1932

Abstract

Rich out-of-equilibrium collective dynamics of strongly interacting large assemblies emerge in many areas of science. Some intriguing and not fully understood examples are the glassy arrest in atomic, molecular, or colloidal systems; flocking in natural or artificial active matter; and the organization and subsistence of ecosystems. The learning process, and ensuing amazing performance, of deep neural networks bears resemblance with some of the before-mentioned examples. Quantum mechanical extensions are also of interest. In exact or approximate manner, the evolution of these systems can be expressed in terms of a dynamical mean-field theory that not only captures many of their peculiar effects but also has predictive power. This short review presents a summary of recent developments of this approach with emphasis on applications on the examples mentioned above.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040721-022848
2024-03-11
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-040721-022848.html?itemId=/content/journals/10.1146/annurev-conmatphys-040721-022848&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hohenberg PC, Halperin BI. 1977. Rev. Mod. Phys. 49:435–79
    [Google Scholar]
  2. 2.
    Bray AJ. 1994. Adv. Phys. 43:357–459
    [Google Scholar]
  3. 3.
    Onuki A. 2004. Phase Transition Dynamics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  4. 4.
    Puri S, Wadhawan V 2009. Kinetics of Phase Transitions Boca Raton, FL: Taylor & Francis Group
    [Google Scholar]
  5. 5.
    Henkel M, Pleimling M. 2010. Non-Equilibrium Phase Transitions 2 Ageing and Dynamical Scaling Far from Equilibrium Dordrecht, Neth.: Springer-Verlag
    [Google Scholar]
  6. 6.
    Berthier L, Biroli G. 2011. Rev. Mod. Phys. 83:587–645
    [Google Scholar]
  7. 7.
    Bloch I, Dalibard J, Zwerger W. 2008. Rev. Mod. Phys. 80:885–964
    [Google Scholar]
  8. 8.
    Duran J. 1999. Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials New York: Springer-Verlag
    [Google Scholar]
  9. 9.
    Bechinger C, Leonardo RD, Löwen H, Reichhardt C, Volpe G, Volpe G. 2016. Rev. Mod. Phys. 88:045006
    [Google Scholar]
  10. 10.
    Azaele S, Suweis S, Grilli J, Volkov I, Banavar JR, Maritan A. 2016. Rev. Mod. Phys. 88:035003
    [Google Scholar]
  11. 11.
    Bahri Y, Kadmon J, Pennington J, Schoenholz S, Sohl-Dickstein J, Ganguli S. 2019. Annu. Rev. Condens. Matter Phys. 11:501–28
    [Google Scholar]
  12. 12.
    Krzakala F, Ricci-Tersenghi F, Zdeborová L, Tramel EW, Zecchina R, Cugliandolo LF 2015. Statistical Physics, Optimization, Inference, and Message-Passing Algorithms. Lecture Notes of the Les Houches School of Physics, Special Issue, Oct. 2013 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  13. 13.
    Naumann-Woleske K, Knicker MS, Benzaquen M, Bouchaud JP. 2023. arXiv:2111.08654
  14. 14.
    Cugliandolo LF. 2002. Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter Les Houches Session LXXVII, July 1–26, 2002 Heidelberg: Springer Verlag
    [Google Scholar]
  15. 15.
    Cavagna A. 2009. Phys. Rep. 476:51–124
    [Google Scholar]
  16. 16.
    Montanari A, Sen S. 2022. arXiv:2204.02909
  17. 17.
    Folena G, Manacorda A, Zamponi F. 2022. Phys. A 2022:128152
    [Google Scholar]
  18. 18.
    Mézard M, Parisi G, Virasoro MA. 1986. Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications Singapore: World Sci.
    [Google Scholar]
  19. 19.
    Crisanti A, Sommers HJ. 1992. Z. Phys. B: Condens. Matter 87:341–54
    [Google Scholar]
  20. 20.
    Sompolinsky H, Crisanti A, Sommers HJ. 1988. Phys. Rev. Lett. 61:259–62
    [Google Scholar]
  21. 21.
    Cugliandolo LF, Kurchan J, Le Doussal P, Peliti L 1997. Phys. Rev. Lett. 78:350–53
    [Google Scholar]
  22. 22.
    Berthier L, Barrat JL, Kurchan J. 2000. Phys. Rev. E 61:5464–72
    [Google Scholar]
  23. 23.
    Fyodorov YV, Khoruzhenko BA. 2016. PNAS 113:6827–32
    [Google Scholar]
  24. 24.
    Hofbauer J, Sigmund K. 1998. Evolutionary Games and Population Dynamics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  25. 25.
    Martin PC, Siggia ED, Rose HA. 1973. Phys. Rev. A 8:423–37
    [Google Scholar]
  26. 26.
    Janssen HK. 1976. Z. Phys. B Con. Matt. 23:377–80
    [Google Scholar]
  27. 27.
    De Dominicis C. 1976. J. Phys. Colloq. 37:C1247–53
    [Google Scholar]
  28. 28.
    Arnoulx de Pirey T, Cugliandolo LF, Lecomte V, van Wijland F 2023. Adv. Phys. https://doi.org/10.1080/00018732.2023.2199229
    [Google Scholar]
  29. 29.
    Bouchaud JP, Cugliandolo LF, Kurchan J, Mézard M. 1996. Physica A 226:243–73
    [Google Scholar]
  30. 30.
    Sompolinsky H, Zippelius A. 1981. Phys. Rev. Lett. 47:359–62
    [Google Scholar]
  31. 31.
    Cugliandolo LF, Kurchan J. 1993. Phys. Rev. Lett. 71:173–76
    [Google Scholar]
  32. 32.
    Barrat A, Burioni R, Mézard M. 1996. J. Phys. A: Math. Gen. 29:L81–87
    [Google Scholar]
  33. 33.
    Cugliandolo LF, Lozano GS, Nessi N. 2017. J. Stat. Mech. 2017:083301
    [Google Scholar]
  34. 34.
    Cugliandolo LF, Lozano GS, Nessi N. 2019. J. Stat. Mech. 2019:023301
    [Google Scholar]
  35. 35.
    Schwinger J. 1961. J. Math. Phys. 2:407–32
    [Google Scholar]
  36. 36.
    Keldish LV. 1964. Zh. Eksp. Teor. Fiz. 47:1515–27
    [Google Scholar]
  37. 37.
    Stefanucci G, van Leeuwen R. 2013. Nonequilibrium Many Body Theory of Quantum Systems Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  38. 38.
    Chakraborty A, Gorantla P, Sensarma R. 2019. Phys. Rev. B 99:054306
    [Google Scholar]
  39. 39.
    Agoritsas E, Biroli G, Urbani P, Zamponi F. 2018. J. Phys. A: Math. Theor. 51:085002
    [Google Scholar]
  40. 40.
    Ben Arous G, Dembo A, Guionnet A. 2006. Probab. Theory Relat. Fields 136:619–60
    [Google Scholar]
  41. 41.
    Roy F, Biroli G, Bunin G, Cammarota C. 2019. J. Phys. A: Math. Theor. 52:484001
    [Google Scholar]
  42. 42.
    Georges A, Kotliar G, Krauth W, Rozenberg MJ. 1996. Rev. Mod. Phys. 68:13–125
    [Google Scholar]
  43. 43.
    Ros V, Fyodorov Y. 2023. See Reference 205 95–114
  44. 44.
    Auffinger A, Montanari A, Subag E. 2023. See Reference 205 609–33
  45. 45.
    Kosterlitz JM, Thouless DJ, Jones RC. 1976. Phys. Rev. Lett. 36:1217–20
    [Google Scholar]
  46. 46.
    Bray AJ, Moore MA. 1980. J. Phys. C 13:L469
    [Google Scholar]
  47. 47.
    Kurchan J, Parisi G, Virasoro MA. 1993. J. Phys. I 3:1819–38
    [Google Scholar]
  48. 48.
    Crisanti A, Sommers HJ. 1995. J. Phys. I 5:805–13
    [Google Scholar]
  49. 49.
    Monasson R. 1995. Phys. Rev. Lett. 75:2847–50
    [Google Scholar]
  50. 50.
    Cavagna A, Giardina I, Parisi G. 1998. Phys. Rev. B 57:11251–57
    [Google Scholar]
  51. 51.
    Cavagna A, Garrahan JP, Giardina I. 1999. J. Phys. A: Math. Gen. 32:711
    [Google Scholar]
  52. 52.
    Kirkpatrick TR, Thirumalai D. 1987. Phys. Rev. B 36:5388–97
    [Google Scholar]
  53. 53.
    Debenedetti P. 1996. Metastable Liquids: Concepts and Principles Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  54. 54.
    Kirkpatrick TR, Thirumalai D. 2015. Rev. Mod. Phys. 87:183–209
    [Google Scholar]
  55. 55.
    Wolynes PG. 2023. See Reference 205 135–48
  56. 56.
    Kac M. 1943. Bull. Am. Math. Soc. 49:314–20
    [Google Scholar]
  57. 57.
    Rice SO. 1944. Bell. Syst. Tech. J. 23:282–332
    [Google Scholar]
  58. 58.
    Ros V, Ben Arous G, Biroli G, Cammarota C 2019. Phys. Rev. X 9:011003
    [Google Scholar]
  59. 59.
    de Dominicis C, Young AP. 1983. J. Phys. A: Math. Gen. 16:2063–75
    [Google Scholar]
  60. 60.
    Gradenigo G, Angelini MC, Leuzzi L, Ricci-Tersenghi F. 2020. J. Stat. Mech. 2020:113302
    [Google Scholar]
  61. 61.
    Franz S, Parisi G. 1995. J. Phys. I France 5:1401–15
    [Google Scholar]
  62. 62.
    Gardner E. 1985. Nucl. Phys. B 257:747–65
    [Google Scholar]
  63. 63.
    Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi F. 2014. Nat. Commun. 5:3725
    [Google Scholar]
  64. 64.
    Altieri A, Biroli G, Cammarota C. 2020. J. Phys. A: Math. Theor. 53:375006
    [Google Scholar]
  65. 65.
    Monasson R, Zecchina R. 1997. Phys. Rev. E 56:1357–70
    [Google Scholar]
  66. 66.
    Rizzo T, Yoshino H. 2006. Phys. Rev. B 73:064416
    [Google Scholar]
  67. 67.
    Barrat A, Franz S, Parisi G. 1997. J. Phys. A: Math. Gen. 30:5593–612
    [Google Scholar]
  68. 68.
    Capone B, Castellani T, Giardina I, Ricci-Tersenghi F. 2006. Phys. Rev. B 74:144301
    [Google Scholar]
  69. 69.
    Crisanti A, Leuzzi L. 2006. Phys. Rev. B 73:014412
    [Google Scholar]
  70. 70.
    Barbier D, Cugliandolo LF. 2020. J. Stat. Mech. 2020:063207
    [Google Scholar]
  71. 71.
    Auffinger A, Zhou Y. 2022. arXiv:2209.03866
  72. 72.
    Folena G, Franz S, Ricci-Tersenghi F. 2020. Phys. Rev. X 10:031045
    [Google Scholar]
  73. 73.
    Folena G, Franz S, Ricci-Tersenghi F. 2021. J. Stat. Mech. 2021:033302
    [Google Scholar]
  74. 74.
    Cugliandolo LF, Dean DS. 1995. J. Phys. A: Math. Gen. 28:4213–34
    [Google Scholar]
  75. 75.
    Calabrese P, Gambassi A. 2005. J. Phys. A 38:R133–93
    [Google Scholar]
  76. 76.
    Cugliandolo LF, Dean DS. 1995. J. Phys. A: Math. Gen. 28:L453–59
    [Google Scholar]
  77. 77.
    Middleton C. 2022. Phys. Today 75:14–16
    [Google Scholar]
  78. 78.
    Cugliandolo LF, Kurchan J, Peliti L. 1997. Phys. Rev. E 55:3898–914
    [Google Scholar]
  79. 79.
    Scherer GW. 1986. Relaxation in Glass and Composites New York: Wiley
    [Google Scholar]
  80. 80.
    Bouchaud JP. 1992. J. Phys. I France 2:1705–13
    [Google Scholar]
  81. 81.
    Kim BS, Latz A. 2001. Europhys. Lett. 53:660–66
    [Google Scholar]
  82. 82.
    Cugliandolo LF, Le Doussal P 1996. Phys. Rev. E 53:152–67
    [Google Scholar]
  83. 83.
    Kurchan J, Laloux L. 1996. J. Phys. A: Math. Gen. 29:1929–48
    [Google Scholar]
  84. 84.
    Kraichnan RH. 1959. J. Fluid Mech. 5:497–543
    [Google Scholar]
  85. 85.
    Zdeborová L, Krzakala F. 2010. Phys. Rev. B 81:224205
    [Google Scholar]
  86. 86.
    Krzakala F, Zdeborová L. 2010. Europhys. Lett. 90:66002
    [Google Scholar]
  87. 87.
    Sun YF, Crisanti A, Krzakala F, Leuzzi L, Zdeborová L. 2012. J. Stat. Mech. 2012:P07002
    [Google Scholar]
  88. 88.
    Folena G, Zamponi F. 2023. SciPost Phys. 15:109
    [Google Scholar]
  89. 89.
    Sompolinsky H. 1981. Phys. Rev. Lett. 47:935–38
    [Google Scholar]
  90. 90.
    Cugliandolo LF, Kurchan J. 1994. J. Phys. A 27:5749–72
    [Google Scholar]
  91. 91.
    Franz S, Mézard M. 1994. Europhys. Lett. 26:209–14
    [Google Scholar]
  92. 92.
    El Alaoui A, Montanari A. 2020. arXiv:2009.11481
  93. 93.
    El Alaoui A, Montanari A, Sellke M. 2021. Ann. Probab. 49:2922–60
    [Google Scholar]
  94. 94.
    Cugliandolo LF, Kurchan J. 2000. J. Phys. Soc. Jpn. 69:247
    [Google Scholar]
  95. 95.
    Contucci P, Corberi F, Kurchan J, Mingione E. 2021. SciPost Phys. 10:113
    [Google Scholar]
  96. 96.
    Cugliandolo LF. 2011. J. Phys. A 44:483001
    [Google Scholar]
  97. 97.
    Ioffe LB. 1988. Phys. Rev. B 38:5181–83
    [Google Scholar]
  98. 98.
    Chamon C, Kennett MP, Castillo H, Cugliandolo LF. 2002. Phys. Rev. Lett. 89:217201
    [Google Scholar]
  99. 99.
    Douglass IM, Dyre JC. 2022. Phys. Rev. E 106:054615
    [Google Scholar]
  100. 100.
    Chamon C, Cugliandolo LF, Yoshino H. 2006. J. Stat. Mech. 2006:01006
    [Google Scholar]
  101. 101.
    Castillo H, Chamon C, Cugliandolo LF, Kennett MP. 2002. Phys. Rev. Lett. 88:237201
    [Google Scholar]
  102. 102.
    Chamon C, Cugliandolo LF. 2007. J. Stat. Mech. 2007:P07022
    [Google Scholar]
  103. 103.
    Sachdev S, Ye J. 1993. Phys. Rev. Lett. 70:3339–42
    [Google Scholar]
  104. 104.
    Kitaev A. 2015. “A simple model of quantum holography, part 1,. KITP Online Talks 1:15:04 April 7, 2015, https://online.kitp.ucsb.edu/online/entangled15/itaev/rm/jwvideo.html
    [Google Scholar]
  105. 105.
    Maldacena J, Stanford D. 2016. Phys. Rev. D 94:106002
    [Google Scholar]
  106. 106.
    Kirkpatrick TR, Thirumalai D. 1988. Phys. Rev. A 37:4439–48
    [Google Scholar]
  107. 107.
    Dasgupta C, Indrani A, Ramaswami S, Phani M. 1991. Europhys. Lett. 15:307–12
    [Google Scholar]
  108. 108.
    Kob W, Donati C, Plimpton SJ, Poole PH, Glotzer SC. 1997. Phys. Rev. Lett. 79:2827–30
    [Google Scholar]
  109. 109.
    Biroli G, Bouchaud JP. 2004. Europhys. Lett. 67:21–27
    [Google Scholar]
  110. 110.
    Corberi F, Cugliandolo LF, Yoshino H 2011. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media L Berthier, G Biroli, J-P Bouchard, L Cipelletti, W van Saarloos 370–406 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  111. 111.
    Lippiello E, Corberi F, Sarracino A, Zannetti M. 2008. Phys. Rev. B 77:212201
    [Google Scholar]
  112. 112.
    Lippiello E, Corberi F, Sarracino A, Zannetti M. 2008. Phys. Rev. E 78:041120
    [Google Scholar]
  113. 113.
    Berthier L, Biroli G, Bouchaud JP, Cipelletti L, van Saarloos W 2011. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  114. 114.
    Rizzo T. 2014. Europhys. Lett. 106:56003
    [Google Scholar]
  115. 115.
    Rizzo T. 2016. Phys. Rev. B 94:014202
    [Google Scholar]
  116. 116.
    Folena G, Biroli G, Charbonneau P, Hu Y, Zamponi F. 2022. Phys. Rev. E 06:024605
    [Google Scholar]
  117. 117.
    Maimbourg T, Kurchan J, Zamponi F. 2016. Phys. Rev. Lett. 116:015902
    [Google Scholar]
  118. 118.
    Kurchan J, Maimbourg T, Zamponi F. 2016. J. Stat. Mech. 2016:033210
    [Google Scholar]
  119. 119.
    Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi F. 2017. Annu. Rev. Condens. Matter Phys. 8:265–88
    [Google Scholar]
  120. 120.
    Agoritsas E. 2021. J. Stat. Mech. 2021:033501
    [Google Scholar]
  121. 121.
    Manacorda A, Zamponi F. 2022. J. Phys. A: Math. Theor. 55:334001
    [Google Scholar]
  122. 122.
    Parisi G, Urbani P, Zamponi F. 2020. Theory of Simple Glasses: Exact Solutions in Infinite Dimensions Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  123. 123.
    Fyodorov YV, Perret A, Schehr G. 2015. J. Stat. Mech. 2015:11017
    [Google Scholar]
  124. 124.
    Barbier D, de Freitas Pimenta PH, Cugliandolo LF, Stariolo DA. 2021. J. Stat. Mech. 2021:073301
    [Google Scholar]
  125. 125.
    Crisanti A, Ritort F. 2000. Europhys. Lett. 52:640–464
    [Google Scholar]
  126. 126.
    Billoire A, Giomi L, Marinari E. 2005. Europhys. Lett. 71:824–30
    [Google Scholar]
  127. 127.
    Baity-Jesi M, Biroli G, Cammarota C. 2018. J. Stat. Mech. 2018:013301
    [Google Scholar]
  128. 128.
    Baity-Jesi M, de Lustrac AA, Biroli G. 2018. Phys. Rev. E 98:012133
    [Google Scholar]
  129. 129.
    Stariolo DA, Cugliandolo LF. 2019. Europhys. Lett. 127:16002
    [Google Scholar]
  130. 130.
    Stariolo DA, Cugliandolo LF. 2020. Phys. Rev. E 102:022126
    [Google Scholar]
  131. 131.
    Carbone MR, Baity-Jesi M. 2022. Phys. Rev. E 106:024603
    [Google Scholar]
  132. 132.
    Carbone MR, Astuti V, Baity-Jesi M. 2020. Phys. Rev. E 101:052304
    [Google Scholar]
  133. 133.
    Bouchaud JP, Dean DS. 1995. J. Phys. I France 5:265–86
    [Google Scholar]
  134. 134.
    Barrat A, Mézard M. 1995. J. Phys. I France 5:941–47
    [Google Scholar]
  135. 135.
    Cammarota C, Marinari E. 2018. J. Stat. Mech. 2018:043303
    [Google Scholar]
  136. 136.
    Ben Arous G, Bovier A, Cerny J. 2008. Commun. Math. Phys. 282:663–95
    [Google Scholar]
  137. 137.
    Auffinger A, Ben Arous G. 2013. Ann. Probab. 41:4214–47
    [Google Scholar]
  138. 138.
    Baik J, Collins-Woodfin E, Doussal PL, Wu H. 2021. J. Stat. Phys. 183:31
    [Google Scholar]
  139. 139.
    Neumann C. 1850. CrelleJ. 56:46
    [Google Scholar]
  140. 140.
    Foini L, Gambassi A, Konik R, Cugliandolo LF. 2017. Phys. Rev. E 95:052116
    [Google Scholar]
  141. 141.
    de Nardis J, Panfil M, Gambassi A, Konik R, Cugliandolo LF, Foini L. 2017. SciPost Phys. 3:023
    [Google Scholar]
  142. 142.
    Uhlenbeck KK. 1982. Springer Lect. Notes Math. 49:146
    [Google Scholar]
  143. 143.
    Agoritsas E, Maimbourg T, Zamponi F. 2019. J. Phys. A: Math. Theor. 52:144002
    [Google Scholar]
  144. 144.
    Agoritsas E, Maimbourg T, Zamponi F. 2019. J. Phys. A: Math. Theor. 52:334001
    [Google Scholar]
  145. 145.
    Berthier L, Cugliandolo LF, Iguain JL. 2001. Phys. Rev. E 63:051302
    [Google Scholar]
  146. 146.
    Horner H. 1992. Z. Phys. B: Condens. Matter 86:291–308
    [Google Scholar]
  147. 147.
    Berthier L, Kurchan J. 2013. Nat. Phys. 9:310–14
    [Google Scholar]
  148. 148.
    Arnoulx de Pirey T, Lozano G, van Wijland F 2019. Phys. Rev. Lett. 123:260602
    [Google Scholar]
  149. 149.
    Arnoulx de Pirey T, Manacorda A, van Wijland F, Zamponi F 2021. J. Chem. Phys. 155:174106
    [Google Scholar]
  150. 150.
    Gardner MR, Ashby WR. 1970. Nature 228:784
    [Google Scholar]
  151. 151.
    May RM 1972. Nature 238:413–14
    [Google Scholar]
  152. 152.
    McCann KS. 2000. Nature 405:228–33
    [Google Scholar]
  153. 153.
    Allesina S, Tang S. 2012. Nature 483:205–8
    [Google Scholar]
  154. 154.
    Grilli J, Rogers T, Allesina S. 2016. Nat. Commun. 7:12031
    [Google Scholar]
  155. 155.
    Wainrib G, Touboul J. 2013. Phys. Rev. Lett. 110:118101
    [Google Scholar]
  156. 156.
    Farmer JD, Skouras S. 2013. Quant. Financ. 13:325–46
    [Google Scholar]
  157. 157.
    Moran J, Bouchaud JP. 2019. Phys. Rev. E 100:032307
    [Google Scholar]
  158. 158.
    Bray AJ, Dean DS. 2007. Phys. Rev. Lett. 98:150201
    [Google Scholar]
  159. 159.
    Ben Arous G, Fyodorov YV, Khoruzhenko BA. 2021. PNAS 118:e2023719118
    [Google Scholar]
  160. 160.
    Kesslerand DA, Shnerb NM. 2015. Phys. Rev. E 91:042705
    [Google Scholar]
  161. 161.
    Bunin G. 2017. Phys. Rev. E 95:042414
    [Google Scholar]
  162. 162.
    Galla T. 2018. Europhys. Lett. 123:48004
    [Google Scholar]
  163. 163.
    Pearce MT, Agarwala A, Fisher DS. 2020. PNAS 117:14572
    [Google Scholar]
  164. 164.
    Altieri A, Roy F, Cammarota C, Biroli G. 2021. Phys. Rev. Lett. 126:258301
    [Google Scholar]
  165. 165.
    Ros V, Roy F, Biroli G, Bunin G, Turner AM. 2023. Phys. Rev. Lett. 130:25257401
    [Google Scholar]
  166. 166.
    Opper M, Diederich S. 1992. Phys. Rev. Lett. 69:1616–19
    [Google Scholar]
  167. 167.
    Galla T. 2006. J. Phys. A: Math. Gen. 39:3853–69
    [Google Scholar]
  168. 168.
    Arnoulx de Pirey T, Bunin G 2023. Phys. Rev. Lett. 130:098401
    [Google Scholar]
  169. 169.
    Ratzke C, Barrere J, Gore J. 2020. Nat. Ecol. Evol. 4:376–83
    [Google Scholar]
  170. 170.
    Altieri A, Biroli G. 2022. SciPost Phys. 12:013
    [Google Scholar]
  171. 171.
    Hwang CR, Hwang-Ma SY, Sheu SJ. 2005. Ann. Appl. Probab. 15:1433–44
    [Google Scholar]
  172. 172.
    Lelièvre T, Nier F, Pavliotis GA. 2013. J. Stat. Phys. 152:237–74
    [Google Scholar]
  173. 173.
    Ichiki A, Ohzeki M. 2013. Phys. Rev. E 88:020101
    [Google Scholar]
  174. 174.
    Ghimenti F, van Wijland F. 2022. Phys. Rev. E 105:054137
    [Google Scholar]
  175. 175.
    McCulloch WS, Pitt W. 1943. Bull. Math. Biophys. 5:115–33
    [Google Scholar]
  176. 176.
    Rosenblatt F. 1958. Psychol. Rev. 65:386–408
    [Google Scholar]
  177. 177.
    Gardner E, Derrida B. 1988. J. Phys. A: Math. Gen. 21:271–84
    [Google Scholar]
  178. 178.
    Baity-Jesi M, Sagun L, Geiger M, Spigler S, Ben Arous G et al. 2019. J. Stat. Mech. 2019:124013
    [Google Scholar]
  179. 179.
    Sarao Mannelli S, Krzakala F, Urbani P, Zdeborová L. 2019. PMLR 97:4333–42
    [Google Scholar]
  180. 180.
    Sarao Mannelli S, Biroli G, Cammarota C, Krzakala F, Urbani P, Zdeborová L. 2020. Phys. Rev. X 10:011057
    [Google Scholar]
  181. 181.
    Mignacco F, Krzakala F, Urbani P, Zdevodorová L. 2020. J. Stat. Mech. 2021:124008
    [Google Scholar]
  182. 182.
    Mignacco F, Urbani P. 2022. J. Stat. Mech. 2022:083405
    [Google Scholar]
  183. 183.
    Cugliandolo LF, Müller M. 2023. Quantum Glasses Singapore: World Sci
    [Google Scholar]
  184. 184.
    Cugliandolo LF, Grempel DR, da Silva, Santos CA. 2000. Phys. Rev. Lett. 85:2589–92
    [Google Scholar]
  185. 185.
    Cugliandolo LF, Grempel DR, da Silva, Santos CA. 2001. Phys. Rev. B 64:014403
    [Google Scholar]
  186. 186.
    Cugliandolo LF, Grempel DR, Lozano G, Lozza H, da Silva, Santos CA. 2002. Phys. Rev. B 66:014444
    [Google Scholar]
  187. 187.
    Biroli G, Cugliandolo LF. 2001. Phys. Rev. B 64:014206
    [Google Scholar]
  188. 188.
    Cugliandolo LF, Lozano GS. 1998. Phys. Rev. Lett. 80:4979–82
    [Google Scholar]
  189. 189.
    Cugliandolo LF, Lozano GS. 1999. Phys. Rev. B 59:915–42
    [Google Scholar]
  190. 190.
    Rabani E, Reichman DR. 2005. Annu. Rev. Phys. Chem. 56:157–85
    [Google Scholar]
  191. 191.
    Thomson SJ, Urbani P, Schirò M. 2020. Phys. Rev. Lett. 125:120602
    [Google Scholar]
  192. 192.
    Jörg T, Krzakala F, Kurchan J, Maggs AJ. 2008. Phys. Rev. Lett. 101:147204
    [Google Scholar]
  193. 193.
    Bapst V, Foini L, Krzakala F, Semerjian G, Zamponi F. 2013. Phys. Rep. 52:127–205
    [Google Scholar]
  194. 194.
    Monasson R, Zecchina R, Kirkpatrick S, Selman B, Troyansky L. 1999. Nature 400:133–37
    [Google Scholar]
  195. 195.
    Basko DM, Aleiner IL, Altshuler BL. 2006. Ann. Phys. 321:1126–205
    [Google Scholar]
  196. 196.
    Maldacena J, Shenker SH, Stanford D. 2016. JHEP 2016:106
    [Google Scholar]
  197. 197.
    Chamon C, Charbonneau P, Cugliandolo LF, Reichman DR, Sellitto M. 2004. J. Chem. Phys. 121:10120–37
    [Google Scholar]
  198. 198.
    Facoetti D, Biroli G, Kurchan J, Reichman DR. 2019. Phys. Rev. B 100:205108
    [Google Scholar]
  199. 199.
    Tsuji N, Shitara T, Ueda M. 2018. Phys. Rev. E 98:012216
    [Google Scholar]
  200. 200.
    Pappalardi S, Foini L, Kurchan J. 2022. SciPost Phys. 12:130
    [Google Scholar]
  201. 201.
    Larkin A, Ovchinnikov YN. 1969. J. Exp. Theor. Phys. 28:1200–5
    [Google Scholar]
  202. 202.
    Bera S, Venkata Lokesh K, Banerjee S. 2022. Phys. Rev. Lett. 128:115302
    [Google Scholar]
  203. 203.
    Correale L, Polkovnikov A, Schirò M, Silva A. 2023. arXiv:2303.15393
  204. 204.
    Franz S, Parisi G. 1997. Phys. Rev. Lett. 79:2486–89
    [Google Scholar]
  205. 205.
    Charbonneau P, Marinari E, Mézard M, Parisi G, Ricci-Tersenghi F et al. 2023. Spin Glass Theory and Far Beyond: Replica Symmetry Breaking After 40 Years Singapore: World Sci
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040721-022848
Loading
/content/journals/10.1146/annurev-conmatphys-040721-022848
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error