skip to main content
research-article

Intrinsic Image Decomposition via Ordinal Shading

Published:30 November 2023Publication History
Skip Abstract Section

Abstract

Intrinsic decomposition is a fundamental mid-level vision problem that plays a crucial role in various inverse rendering and computational photography pipelines. Generating highly accurate intrinsic decompositions is an inherently under-constrained task that requires precisely estimating continuous-valued shading and albedo. In this work, we achieve high-resolution intrinsic decomposition by breaking the problem into two parts. First, we present a dense ordinal shading formulation using a shift- and scale-invariant loss in order to estimate ordinal shading cues without restricting the predictions to obey the intrinsic model. We then combine low- and high-resolution ordinal estimations using a second network to generate a shading estimate with both global coherency and local details. We encourage the model to learn an accurate decomposition by computing losses on the estimated shading as well as the albedo implied by the intrinsic model. We develop a straightforward method for generating dense pseudo ground truth using our model’s predictions and multi-illumination data, enabling generalization to in-the-wild imagery. We present exhaustive qualitative and quantitative analysis of our predicted intrinsic components against state-of-the-art methods. Finally, we demonstrate the real-world applicability of our estimations by performing otherwise difficult editing tasks such as recoloring and relighting.

Skip Supplemental Material Section

Supplemental Material

tog-22-0123-file005.mp4

mp4

36 MB

REFERENCES

  1. Baslamisli A. S., Groenestege T. T., Das P., Le H. A., Karaoglu S., and Gevers T.. 2018a. Joint learning of intrinsic images and semantic segmentation. In Proc. ECCV.Google ScholarGoogle Scholar
  2. Baslamisli Anil S., Le Hoang-An, and Gevers Theo. 2018b. CNN based learning using reflection and Retinex models for intrinsic image decomposition. In Proc. CVPR.Google ScholarGoogle Scholar
  3. Bell Sean, Bala Kavita, and Snavely Noah. 2014. Intrinsic images in the wild. ACM Trans. Graph. 33, 4 (2014), 112.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bi Sai, Kalantari Nima Khademi, and Ramamoorthi Ravi. 2018. Deep hybrid real and synthetic training for intrinsic decomposition. In Proc. EGSR.Google ScholarGoogle Scholar
  5. Bonneel Nicolas, Kovacs Balazs, Paris Sylvain, and Bala Kavita. 2017. Intrinsic decompositions for image editing. Comput. Graph. Forum 36, 2 (2017).Google ScholarGoogle ScholarCross RefCross Ref
  6. Butler D. J., Wulff J., Stanley G. B., and Black M. J.. 2012. A naturalistic open source movie for optical flow evaluation. In Proc. ECCV.Google ScholarGoogle Scholar
  7. Chang Angel X., Funkhouser Thomas, Guibas Leonidas, Hanrahan Pat, Huang Qixing, Li Zimo, Savarese Silvio, Savva Manolis, Song Shuran, Su Hao, Xiao Jianxiong, Yi Li, and Yu Fisher. 2015. ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR]. Stanford University — Princeton University — Toyota Technological Institute at Chicago.Google ScholarGoogle Scholar
  8. Cheng L., Zhang C., and Liao Z.. 2018. Intrinsic image transformation via scale space decomposition. In Proc. CVPR.Google ScholarGoogle Scholar
  9. Das Partha, Karaoglu Sezer, and Gevers Theo. 2022. PIE-Net: Photometric invariant edge guided network for intrinsic image decomposition. In Proc. CVPR.Google ScholarGoogle Scholar
  10. Eftekhar Ainaz, Sax Alexander, Malik Jitendra, and Zamir Amir. 2021. Omnidata: A scalable pipeline for making multi-task mid-level vision datasets from 3D scans. In Proc. ICCV.Google ScholarGoogle Scholar
  11. Fan Qingnan, Yang Jiaolong, Hua Gang, Chen Baoquan, and Wipf David. 2018. Revisiting deep intrinsic image decompositions. In Proc. CVPR.Google ScholarGoogle Scholar
  12. Garces Elena, Munoz Adolfo, Lopez-Moreno Jorge, and Gutierrez Diego. 2012. Intrinsic images by clustering. Comput. Graph. Forum 31, 4 (2012), 14151424.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Garces Elena, Rodriguez-Pardo Carlos, Casas Dan, and Lopez-Moreno Jorge. 2022. A survey on intrinsic images: Delving deep into Lambert and beyond. Int. J. Comput. Vision (2022).Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Grosse Roger, Johnson Micah, Adelson Edward, and Freeman William. 2009. Ground truth dataset and baseline evaluations for intrinsic image algorithms. In Proc. ICCV.Google ScholarGoogle Scholar
  15. Janner Michael, Wu Jiajun, Kulkarni Tejas, Yildirim Ilker, and Tenenbaum Joshua B.. 2017. Self-supervised intrinsic image decomposition. In Proc. NeurIPS.Google ScholarGoogle Scholar
  16. Kovacs Balazs, Bell Sean, Snavely Noah, and Bala Kavita. 2017. Shading annotations in the wild. Proc. CVPR.Google ScholarGoogle Scholar
  17. Krahenbuhl Philipp. 2018. Free supervision from video games. In Proc. CVPR.Google ScholarGoogle Scholar
  18. Le Hoang-An, Das Partha, Mensink Thomas, Karaoglu Sezer, and Gevers Theo. 2021. EDEN: Multimodal synthetic dataset of enclosed garden scenes. In Proc. WACV.Google ScholarGoogle Scholar
  19. Lettry Louis, Vanhoey Kenneth, and Gool Luc Van. 2018a. DARN: A deep adversarial residual network for intrinsic image decomposition. Proc. WACV.Google ScholarGoogle Scholar
  20. Lettry L., Vanhoey K., and Gool L. Van. 2018b. Unsupervised deep single-image intrinsic decomposition using illumination-varying image sequences. Comput. Graph. Forum 37, 7 (2018), 409419.Google ScholarGoogle ScholarCross RefCross Ref
  21. Li Zhengqin, Shafiei Mohammad, Ramamoorthi Ravi, Sunkavalli Kalyan, and Chandraker Manmohan. 2020. Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting and SVBRDF from a single image. In Proc. CVPR.Google ScholarGoogle Scholar
  22. Li Zhengqi and Snavely Noah. 2018a. CGIntrinsics: Better intrinsic image decomposition through physically-based rendering. In Proc. ECCV.Google ScholarGoogle Scholar
  23. Li Zhengqi and Snavely Noah. 2018b. Learning intrinsic image decomposition from watching the world. In Proc. CVPR.Google ScholarGoogle Scholar
  24. Li Zhengqi and Snavely Noah. 2018c. MegaDepth: Learning single-view depth prediction from Internet photos. In Proc. CVPR.Google ScholarGoogle Scholar
  25. Li Zhengqin, Yu Ting, Sang Shen, Wang Sarah, Song Mengcheng, Liu Yuhan, Yeh Yu-Ying, Zhu Rui, Gundavarapu Nitesh B., Shi Jia, Bi Sai, Yu Hong-Xing, Xu Zexiang, Sunkavalli Kalyan, Hašan Miloš, Ramamoorthi Ravi, and Chandraker Manmohan. 2021. OpenRooms: An open framework for photorealistic indoor scene datasets. Proc. CVPR.Google ScholarGoogle Scholar
  26. Lin G., Milan A., Shen C., and Reid I.. 2017. RefineNet: Multi-path refinement networks for high-resolution semantic segmentation. In Proc. CVPR.Google ScholarGoogle Scholar
  27. Liu Yunfei, Li Yu, You Shaodi, and Lu Feng. 2020. Unsupervised learning for intrinsic image decomposition from a single image. In Proc. CVPR.Google ScholarGoogle Scholar
  28. Luo Jundan, Huang Zhaoyang, Li Yijin, Zhou Xiaowei, Zhang Guofeng, and Bao Hujun. 2020. NIID-Net: Adapting surface normal knowledge for intrinsic image decomposition in indoor scenes. IEEE Trans. Vis. Comp. Graph. (2020).Google ScholarGoogle ScholarCross RefCross Ref
  29. Ma Wei-Chiu, Chu Hang, Zhou Bolei, Urtasun Raquel, and Torralba Antonio. 2018. Single image intrinsic decomposition without a single intrinsic image. In Proc. ECCV.Google ScholarGoogle Scholar
  30. Meka Abhimitra, Maximov Maxim, Zollhoefer Michael, Chatterjee Avishek, Seidel Hans-Peter, Richardt Christian, and Theobalt Christian. 2018. LIME: Live intrinsic material estimation. In Proc. CVPR.Google ScholarGoogle Scholar
  31. Miangoleh S. Mahdi H., Dille Sebastian, Mai Long, Paris Sylvain, and Aksoy Yağız. 2021. Boosting monocular depth estimation models to high-resolution via content-adaptive multi-resolution merging. In Proc. CVPR.Google ScholarGoogle Scholar
  32. Murmann Lukas, Gharbi Michael, Aittala Miika, and Durand Fredo. 2019. A multi-illumination dataset of indoor object appearance. In Proc. ICCV.Google ScholarGoogle Scholar
  33. Narihira Takuya, Maire Michael, and Yu Stella X.. 2015. Learning lightness from human judgement on relative reflectance. In Proc. CVPR.Google ScholarGoogle Scholar
  34. Nestmeyer Thomas and Gehler Peter V.. 2017. Reflectance adaptive filtering improves intrinsic image estimation. In Proc. CVPR.Google ScholarGoogle Scholar
  35. Pérez Patrick, Gangnet Michel, and Blake Andrew. 2003. Poisson image editing. In ACM SIGGRAPH. 313318.Google ScholarGoogle Scholar
  36. Ranftl René, Lasinger Katrin, Hafner David, Schindler Konrad, and Koltun Vladlen. 2020. Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. (2020).Google ScholarGoogle Scholar
  37. Roberts Mike, Ramapuram Jason, Ranjan Anurag, Kumar Atulit, Bautista Miguel Angel, Paczan Nathan, Webb Russ, and Susskind Joshua M.. 2021. Hypersim: A photorealistic synthetic dataset for holistic indoor scene understanding. In Proc. ICCV.Google ScholarGoogle Scholar
  38. Sengupta Soumyadip, Gu Jinwei, Kim Kihwan, Liu Guilin, Jacobs David W., and Kautz Jan. 2019. Neural inverse rendering of an indoor scene from a single image. In Proc. ICCV.Google ScholarGoogle Scholar
  39. Shen Jianbing, Yang Xiaoshan, Jia Yunde, and Li Xuelong. 2011. Intrinsic images using optimization. In Proc. CVPR.Google ScholarGoogle Scholar
  40. Shi Jian, Dong Yue, Su Hao, and Yu Stella X.. 2017. Learning non-Lambertian object intrinsics across ShapeNet categories. In Proc. CVPR.Google ScholarGoogle Scholar
  41. Narihira Michael Maire, Takuya and Yu Stella X.. 2015. Direct intrinsics: Learning albedo-shading decomposition by convolutional regression. In Proc. ICCV.Google ScholarGoogle Scholar
  42. Tan Mingxing and Le Quoc. 2019. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proc. ICML.Google ScholarGoogle Scholar
  43. Xian Ke, Zhang Jianming, Wang Oliver, Mai Long, Lin Zhe, and Cao Zhiguo. 2020. Structure-guided ranking loss for single image depth prediction. In Proc. CVPR.Google ScholarGoogle Scholar
  44. Xie Saining, Girshick Ross, Dollár Piotr, Tu Zhuowen, and He Kaiming. 2017. Aggregated residual transformations for deep neural networks. In Proc. CVPR.Google ScholarGoogle Scholar
  45. Ye Genzhi, Garces Elena, Liu Yebin, Dai Qionghai, and Gutierrez Diego. 2014. Intrinsic video and applications. ACM Trans. Graph. 33, 4 (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zhao Qi, Tan Ping, Dai Qiang, Shen Li, Wu Enhua, and Lin Stephen. 2012. A closed-form solution to Retinex with nonlocal texture constraints. IEEE Trans. Pattern Anal. Mach. Intell. 34, 7 (2012), 14371444.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Zhou Hao, Yu Xiang, and Jacobs David. 2019. GLoSH: Global-local spherical harmonics for intrinsic image decomposition. In Proc. ICCV.Google ScholarGoogle Scholar
  48. Zhou Tinghui, Krahenbuhl Philipp, and Efros Alexei A.. 2015. Learning data-driven reflectance priors for intrinsic image decomposition. In Proc. ICCV.Google ScholarGoogle Scholar
  49. Zhu Rui, Li Zhengqin, Matai Janarbek, Porikli Fatih, and Chandraker Manmohan. 2022. IRISformer: Dense vision transformers for single-image inverse rendering in indoor scenes. In Proc. CVPR.Google ScholarGoogle Scholar
  50. Zoran Daniel, Isola Phillip, Krishnan Dilip, and Freeman William. 2015. Learning ordinal relationships for mid-level vision. In Proc. ICCV.Google ScholarGoogle Scholar

Index Terms

  1. Intrinsic Image Decomposition via Ordinal Shading

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 43, Issue 1
        February 2024
        211 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3613512
        Issue’s Table of Contents

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 November 2023
        • Online AM: 28 October 2023
        • Accepted: 29 September 2023
        • Revised: 28 August 2023
        • Received: 5 December 2022
        Published in tog Volume 43, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
      • Article Metrics

        • Downloads (Last 12 months)499
        • Downloads (Last 6 weeks)49

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text