Skip to main content
Log in

Lensless inline holographic Mueller matrix imaging

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

With the advantages of a large field of view, portability, and cost-effectiveness, lensless imaging has been applied widely nowadays. However, as a powerful tool for complete polarimetric characterization of microstructural and optical properties of a medium, Mueller matrix imaging has not yet been integrated in lensless imaging scheme. Here we propose a lensless inline polarization holographic system for high-speed and high-resolution Mueller matrix imaging. Liquid crystal variable retarders are introduced to realize high-speed response and avoid vibrations and positioning errors. We apply the blind deconvolution for depolarized imaging reconstruction and the back-propagation approach for polarization hologram reconstruction, respectively. The polarimetric imaging ability and resolution performance of the proposed technique are demonstrated. Furthermore, Mueller matrix images and certain quantitative polarimetric parameters of biological samples are calculated. The proposed method can be easily implemented and integrated in various lensless imaging techniques for on-chip polarimetric imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Pezzaniti, J.L., Chipman, R.A.: Mueller matrix imaging polarimetry. Opt. Eng. 34, 1558–1568 (1995)

    Article  ADS  Google Scholar 

  2. Ghosh, N., Vitkin, I.A.: Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16, 110801 (2011)

    Article  ADS  Google Scholar 

  3. Ahmad, I., Ahmad, M., Khan, K., Ashraf, S., Ahmad, S., Ikrama, M.: Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt. 20, 056012 (2015)

    Article  ADS  Google Scholar 

  4. Qi, J., Elson, D.S.: Mueller polarimetric imaging for surgical and diagnostic applications: a review. J. Biophoton. 10, 950–981 (2017)

    Article  Google Scholar 

  5. Wang, Y., He, H., Chang, J., He, C., Liu, S., Li, M., Zeng, N., Wu, J., Ma, H.: Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Biomed. Opt. 21, 071112 (2016)

    Article  ADS  Google Scholar 

  6. He, H., Liao, R., Zeng, N., Li, P., Chen, Z., Liu, X., Ma, H.: Mueller matrix polarimetry - an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol. 37, 2534–2548 (2019)

    Article  ADS  Google Scholar 

  7. Arteaga, O., Baldrís, M., Antó, J., Canillas, A., Pascual, E., Bertran, E.: Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation. Appl. Opt. 53, 2236–2245 (2014)

    Article  ADS  Google Scholar 

  8. Wang, Y., He, H., Chang, J., Zeng, N., Liu, S., Li, M., Ma, H.: Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope. Micron 79, 8–15 (2015)

    Article  Google Scholar 

  9. Gladish, J.C., Duncan, D.D.: Liquid crystal-based Mueller matrix spectral imaging polarimetry for parameterizing mineral structural organization. Appl. Opt. 56(3), 626–635 (2017)

    Article  ADS  Google Scholar 

  10. Laude-Boulesteix, B., Martino, A.D., Drevillon, B., Schwartz, L.: Mueller polarimetric imaging system with liquid crystals. Appl. Opt. 43, 2824–2832 (2004)

    Article  ADS  Google Scholar 

  11. Han, C.Y., Du, C.Y., Jhou, J.Y.: Rapid full Mueller matrix imaging polarimetry based on the hybrid phase modulation technique. Opt. Commun. 382, 501–508 (2017)

    Article  ADS  Google Scholar 

  12. Aas, L.M.S., Ellingsen, P.G., Kildemo, M.: Near infra-red Mueller matrix imaging system and application to retardance imaging of strain. Thin Solid Films 519, 2737–2741 (2011)

    Article  ADS  Google Scholar 

  13. Twietmeyer, K.M., Chipman, R.A., Elsner, A.E., Zhao, Y., VanNasdale, D.: Mueller matrix retinal imager with optimized polarization conditions. Opt. Express 16, 21339–21354 (2008)

    Article  ADS  Google Scholar 

  14. Chironi, E., Iemmi, C.: Mueller matrix polarimeter based on twisted nematic liquid crystal devices. Appl. Opt. 59, 8098–8105 (2020)

    Article  ADS  Google Scholar 

  15. Han, C., Pang, S., Bower, D.V., Yiu, P., Yang, C.: Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator. Anal. Chem. 85, 2356–2360 (2013)

    Article  Google Scholar 

  16. Lee, S.A., Ou, X., Lee, J.E., Yang, C.: Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor. Opt. Lett. 38, 1817–1819 (2013)

    Article  ADS  Google Scholar 

  17. Liu, X., Yang, Y., Han, L., Guo, C.S.: Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials. Opt. Express 25, 7288–7299 (2017)

    Article  ADS  Google Scholar 

  18. Zhang, Y., Lee, S.Y., Zhang, Y., Furst, D., Fitzgerald, J., Ozcan, A.: Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis. Sci. Rep. 6, 28793 (2016)

    Article  ADS  Google Scholar 

  19. Oh, C., Isikman, S.O., Khademhosseinieh, B., Ozcan, A.: On-chip differential interference contrast microscopy using lensless digital holography. Opt. Express 25, 4717–4726 (2010)

    Article  ADS  Google Scholar 

  20. Mudanyali, O., Tseng, D., Oh, C., Isikman, S.O., Sencan, I., Bishara, W., Oztoprak, C., Seo, S., Khademhosseini, B., Ozcan, A.: Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417–1428 (2010)

    Article  Google Scholar 

  21. Zhou, Y., Xiong, B., Li, X., Dai, Q., Cao, X.: Lensless imaging of plant samples using the cross-polarized light. Opt. Express 28, 31611–31623 (2020)

    Article  ADS  Google Scholar 

  22. Ozcan, A., McLeod, E.: Lensless imaging and sensing. Annu. Rev. Biomed. Eng. 18, 77–102 (2016)

    Article  Google Scholar 

  23. Xiao, X., Voelz, D.G.: Liquid crystal variable retarder modeling of incident angle response with experimental verification. Opt. Eng. 47, 054002 (2008)

    Article  ADS  Google Scholar 

  24. Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope. IEEE Trans. Comput. Imaging 6, 697–710 (2020)

    Article  Google Scholar 

  25. Abbasian, V., Moradi, A.-R.: Microsphere-assisted super-resolved Mueller matrix microscopy. Opt. Lett. 45, 4336–4339 (2020)

    Article  ADS  Google Scholar 

  26. Peinado, A., Lizana, N., Vidal, J., Iemmi, C., Campos, J.: Optimization and performance criteria of a Stokes polarimeter based on two variable retarders. Opt. Express 18, 9815–9830 (2010)

    Article  ADS  Google Scholar 

  27. Bueno, J.M.: Polarimetry using liquid-crystal variable retarders: theory and calibration. J. Opt. A Pure Appl. Opt. 2, 216–222 (2000)

    Article  ADS  Google Scholar 

  28. Goodman, J.W.: Introduction to Fourier Optics, 2nd edn., p. 55. McGRAW-HILL, New York (1996)

    Google Scholar 

  29. Weidling, J., Isikman, S.O., Greenbaum, A., Ozcan, A., Botvinick, E.: Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates. J. Biomed. Opt. 17, 126018 (2012)

    Article  ADS  Google Scholar 

  30. Du, E., He, H., Zeng, N., Liu, C., Guo, Y., Liao, R., Sun, M., He, Y., Ma, H.: Characteristic features of mueller matrix patterns for polarization scattering model of biological tissues. J. Innov. Opt. Health Sci. 7(1), 1350028 (2014)

    Article  Google Scholar 

  31. Neifeld, M.A.: Information, resolution, and space–bandwidth product. J. Opt. Lett. 18, 1477–1479 (1998)

    Article  ADS  Google Scholar 

  32. Park, J., Brady, D.J., Zheng, G., Tian, L., Gao, L.: Review of bio-optical imaging systems with a high space-bandwidth product. Adv. Photonics 3, 044001 (2021)

    Article  Google Scholar 

  33. Denis, L., Fournier, C., Fournel, T., Ducottet, C.: Twin-image noise reduction by phase retrieval in in-line digital holography. In: Papadakis, M., Laine, A.F., Unser, M.A. (eds.) SPIE’s Symposium on Optical Science and Technology, p. 59140J. Springer (2005)

    Google Scholar 

  34. Zhang, W., Cao, L., Brady, D.J., Zhang, H., Cang, J., Zhang, H., Jin, G.: Twin-image-free holography: a compressive sensing approach. Phys. Rev. Lett. 121, 093902 (2018)

    Article  ADS  Google Scholar 

  35. Lu, S.-Y., Chipman, R.A.: Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. 13, 1106–1113 (1996)

    Article  ADS  Google Scholar 

  36. He, H., Chang, J., He, C., Ma, H.: Transformation of full 4 × 4 Mueller matrices: a quantitative technique for biomedical diagnosis. Proc SPIE Dyn. Fluct. Biomed. Photonics 11, 970 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of China (JD2019JGPY0020) and the Key industrialization projects of Intelligent Manufacturing Institute, Hefei University of Technology (IMICZ2019001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by YF, WL and JL. The first draft of the manuscript was written by YF. JH is responsible for reviewing, editing and funding acquisition. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juntao Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Li, W., Li, J. et al. Lensless inline holographic Mueller matrix imaging. Opt Rev 30, 606–616 (2023). https://doi.org/10.1007/s10043-023-00843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00843-7

Keywords

Navigation