}{\varvec{x}}\le k^{\frac{d}{2}-2}\int _{\mathbb {R}^d} \left| e^{ik\phi }r_0\right| ^2\,\textrm{d}{\varvec{x}}+ k^{\frac{d}{2}} \int _{\mathbb {R}^d} \left| e^{ik\phi }r_1\right| ^2\,\textrm{d}{\varvec{x}}\\&+ k^{\frac{d}{2}+2}\int _{\mathbb {R}^d}\left| e^{ik\phi }r_2\right| ^2\,\textrm{d}{\varvec{x}}, \end{aligned}$$

where we recall

$$\begin{aligned}&r_0 = \square _c a \\&r_1 = a\square _c\phi + 2 a_t\phi _t - 2c \nabla a\cdot \nabla \phi \\&r_2 = \Big (c|\nabla \phi |^2-\phi _t^2\Big )a. \end{aligned}$$

Since \(a,\phi \in C^\infty (\mathbb {R}^d\times \mathbb {R})\), we clearly have that also \(r_0,r_1,r_2 \in C^\infty (\mathbb {R}^d\times \mathbb {R})\). Moreover, by construction, \(r_1\) and \(r_2\) vanish on \({\varvec{x}}={\varvec{x}}(t)\) up to the order 0 and 2. In view of that, we have that \(r_0,r_1,r_2\) satisfy (A.1) with \(N = 0\), \(N = 1\) and \(N = 3\), respectively. Then, applying Proposition A.1 with \({\varvec{x}}_0 = {\varvec{x}}(t)\) and the previous values of \(N\in \mathbb {N}\), we get

$$\begin{aligned} k^{\frac{d}{2}-1}\int _{\mathbb {R}^d} \left| e^{ik\phi }r_0\right| ^2\,\textrm{d}{\varvec{x}}\le \mathcal C(a,\phi ) k^{-2} \\ k^{\frac{d}{2}} \int _{\mathbb {R}^d} \left| e^{ik\phi }r_1\right| ^2\,\textrm{d}{\varvec{x}}\le \mathcal C(a,\phi ) k^{-1} \\ k^{\frac{d}{2}+1}\int _\mathbb {R}\left| e^{ik\phi }r_2\right| ^2\,\textrm{d}{\varvec{x}}\le \mathcal C(a,\phi ) k^{-1}. \end{aligned}$$

Putting everything together, since \(k\ge 1\), we finally obtain that

$$\begin{aligned} \left\| \square _c u^k\right\| _{L^2(\mathbb {R}^d)}^2 \le \mathcal C\Big (k^{-2} + k^{-1} + k^{-1}\Big ) \le \mathcal C(a,\phi ) k^{-1}, \end{aligned}$$

that is,

$$\begin{aligned} \left\| \square _c u^k\right\| _{L^2(\mathbb {R}^d)} \le \mathcal C(a,\phi ) k^{-\frac{1}{2}}. \end{aligned}$$

Step 2: proof of (4.8). Starting from (4.1), we have that

$$\begin{aligned} E_c(u^k(\cdot ,t)) =&\, \frac{1}{2} \int _{\mathbb {R}^d} \Big (|u^k_t(\cdot ,t)|^2 + c|\nabla u^k(\cdot ,t)|^2\Big )\,\textrm{d}{\varvec{x}}= \Xi _0^k(t) + \Xi _1^k(t) + \Xi _2^k(t), \end{aligned}$$

where we have denoted

$$\begin{aligned}&\Xi _0^k(t) := \frac{k^{\frac{d}{2}}}{2} \int _{\mathbb {R}^d} |a|^2\Big (|\phi _t|^2 + c|\nabla \phi |^2\Big )e^{-k({\varvec{x}}-{\varvec{x}}(t))\cdot \big [\Im (M_0)({\varvec{x}}-{\varvec{x}}(t))\big ]}\,\textrm{d}{\varvec{x}}\\&\Xi _1^k(t) := k^{\frac{d}{2}-1} \int _{\mathbb {R}^d} a\Big (a_t\phi _t + c\nabla a\cdot \nabla \phi \Big )e^{-k({\varvec{x}}-{\varvec{x}}(t))\cdot \big [\Im (M_0)({\varvec{x}}-{\varvec{x}}(t))\big ]}\,\textrm{d}{\varvec{x}}\\&\Xi _2^k(t) := \frac{k^{\frac{d}{2}-2}}{2} \int _{\mathbb {R}^d} \Big (|a_t|^2 + c|\nabla a|^2\Big )e^{-k({\varvec{x}}-{\varvec{x}}(t))\cdot \big [\Im (M_0)({\varvec{x}}-{\varvec{x}}(t))\big ]}\,\textrm{d}{\varvec{x}}. \end{aligned}$$

Notice that since \(a,\phi \in C^\infty (\mathbb {R}^d\times \mathbb {R})\) and \(\Im (M_0)>0\), we have that for all \(t\in (0,T)\)

$$\begin{aligned} |\Xi _1^k(t)| \le&\,\mathcal C(a,\phi )k^{\frac{d}{2}-1} \int _{\mathbb {R}^d} e^{-k({\varvec{x}}-{\varvec{x}}(t))\cdot \big [\Im (M_0)({\varvec{x}}-{\varvec{x}}(t))\big ]}\,\textrm{d}{\varvec{x}}\\ =&\, \mathcal C(a,\phi )\frac{d\Gamma \left( \frac{d+1}{2}\right) }{2\Gamma \left( \frac{d}{2} +1\right) }\left( \frac{\pi }{\text {det}(\Im (M_0))}\right) ^{\frac{d}{2}} k^{-1} \\ |\Xi _2^k(t)| \le&\,\mathcal C(a,\phi )k^{\frac{d}{2}-2} \int _{\mathbb {R}^d} e^{-k({\varvec{x}}-{\varvec{x}}(t))\cdot \big [\Im (M_0)({\varvec{x}}-{\varvec{x}}(t))\big ]}\,\textrm{d}{\varvec{x}}\\ =&\, \mathcal C(a,\phi )\frac{d\Gamma \left( \frac{d+1}{2}\right) }{2\Gamma \left( \frac{d}{2} +1\right) }\left( \frac{\pi }{\text {det}(\Im (M_0))}\right) ^{\frac{d}{2}} k^{-2} \end{aligned}$$

Hence,

$$\begin{aligned} \sup _{t\in (0,T)} \Big (|\Xi _1^k(t)| + |\Xi _2^k(t)|\Big ) \rightarrow 0, \quad \text { as } k\rightarrow +\infty . \end{aligned}$$
(A.3)

As for the term \(\Xi _0^k(t)\), replacing in it the explicit expression (4.5) of the amplitude function a, we get that

$$\begin{aligned} \Xi _0^k(t)&= \frac{k^{\frac{d}{2}}}{2} \int _{\mathbb {R}^d} \Big (|\phi _t|^2 + c|\nabla \phi |^2\Big )e^{-({\varvec{x}}-{\varvec{x}}(t))\cdot \Big [\Big (2 I_d + k\Im (M_0)\Big )({\varvec{x}}-{\varvec{x}}(t))\Big ]}\,\textrm{d}{\varvec{x}}, \end{aligned}$$
(A.4)

where \(I_d\) denotes the identity matrix in dimension \(d\times d\). Moreover, using (3.7) and the explicit expression (4.6) of the phase function a, we can compute

$$\begin{aligned}&|\phi _t|^2 = \frac{c}{|{\varvec{\xi }}_0|^2}\bigg [|{\varvec{\xi }}_0|^2 + {\varvec{\xi }}_0\cdot \Big (M_0({\varvec{x}}-{\varvec{x}}(t))\Big )\bigg ]^2 \\&c|\nabla \phi |^2 = c\,\Big |{\varvec{\xi }}_0 + M_0({\varvec{x}}-{\varvec{x}}(t))\Big |^2 \end{aligned}$$

and we obtain from (A.4) that

$$\begin{aligned} \Xi _0^k(t) =&\; \frac{c}{2|{\varvec{\xi }}_0|^2} k^{\frac{d}{2}} \int _{\mathbb {R}^d} \bigg [|{\varvec{\xi }}_0|^2 + {\varvec{\xi }}_0\cdot \Big (M_0({\varvec{x}}-{\varvec{x}}(t))\Big )\bigg ]^2\\&e^{-({\varvec{x}}-{\varvec{x}}(t))\cdot \Big [\Big (2 I_d + k\Im (M_0)\Big )({\varvec{x}}-{\varvec{x}}(t))\Big ]}\,\textrm{d}{\varvec{x}}\\&+ \frac{c}{2} k^{\frac{d}{2}} \int _{\mathbb {R}^d} \Big |{\varvec{\xi }}_0 + M_0({\varvec{x}}-{\varvec{x}}(t))\Big |^2e^{-({\varvec{x}}-{\varvec{x}}(t))\cdot \Big [\Big (2 I_d + k\Im (M_0)\Big )({\varvec{x}}-{\varvec{x}}(t))\Big ]}\,\textrm{d}{\varvec{x}}. \end{aligned}$$

Now, since \(2 I_d + k\Im (M_0)>0\), we can apply the change of variables

$$\begin{aligned} \Big (2 I_d + k\Im (M_0)\Big )^{\frac{1}{2}} ({\varvec{x}}-{\varvec{x}}(t)) = \varvec{y} \end{aligned}$$

and we get

$$\begin{aligned} \Xi _0^k(t) =&\; \frac{c}{2|{\varvec{\xi }}_0|^2} \frac{k^{\frac{d}{2}}}{\text {det}\Big (2 I_d + k\Im (M_0)\Big )^{\frac{d}{2}}}\\&\int _{\mathbb {R}^d} \Bigg [|{\varvec{\xi }}_0|^2 + {\varvec{\xi }}_0\cdot \bigg (\Big (2 I_d + k\Im (M_0)\Big )^{-\frac{1}{2}}M_0\varvec{y}\bigg )\Bigg ]^2 e^{-|\varvec{y}|^2}\,\textrm{d}\varvec{y} \\&+ \frac{c}{2} \frac{k^{\frac{d}{2}}}{\text {det}\Big (2 I_d + k\Im (M_0)\Big )^{\frac{d}{2}}} \int _{\mathbb {R}^d} \Big |{\varvec{\xi }}_0 + \Big (2 I_d + k\Im (M_0)\Big )^{-\frac{1}{2}}M_0\varvec{y}\Big |^2e^{-|\varvec{y}|^2}\,\textrm{d}\varvec{y}. \end{aligned}$$

Finally, the two integrals in the expression above can be computed by employing polar coordinates. In this way, we obtain that

$$\begin{aligned} \Xi _0^k(t) =&\, \mathcal C\Big (d,{\varvec{\xi }}_0,M_0\Big )\pi ^{\frac{d}{2}}\frac{k^{\frac{d}{2}}\Big (1+k^{-1}\Big )}{\text {det}\Big (2 I_d + k\Im (M_0)\Big )^{\frac{d}{2}}} \\ =&\, \frac{\mathcal C\Big (d,{\varvec{\xi }}_0,M_0\Big )\pi ^{\frac{d}{2}}}{\text {det}\Big (2 k^{-1} I_d + \Im (M_0)\Big )^{\frac{d}{2}}}\Big (1+k^{-1}\Big ). \end{aligned}$$

Hence,

$$\begin{aligned} \lim _{k\rightarrow +\infty } \Xi _0^k(t) = \mathcal C\Big (d,{\varvec{\xi }}_0,M_0\Big )\left( \frac{\pi }{\text {det}\big (\Im (M_0)\big )}\right) ^{\frac{d}{2}}. \end{aligned}$$
(A.5)

From (A.3) and (A.5), we immediately get (4.8).

Step 3: proof of (4.9). Since \(a,\phi \in C^\infty (\mathbb {R}^d\times \mathbb {R})\) and \(k\ge 1\), we have that

$$\begin{aligned} \int _{\mathbb {R}^d\setminus B_k(t)} \Big (|u^k_t(\cdot ,t)|^2 + c|\nabla u^k(\cdot ,t)|^2\Big )\,\textrm{d}{\varvec{x}}&\le \mathcal C\left( k^{\frac{d}{2}} + k^{\frac{d}{2}-1} + k^{\frac{d}{2}-2}\right) \\&\qquad \int _{\mathbb {R}^d\setminus B_k(t)} e^{-k({\varvec{x}}-{\varvec{x}}(t))\cdot \big [\Im (M_0)({\varvec{x}}-{\varvec{x}}(t))\big ]}\,\textrm{d}{\varvec{x}}\\&\le \mathcal Ck^{\frac{d}{2}} \int _{\mathbb {R}^d\setminus B_k(t)} e^{-k({\varvec{x}}-{\varvec{x}}(t))\cdot \big [\Im (M_0)({\varvec{x}}-{\varvec{x}}(t))\big ]}\,\textrm{d}{\varvec{x}}\\&= \mathcal Ck^{\frac{d}{2}} \int _{\mathbb {R}^d\setminus B\left( 0,k^{-\frac{1}{4}}\right) } e^{-k\varvec{y}\cdot \big [\Im (M_0)\varvec{y}\big ]}\,\textrm{d}\varvec{y}, \end{aligned}$$

with \(\mathcal C= \mathcal C(a,\phi )>0\) a positive constant not depending on k. Moreover, by employing the change of variable \(\varvec{y} = k^{-\frac{1}{2}}\varvec{z}\), we have that

$$\begin{aligned} \mathcal Ck^{\frac{d}{2}} \int _{\mathbb {R}^d\setminus B\left( 0,k^{-\frac{1}{4}}\right) } e^{-k\varvec{y}\cdot \big [\Im (M_0)\varvec{y}\big ]}\,\textrm{d}\varvec{y}&= \mathcal C\int _{\mathbb {R}^d\setminus B\left( 0,k^{\frac{1}{4}}\right) } e^{-\varvec{z}\cdot \big [\Im (M_0)\varvec{z}\big ]}\,\textrm{d}\varvec{z} \\&= \mathcal C\int _{\mathbb {R}^d\setminus B\left( 0,k^{\frac{1}{4}}\right) } e^{-\frac{1}{2}\varvec{z}\cdot \big [\Im (M_0)\varvec{z}\big ]}e^{-\frac{1}{2}\varvec{z}\cdot \big [\Im (M_0)\varvec{z}\big ]}\,\textrm{d}\varvec{z} \\&\le \sup _{\mathbb {R}^d\setminus B\left( 0,k^{\frac{1}{4}}\right) }\left( e^{-\frac{1}{2}\varvec{z}\cdot \big [\Im (M_0)\varvec{z}\big ]}\right) \\&\qquad \int _{\mathbb {R}^d\setminus B\left( 0,k^{\frac{1}{4}}\right) } e^{-\frac{1}{2}\varvec{z}\cdot \big [\Im (M_0)\varvec{z}\big ]}\,\textrm{d}\varvec{z} \\&= e^{-\frac{1}{2}\text {det}\big (\Im (M_0)\big )k^{\frac{1}{2}}} \int _{\mathbb {R}^d\setminus B\left( 0,k^{\frac{1}{4}}\right) } e^{-\frac{1}{2}\varvec{z}\cdot \big [\Im (M_0)\varvec{z}\big ]}\,\textrm{d}\varvec{z} \\&\le e^{-\frac{1}{2}\text {det}\big (\Im (M_0)\big )k^{\frac{1}{2}}} \int _{\mathbb {R}^d} e^{-\frac{1}{2}\varvec{z}\cdot \big [\Im (M_0)\varvec{z}\big ]}\,\textrm{d}\varvec{z} \\&= \frac{d\Gamma \left( \frac{d+1}{2}\right) }{2\Gamma \left( \frac{d}{2} +1\right) }\left( \frac{2\pi }{\text {det}(\Im (M_0))}\right) ^{\frac{d}{2}}e^{-\frac{1}{2}\text {det}\big (\Im (M_0)\big )k^{\frac{1}{2}}}. \end{aligned}$$

From this last estimate, (4.9) follows immediately. \(\square \)

Appendix B. Proof of Theorem 5.1

1.1 B.1. Concentration of Solutions

We give here the proof of Theorem 5.1, concerning the construction of a GB ansatz for the semi-discrete wave equation (5.2).

Proof of Theorem 5.1

We are going to split the proof into three steps, one for each point in the statement of the theorem. Moreover, in what follows, we will denote by \(\mathcal C>0\) a generic positive constant independent of h. This constant may change even from line to line.

Step 1: proof of(5.10). Starting from (5.46), we have that

$$\begin{aligned} \left\| \square _{c,h} u^h_{fd}(\cdot ,t)\right\| _{\ell ^2(h\mathbb {Z})}^2 =&\; h\sum _{j\in \mathbb {Z}} \left| \square _{c,h} u^h_{fd,j}(t)\right| ^2 \\ \le&\; h^{\frac{5}{2}}\sum _{j\in \mathbb {Z}} \left| e^{\frac{i}{h}\Phi _j}\left( \mathcal R_0A_j + A_j \frac{\mathcal R_2-\mathcal R_{fd}}{h^2}\right) \right| ^2 \\&+ h^{\frac{1}{2}}\sum _{j\in \mathbb {Z}}\left( \left| e^{\frac{i}{h}\Phi _j}(\mathcal R_1A_j - \widetilde{\mathcal R}_1 A_j)\right| ^2 + \left| e^{\frac{i}{h}\Phi _j}\widetilde{\mathcal R}_1 A_j\right| ^2\right) \\&+ h^{-\frac{3}{2}}\sum _{j\in \mathbb {Z}} \left| e^{\frac{i}{h}\Phi _j}A_j\mathcal R_{fd}\right| ^2. \end{aligned}$$

Moreover, using (5.35), we see that

$$\begin{aligned} e^{\frac{i}{h}\Phi _j} =&\, e^{\frac{i}{h} \Re (\Phi _j)}e^{-\frac{1}{h} \Im (\Phi _j)} = e^{\frac{i}{h} \big (\omega (t)+\xi _0(x_j-x_{fd,j}(t)) + \frac{1}{2}\Re (M(t))(x_j-x_{fd,j}(t))^2\big )}\\&\,e^{-\frac{1}{2h}\Im (M(t))(x_j-x_{fd,j}(t))^2} \end{aligned}$$

and, therefore,

$$\begin{aligned} \left| e^{\frac{i}{h}\Phi _j}\right| ^2 = e^{-\frac{1}{2h}\Im (M(t))(x_j-x_{fd,j}(t))^2}. \end{aligned}$$
(B.1)

In view of this, we get

$$\begin{aligned} \left\| \square _{c,h} u^h_{fd}(\cdot ,t)\right\| _{\ell ^2(h\mathbb {Z})}^2 \le&\; h^{\frac{5}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| \mathcal R_0A_j + A_j \frac{\mathcal R_2-\mathcal R_{fd}}{h^2}\right| ^2 \\&+ h^{\frac{1}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\\&\left( \left| \mathcal R_1A_j - \widetilde{\mathcal R}_1 A_j\right| ^2 + \left| \widetilde{\mathcal R}_1 A_j\right| ^2 \right) \\&+ h^{-\frac{3}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| A_j\mathcal R_{fd}\right| ^2. \end{aligned}$$

Now, by means of (5.31) and (5.45), we have that

$$\begin{aligned} h^{\frac{5}{2}}&\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| \mathcal R_0A_j + A_j \frac{\mathcal R-\mathcal R_{fd}}{h^2}\right| ^2 \\&\le h^{\frac{5}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\Big (\left| \mathcal R_0A_j\right| ^2 + \mathcal C\left| A_j\right| ^2\Big ) \end{aligned}$$

and

$$\begin{aligned} h^{\frac{1}{2}}&\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| \mathcal R_1A_j - \widetilde{\mathcal R}_1 A_j\right| ^2 \\&\le \mathcal Ch^{\frac{5}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\Big (|\Delta _{c,h}\Phi _j|^2 + |\Delta _{c,h}\Phi _j|^4\Big )\\&\qquad +\mathcal Ch^{\frac{9}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}. \end{aligned}$$

Hence,

$$\begin{aligned} \left\| \square _{c,h} u^h_{fd}(\cdot ,t)\right\| _{\ell ^2(h\mathbb {Z})}^2&\le \mathcal Ch^{\frac{9}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\\ {}&\quad +\mathcal Ch^{\frac{5}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2} \\&\quad + h^{\frac{1}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| \widetilde{\mathcal R}_1 A_j\right| ^2 \\&\quad + h^{-\frac{3}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| A_j\mathcal R_{fd}\right| ^2. \end{aligned}$$

The first two terms on the right-hand side of the above inequality can be estimated by observing that

$$\begin{aligned} \sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2} = \mathcal O(h^{-\frac{1}{2}}). \end{aligned}$$
(B.2)

This can be easily seen by considering the Riemann sum approximating on the mesh \(\mathcal G_h\) the integral

$$\begin{aligned} \int _\mathbb {R}e^{-\frac{1}{h} \Im (M(t))(x-x_{fd}(t))^2}\,\textrm{d}x = \mathcal Ch^{\frac{1}{2}}. \end{aligned}$$

Hence, using (B.2), we obtain that

$$\begin{aligned} \Big (h^{\frac{9}{2}} + h^{\frac{5}{2}}\Big ) \sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2} = \mathcal O(h^4) + \mathcal O(h^2) = \mathcal O(h^2) \end{aligned}$$

and, therefore,

$$\begin{aligned} \left\| \square _{c,h} u^h_{fd}(\cdot ,t)\right\| _{\ell ^2(h\mathbb {Z})}^2 \le&\; h^{\frac{1}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| \widetilde{\mathcal R}_1 A_j\right| ^2 \\&+ h^{-\frac{3}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| A_j\mathcal R_{fd}\right| ^2 + \mathcal O(h^2). \end{aligned}$$

Finally, since by construction \(\widetilde{\mathcal R}_1 A_j\) and \(\mathcal R_{fd}\) vanish on the discrete characteristics \(x_{fd}(t)\) up to the order 0 and 2, respectively, we have that

$$\begin{aligned}&\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| \widetilde{\mathcal R}_1 A_j\right| ^2 = \mathcal O(h^{\frac{1}{2}}) \\&\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| A_j\mathcal R_{fd}\right| ^2 = \mathcal O(h^{\frac{5}{2}}). \end{aligned}$$

This is the discrete version of Proposition A.1, which can be proven once again by applying Riemann sum to approximate the corresponding integrals. In view of this, we obtain

$$\begin{aligned}&h^{\frac{1}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| \widetilde{\mathcal R}_1 A_j\right| ^2 \\&\qquad + h^{-\frac{3}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}\left| A_j\mathcal R_{fd}\right| ^2 = \mathcal O(h). \end{aligned}$$

and we can finally conclude that

$$\begin{aligned} \left\| \square _{c,h} u^h_{fd}(\cdot ,t)\right\| _{\ell ^2(h\mathbb {Z})}^2 = \mathcal O(h^2) + \mathcal O(h) = \mathcal O(h), \quad \text { as } h\rightarrow 0^+. \end{aligned}$$

Step 2: proof of(5.11). First of all, starting from (5.3), (5.4) and (5.23), we can write

$$\begin{aligned} \mathcal E_h[u_{fd}^h] =&\, \frac{h}{2}\sum _{j\in \mathbb {Z}} \Big (|\partial _t u_{fd,j}^h|^2 + c|\partial _h^+u_{fd,j}^h|^2\Big )\\ =&\, \frac{h^{\frac{5}{2}}}{2}\sum _{j\in \mathbb {Z}} \left( \left| \partial _t \left( A_j e^{\frac{i}{h} \Phi _j}\right) \right| ^2 + c\left| \partial _h^+\left( A_j e^{\frac{i}{h} \Phi _j}\right) \right| ^2\right) . \end{aligned}$$

Moreover, we can easily compute

$$\begin{aligned}&\partial _t \left( A_j e^{\frac{i}{h} \Phi _j}\right) = \frac{1}{h} e^{\frac{i}{h} \Phi _j}\Big (h\partial _t A_j + iA_j\partial _t\Phi _j\Big ) \\&\partial _h^+\left( A_j e^{\frac{i}{h} \Phi _j}\right) = \frac{1}{h} e^{\frac{i}{h} \Phi _j}\Big (h\partial _h^+A_je^{i\partial _h^+\Phi _j} + \big (e^{i\partial _h^+\Phi _j}-1\big )A_j\Big ) \end{aligned}$$

Using these identities and (B.1), we then obtain

$$\begin{aligned} \mathcal E_h[u_{fd}^h] =&\; \frac{h^{\frac{5}{2}}}{2}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2} \mathcal S_1 + h^{\frac{3}{2}}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2} \mathcal S_2 \\&+ \frac{h^{\frac{1}{2}}}{2}\sum _{j\in \mathbb {Z}} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2} \mathcal S_3, \end{aligned}$$

where we have denoted

$$\begin{aligned}&\mathcal S_1 := \Big |\partial _t A_j\Big |^2 + c\Big |\partial _h^+A_je^{i\partial _h^+\Phi _j}\Big |^2 \end{aligned}$$
(B.3a)
$$\begin{aligned}&\mathcal S_2 := \Big |iA_j\partial _t A_j\partial _t\Phi _j\Big | + c\Big |\partial _h^+A_je^{i\partial _h^+\Phi _j}\big (e^{i\partial _h^+\Phi _j}-1\big )A_j\Big | \end{aligned}$$
(B.3b)
$$\begin{aligned}&\mathcal S_3 := \Big |iA_j\partial _t\Phi _j\Big |^2 + c\Big |\big (e^{i\partial _h^+\Phi _j}-1\big )A_j\Big |^2. \end{aligned}$$
(B.3c)

Moreover, by construction of A and \(\Phi \), we have that \(|\mathcal S_i|\le \mathcal C(A,\phi )\) for \(i\in \{1,2,3\}\). Using this and (B.2), we finally obtain

$$\begin{aligned} \mathcal E_h[u_{fd}^h] = \mathcal O(h^2) + \mathcal O(h) + \mathcal O(1) = \mathcal O(1), \quad \text { as } h\rightarrow 0^+. \end{aligned}$$

Step 3: proof of(5.12). Repeating the computations of Step 2, we have that

$$\begin{aligned} \frac{h}{2}\sum _{j\in \mathbb {Z}^\dagger (t)} \Big (|\partial _t u_{fd,j}^h|^2 + c|\partial _h^+u_{fd,j}^h|^2\Big ) =&\; \frac{h^{\frac{5}{2}}}{2}\sum _{j\in \mathbb {Z}^\dagger (t)} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2} \mathcal S_1 \\&+ h^{\frac{3}{2}}\sum _{j\in \mathbb {Z}^\dagger (t)} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2} \mathcal S_2 \\&+ \frac{h^{\frac{1}{2}}}{2}\sum _{j\in \mathbb {Z}^\dagger (t)} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2} \mathcal S_3, \end{aligned}$$

with \(\mathcal S_1\), \(\mathcal S_2\) and \(\mathcal S_3\) defined in (B.3a), (B.3b) and (B.3c), respectively. Hence, recalling that \(|\mathcal S_i|\le \mathcal C(A,\Phi )\) for \(i\in \{1,2,3\}\), we obtain

$$\begin{aligned}&\frac{h}{2}\sum _{j\in \mathbb {Z}^\dagger (t)} \Big (|\partial _t u_{fd,j}^h|^2 + c|\partial _h^+u_{fd,j}^h|^2\Big ) \nonumber \\ {}&\qquad \le \mathcal C\Big (h^{\frac{5}{2}} + h^{\frac{3}{2}} + h^{\frac{1}{2}}\Big )\sum _{j\in \mathbb {Z}^\dagger (t)} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}. \end{aligned}$$
(B.4)

Now, employing the transformation

$$\begin{aligned} x_j-x_{fd,j} = y_j, \end{aligned}$$

and denoting

$$\begin{aligned} \mathbb {Z}^\ddagger (t) := \Big \{ j\in \mathbb {Z}\,:\, |y_j|>h^{\frac{1}{4}}\Big \}, \end{aligned}$$

we have that

$$\begin{aligned} \sum _{j\in \mathbb {Z}^\dagger (t)} e^{-\frac{1}{h} \Im (M(t))(x_j-x_{fd,j}(t))^2}&= \sum _{j\in \mathbb {Z}^\ddagger (t)} e^{-\frac{1}{h} \Im (M(t))y_j^2} \\&\le e^{-\frac{1}{2} \Im (M(t))h^{-\frac{1}{2}}} \sum _{j\in \mathbb {Z}^\ddagger (t)} e^{-\frac{1}{2h} \Im (M(t))y_j^2}\\&\le e^{-\frac{1}{2} \Im (M(t))h^{-\frac{1}{2}}} \sum _{j\in \mathbb {Z}} e^{-\frac{1}{2h} \Im (M(t))y_j^2}\\&= \mathcal Ch^{-\frac{1}{2}} e^{-\frac{1}{2} \Im (M(t))h^{-\frac{1}{2}}}. \end{aligned}$$

Substituting this in (B.4), we finally conclude that

$$\begin{aligned} \frac{h}{2}\sum _{j\in \mathbb {Z}^\dagger (t)} \Big (|\partial _t u_{fd,j}^h|^2 + c|\partial _h^+u_{fd,j}^h|^2\Big ) \le \mathcal C\Big (1 + h + h^2\Big ) e^{-\frac{1}{2} \Im (M(t))h^{-\frac{1}{2}}}. \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biccari, U., Zuazua, E. Gaussian Beam Ansatz for Finite Difference Wave Equations. Found Comput Math (2023). https://doi.org/10.1007/s10208-023-09632-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10208-023-09632-9

Keywords

Mathematics Subject Classification

Navigation