Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter November 21, 2023

Modification of advanced low-dimensional nanomaterials towards high performance CO2 adsorption: an interpretative state-of-the-art review

  • Intan Najihah Musa , A. Arifutzzaman ORCID logo EMAIL logo , Mohamed Kheireddine Aroua and Shaukat Ali Mazari

Abstract

Carbon capture continues to gain attention from researchers especially in light of alarming increase of greenhouse gases in the atmosphere in the recent decades. Among the available carbon capture technologies, both of physical and chemical adsorption is favourably seen with various applicable adsorbents successfully introduced. Such promising CO2 adsorbent candidates include low-dimensional nanomaterials such as graphene, carbon nanotubes (CNTs) and fairly new MXenes. In this review, we will be covering the effects of various types of modifications and functionalization of these materials in enhancing the CO2 adsorption capacities. This includes functionalization with oxygenated and protic functional groups, heteroatoms doping, defect engineering and surface modification. It is observed that doping of graphene, amine-functionalization of CNTs and surface termination modification of MXenes are some of the most widely researched strategies. Since MXenes are a recent addition in the field of CO2 capture, we also covered some fundamental theoretical findings to introduce this new 2D nanomaterial to the readers. With this review, we aim to provide a better understanding on how modifications and functionalization process help to improve CO2 uptake in order to help synthesis of high-performance adsorbents in the future.


Corresponding author: A. Arifutzzaman, Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Malaysia; Tyndall National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland; and Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia, E-mail:

Funding source: Sunway University

Award Identifier / Grant number: GRTIN-RRO-54-2022

Award Identifier / Grant number: STR-IRNGSSET-CCDCU-01-2022

Acknowledgments

A Arifutzzaman and Mohamed Kheireddine Aroua would like to acknowledge the financial support provided by Sunway University, Malaysia through project no. # “GRTIN-RRO-54-2022” and “STR-IRNGS-SET-CCDCU-01-2022.

  1. Research ethics: This article does not contain any studies with human participants or animals performed by any of the authors.

  2. Author contributions: Study conceptualization and design: A Arifutzzaman; development of manuscript: Intan Najihah Musa and A Arifutzzaman; overall supervision, review of manuscript draft and funding: Mohamed Kheireddine Aroua; review of manuscript: Shaukat Ali Mazari.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: This work funded by Sunway University, Malaysia through project No. #“GRTIN-RRO-54-2022” and “STR-IRNGS-SET-CCDCU-01-2022.

  5. Data availability: Not applicable.

Abbreviations

CCS

Carbon capture and storage

CCU

Carbon capture and utilization

CNTs

Carbon nanotubes

DAPM

Poly(3-diamin-(aminomethyl) propyl methacrylate)

DETA

Diethylenetriamine

DETASI

N1-(3-Trimethoxysilylpropyl)diethylenetriamine

DFT

Density functional theory

DWCNTs

Double-walled carbon nanotubes

EDA

Ethylenediamine

GA

Graphene aerogels

GO

Graphene oxides

GP

Graphene

MEA

Monoethanolamine

MWCNTs

Multi-walled carbon nanotubes

NPs

Nanoparticles

PAA

Pollyallylamine

PAAM

Poly(aniline methacrylamide)

PANI

Polyaniline

PDA

Phenylenediamine

PDAFMA

Poly(N-(3,5-diaminophenyl)methacrylamide)

PEAM

Poly(2aminoethyl methacrylate)

PEI

Polyethyleneimine

PMMA

Poly(methyl methacrylate)

PPy

Polypyrrole

PS

Poly(styrene)

SSA

Specific surface area

SW

Stone–Wales

SWCNTs

Single-walled carbon nanotubes

TEPA

Tetraethylenepentamine

TETA

Triethylenetetramine

TMC

Transition metal carbides

vdW

van der Waals

Symbols

=N–H

Pyridinic-N

2D

2-Dimensional

3D

3-Dimensional

BN(OH) x

Hydroxylated boron nitride

CO

Carbon monoxide

CO2

Carbon dioxide

COOH

Carboxyl group

d p

Pore diameter

E ads

Adsorption energy

Fe3O4

Iron oxide

H2O

Water

H2S

Hydrogen sulfide

KOH

Potassium hyroxide

Mo2TiC2T x

Titanium molybdenum carbide MXene

–N+–H

Graphitic-N

N2

Nitrogen gas

–N–H

Pyrrolic-N

O2

Oxygen gas

SiO2

Silica

Ti3AlC2

Titanium aluminium carbide

Ti3C2T x

Titanium carbide MXene

V2CT x

Vanadium carbide MXene

V n

Volume of narrow micropores

References

Alesi, W.R. and Kitchin, J.R. (2012). Evaluation of a primary amine-functionalized ion-exchange resin for CO2 capture. Ind. Eng. Chem. Res. 51: 6907–6915, https://doi.org/10.1021/ie300452c.Search in Google Scholar

Alghamdi, A.A., Alshahrani, A.F., Khdary, N.H., Alharthi, F.A., Alattas, H.A., and Adil, S.F. (2018). Enhanced CO2 adsorption by nitrogen-doped graphene oxide sheets (N-GOs) prepared by employing polymeric precursors. Materials 11: 578, https://doi.org/10.3390/ma11040578.Search in Google Scholar PubMed PubMed Central

An, L., Liu, S., Wang, L., Wu, J., Wu, Z., Ma, C., , Yu, Q., Hu, X. (2019). Novel nitrogen-doped porous carbons derived from graphene for effective CO2 capture. Ind. Eng. Chem. Res. 58: 3349–3358, https://doi.org/10.1021/acs.iecr.8b06122.Search in Google Scholar

Anasori, B., Lukatskaya, M.R., and Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2: 16098, https://doi.org/10.1038/natrevmats.2016.98.Search in Google Scholar

Arifutzzaman, A., Saidur, R., and Aslfattahi, N. (2022). MXene and functionalized graphene hybridized nanoflakes based silicone-oil nanofluids as new class of media for micro-cooling application. Ceram. Int 49: 5922–5935, https://doi.org/10.1016/j.ceramint.2022.10.167.Search in Google Scholar

Azim, M.M., Arifutzzaman, A., Saidur, R., Khandaker, M., and Bradley, D. (2022). Recent progress in emerging hybrid nanomaterials towards the energy storage and heat transfer applications: a review. J. Mol. Liq. 360: 119443, https://doi.org/10.1016/j.molliq.2022.119443.Search in Google Scholar

Balasubramanian, K. and Burghard, M. (2005). Chemically functionalized carbon nanotubes. Small 1: 180–192, https://doi.org/10.1002/smll.200400118.Search in Google Scholar PubMed

Balasubramanian, R. and Chowdhury, S. (2015). Recent advances and progress in the development of graphene-based adsorbents for CO2 capture. J. Mater. Chem. A 3: 21968–21989, https://doi.org/10.1039/c5ta04822b.Search in Google Scholar

Cabrera-Sanfelix, P. (2009). Adsorption and reactivity of CO2 on defective graphene sheets. J. Phys. Chem. A 113: 493–498, https://doi.org/10.1021/jp807087y.Search in Google Scholar PubMed

Chai, S.Y.W., Ngu, L.H., and How, B.S. (2022). Review of carbon capture absorbents for CO2 utilization. Greenh. Gases: Sci. Technol. 12: 1–34, https://doi.org/10.1002/ghg.2151.Search in Google Scholar

Chandra, V., Yu, S.U., Kim, S.H., Yoon, Y.S., Kim, D.Y., Kwon, A.H., Meyyappan, M., Kim, K.S. (2012). Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem. Commun. 48: 735–737, https://doi.org/10.1039/c1cc15599g.Search in Google Scholar PubMed

Chiang, Y.-C. and Juang, R.-S. (2017). Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review. J. Taiwan Inst. Chem. Eng. 71: 214–234, https://doi.org/10.1016/j.jtice.2016.12.014.Search in Google Scholar

Chowdhury, S., and Jana, D. (2016). A theoretical review on electronic, magnetic and optical properties of silicene. Rep. Prog. Phys. 79, 126501, https://doi.org/10.1088/0034-4885/79/12/126501.Search in Google Scholar PubMed

Cortés-Arriagada, D., Villegas-Escobar, N., and Ortega, D.E. (2018). Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments. Appl. Surf. Sci. 427: 227–236, https://doi.org/10.1016/j.apsusc.2017.08.216.Search in Google Scholar

Cuéllar-Franca, R.M. and Azapagic, A. (2015). Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 9: 82–102, https://doi.org/10.1016/j.jcou.2014.12.001.Search in Google Scholar

del Castillo, R.M., Calles, A.G., Espejel-Morales, R., and Hernández-Coronado, H. (2018). Adsorption of CO2 on graphene surface modified with defects. Comput. Condens. Matter 16: e00315, https://doi.org/10.1016/j.cocom.2018.e00315.Search in Google Scholar

Deng, M. and Park, H.G. (2019). Spacer-assisted amine-coiled carbon nanotubes for CO2 capture. Langmuir 35: 4453–4459, https://doi.org/10.1021/acs.langmuir.8b03980.Search in Google Scholar PubMed

Dickinson, R.G. and Pauling, L. (1923). The crystal structure of molybdenite. J. Am. Chem. Soc. 45: 1466–1471, https://doi.org/10.1021/ja01659a020.Search in Google Scholar

Ding, J., Zhao, H., Zheng, Y., Wang, Q., Chen, H., Dou, H., and Yu, H. (2018). Efficient exfoliation of layered materials by waste liquor. Nanotechnology 29: 095603, https://doi.org/10.1088/1361-6528/aaa05f.Search in Google Scholar PubMed

dos Santos, T.C., Bourrelly, S., Llewellyn, P.L., Carneiro, J.W.d. M., and Ronconi, C.M. (2015). Adsorption of CO2 on amine-functionalised MCM-41: experimental and theoretical studies. Phys. Chem. Chem. Phys. 17: 11095–11102, https://doi.org/10.1039/c5cp00581g.Search in Google Scholar PubMed

dos Santos, T.C. and Ronconi, C.M. (2017). Self-assembled 3D mesoporous graphene oxides (MEGOs) as adsorbents and recyclable solids for CO2 and CH4 capture. J. CO2 Util. 20: 292–300, https://doi.org/10.1016/j.jcou.2017.05.018.Search in Google Scholar

dos Santos, T.C., Mancera, R.C., Rocha, M.V.J., da Silva, A.F.M., Furtado, I.O., Barreto, J., Stavale, F., Archanjo, B.S., de M. Carneiro, J.W., Costa, L.T., et al.. (2021). CO2 and H2 adsorption on 3D nitrogen-doped porous graphene: experimental and theoretical studies. J. CO2 Util. 48: 101517, https://doi.org/10.1016/j.jcou.2021.101517.Search in Google Scholar

dos Santos, T.C., Lage, M.R., da Silva, A.F., Fernandes, T.S., Carneiro, J.W.d. M., and Ronconi, C.M. (2022). Supramolecular dimers drive the reaction between CO2 and alkanolamines towards carbonate formation. J. CO2 Util. 61: 102054, https://doi.org/10.1016/j.jcou.2022.102054.Search in Google Scholar

Dutta, D., Wood, B.C., Bhide, S.Y., Ayappa, K.G., and Narasimhan, S. (2014). Enhanced gas adsorption on graphitic substrates via defects and local curvature: a density functional theory study. J. Phys. Chem. C 118: 7741–7750, https://doi.org/10.1021/jp411338a.Search in Google Scholar

Ejaz, A. and Jeon, S. (2018). The individual role of pyrrolic, pyridinic and graphitic nitrogen in the growth kinetics of Pd NPs on N-rGO followed by a comprehensive study on ORR. Int. J. Hydrog. Energy 43: 5690–5702, https://doi.org/10.1016/j.ijhydene.2017.12.184.Search in Google Scholar

Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., and Zettl, A. (2010). Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22: 4467–4472, https://doi.org/10.1002/adma.201000732.Search in Google Scholar PubMed

Faisal, S.N., Haque, E., Noorbehesht, N., Zhang, W., Harris, A.T., Church, Tamara L., and Minett, A.I. (2017). Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Adv. 7: 17950–17958, https://doi.org/10.1039/c7ra01355h.Search in Google Scholar

Firdaus, R.M., Desforges, A., Rahman Mohamed, A., and Vigolo, B. (2021). Progress in adsorption capacity of nanomaterials for carbon dioxide capture: a comparative study. J. Cleaner Prod. 328: 129553, https://doi.org/10.1016/j.jclepro.2021.129553.Search in Google Scholar

Fujigaya, T. and Nakashima, N. (2015). Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci. Technol. Adv. Mater. 16: 024802, https://doi.org/10.1088/1468-6996/16/2/024802.Search in Google Scholar PubMed PubMed Central

Furtado, I.O., dos Santos, T.C., Vasconcelos, L.F., Costa, L.T., Fiorot, R.G., Ronconi, C.M., and Carneiro, J.W.d. M. (2021). Combined theoretical and experimental studies on CO2 capture by amine-activated glycerol. Chem. Eng. J. 408: 128002, https://doi.org/10.1016/j.cej.2020.128002.Search in Google Scholar

Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., , Hobza, P., Zboril, R., Kim, K.S. (2012). Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112: 6156–6214, https://doi.org/10.1021/cr3000412.Search in Google Scholar PubMed

Gineys, M., Benoit, R., Cohaut, N., Bècguin, F., and Delpeux-Ouldriane, S. (2016). Grafting of activated carbon cloths for selective adsorption. Appl. Surf. Sci. 370: 522–527, https://doi.org/10.1016/j.apsusc.2015.11.257.Search in Google Scholar

Giordano, C., Erpen, C., Yao, W., Milke, B., and Antonietti, M. (2009). Metal nitride and metal carbide nanoparticles by a soft urea pathway. Chem. Mater. 21: 5136–5144, https://doi.org/10.1021/cm9018953.Search in Google Scholar

Gowri Sankar, P.A. and Udhayakumar, K. (2013). Electronic properties of boron and silicon doped (10, 0) zigzag single-walled carbon nanotube upon gas molecular adsorption: a DFT comparative study. J. Nanomater. 2013: 293936, https://doi.org/10.1155/2013/293936.Search in Google Scholar

Guo, Z., Li, Y., Sa, B., Fang, Y., Lin, J., Huang, Y., , Tang, C., Zhou, J., Miao, N., Sun, Z. (2020). M2C-type MXenes: promising catalysts for CO2 capture and reduction. Appl. Surf. Sci. 521: 146436, https://doi.org/10.1016/j.apsusc.2020.146436.Search in Google Scholar

Hall, A.J.H. (2016). Community college alumni engagement: exploring the relationship of social media to alumni giving. Liberty University, Lynchburg, Virginia, United States.Search in Google Scholar

Hao, G.-P., Li, W.-C., Qian, D., and Lu, A.-H. (2010). Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 22: 853–857, https://doi.org/10.1002/adma.200903765.Search in Google Scholar PubMed

Hu, H., Zhang, T., Yuan, S., and Tang, S. (2017). Functionalization of multi-walled carbon nanotubes with phenylenediamine for enhanced CO2 adsorption. Adsorption 23: 73–85, https://doi.org/10.1007/s10450-016-9820-y.Search in Google Scholar

Irani, M., Jacobson, A.T., Gasem, K.A.M., and Fan, M. (2017). Modified carbon nanotubes/tetraethylenepentamine for CO2 capture. Fuel 206: 10–18, https://doi.org/10.1016/j.fuel.2017.05.087.Search in Google Scholar

Jelmy, E.J., Thomas, N., Mathew, D.T., Louis, J., Padmanabhan, N.T., Kumaravel, V., , John, H., Pillai, S.C. (2021). Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. React. Chem. Eng. 6: 1701–1738, https://doi.org/10.1039/d1re00214g.Search in Google Scholar

Jun, L.Y., Mubarak, N.M., Yee, M.J., Yon, L.S., Bing, C.H., Khalid, M., and Abdullah, E.C. (2018). An overview of functionalised carbon nanomaterial for organic pollutant removal. J. Ind. Eng. Chem. 67: 175–186, https://doi.org/10.1016/j.jiec.2018.06.028.Search in Google Scholar

Jurado, A., Ibarra, K., Morales-García, Á., Viñes, F., and Illas, F. (2021). Adsorption and activation of CO2 on nitride MXenes: composition, temperature, and pressure effects. ChemPhysChem 22: 2456–2463, https://doi.org/10.1002/cphc.202100600.Search in Google Scholar PubMed PubMed Central

Keller, L., Ohs, B., Lenhart, J., Abduly, L., Blanke, P., and Wessling, M. (2018). High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture. Carbon 126: 338–345, https://doi.org/10.1016/j.carbon.2017.10.023.Search in Google Scholar

Khaledialidusti, R., Mishra, A.K., and Barnoush, A. (2020). Atomic defects in monolayer ordered double transition metal carbide (Mo2TiC2Tx) MXene and CO2 adsorption. J. Mater. Chem. C 8: 4771–4779, https://doi.org/10.1039/c9tc06046d.Search in Google Scholar

Korir, K.K. and Philemon, K.T. (2020). Tailoring single walled carbon nanotube for improved CO2 gas applications: insights from ab initio simulations. Materialia 11: 100694, https://doi.org/10.1016/j.mtla.2020.100694.Search in Google Scholar

Kunkel, C., Viñes, F., and Illas, F. (2016). Transition metal carbides as novel materials for CO2 capture, storage, and activation. Energy Environ. Sci. 9: 141–144, https://doi.org/10.1039/c5ee03649f.Search in Google Scholar

Lai, J.Y., Ngu, L.H., and Hashim, S.S. (2021). A review of CO2 adsorbents performance for different carbon capture technology processes conditions. Greenh. Gases: Sci. Technol. 11: 1076–1117, https://doi.org/10.1002/ghg.2112.Search in Google Scholar

Latini, G., Signorile, M., Rosso, F., Fin, A., d’Amora, M., Giordani, S., , Pirri, F., Crocellà, V., Bordiga, S., Bocchini, S. (2022). Efficient and reversible CO2 capture in bio-based ionic liquids solutions. J. CO2 Util. 55: 101815, https://doi.org/10.1016/j.jcou.2021.101815.Search in Google Scholar

Lee, Y., Lee, S., Hwang, Y., and Chung, Y.-C. (2014). Modulating magnetic characteristics of Pt embedded graphene by gas adsorption (N2, O2, NO2, SO2). Appl. Surf. Sci. 289: 445–449, https://doi.org/10.1016/j.apsusc.2013.10.189.Search in Google Scholar

Li, J., Hou, M., Chen, Y., Cen, W., Chu, Y., and Yin, S. (2017). Enhanced CO2 capture on graphene via N, S dual-doping. Appl. Surf. Sci. 399: 420–425, https://doi.org/10.1016/j.apsusc.2016.11.157.Search in Google Scholar

Li, S. and Jiang, J. (2017). Adsorption behavior analyses of several small gas molecules onto Rh-doped single-walled carbon nanotubes. Appl. Phys. A 123: 669, https://doi.org/10.1007/s00339-017-1273-y.Search in Google Scholar

Liu, Y., Xiang, M., and Hong, L. (2017). Three-dimensional nitrogen and boron codoped graphene for carbon dioxide and oils adsorption. RSC Adv. 7: 6467–6473, https://doi.org/10.1039/c6ra22297h.Search in Google Scholar

Liu, Y., Sajjadi, B., Chen, W.-Y., and Chatterjee, R. (2019). Ultrasound-assisted amine functionalized graphene oxide for enhanced CO2 adsorption. Fuel 247: 10–18, https://doi.org/10.1016/j.fuel.2019.03.011.Search in Google Scholar

Lourenço, M.A.O., Fontana, M., Jagdale, P., Pirri, C.F., and Bocchini, S. (2021). Improved CO2 adsorption properties through amine functionalization of multi-walled carbon nanotubes. J. Chem. Eng. 414: 128763, https://doi.org/10.1016/j.cej.2021.128763.Search in Google Scholar

Lyu, W., Sun, L., Wang, L., Ji, Z., Zhou, S., Chen, Y., and Lu, X. (2022). Nitrogen atom-doped layered graphene for high-performance CO2/N2 adsorption and separation. Energies 15: 3713, https://doi.org/10.3390/en15103713.Search in Google Scholar

Meconi, G.M., Tomovska, R., and Zangi, R. (2019). Adsorption of CO2 gas on graphene–polymer composites. J. CO2 Util. 32: 92–105, https://doi.org/10.1016/j.jcou.2019.03.005.Search in Google Scholar

Mello, M.R., Phanon, D., Silveira, G.Q., Llewellyn, P.L., and Ronconi, C.M. (2011). Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater. 143: 174–179, https://doi.org/10.1016/j.micromeso.2011.02.022.Search in Google Scholar

Merlano, A., Garay, A., Pérez, F.R., and Salazar, Á. (2017). Effect of doping with Al/B on the sensitivity of a metallic carbon nanotube to CO2. J. Phys.: Conf. Ser. 850: 012006, https://doi.org/10.1088/1742-6596/850/1/012006.Search in Google Scholar

Mohamed Hatta, N.S., Aroua, M.K., Hussin, F., and Gew, L.T. (2022). A systematic review of amino acid-based adsorbents for CO2 capture. Energies 15: 3753, https://doi.org/10.3390/en15103753.Search in Google Scholar

Mohammad, S.A. and Gasem, K.A.M. (2012). Multiphase analysis for high-pressure adsorption of CO2/water mixtures on wet coals. Energy Fuels 26: 3470–3480, https://doi.org/10.1021/ef300126x.Search in Google Scholar

Morales-García, Á., Fernández-Fernández, A., Viñes, F., and Illas, F. (2018). CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 6: 3381–3385, https://doi.org/10.1039/c7ta11379j.Search in Google Scholar

Morales-García, Á., Mayans-Llorach, M., Viñes, F., and Illas, F. (2019). Thickness biased capture of CO2 on carbide MXenes. Phys. Chem. Chem. Phys. 21: 23136–23142, https://doi.org/10.1039/c9cp04833b.Search in Google Scholar PubMed

Morales-Salvador, R., Morales-García, Á., Viñes, F., and Illas, F. (2018). Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation. Phys. Chem. Chem. Phys. 20: 17117–17124, https://doi.org/10.1039/c8cp02746c.Search in Google Scholar PubMed

Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., , Hultman, L., Gogotsi, Y., Barsoum, M.W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23: 4248–4253, https://doi.org/10.1002/adma.201102306.Search in Google Scholar PubMed

Ngoc, H.V. and Pham, K.D. (2022). First-principles study on N2, H2, O2, NO, NO2, CO, CO2, and SO2 gas adsorption properties of the Sc2CF2 monolayer. Phys. E 141: 115162, https://doi.org/10.1016/j.physe.2022.115162.Search in Google Scholar

Nguyen, T.T.H., Le, V.K., Le Minh, C., and Nguyen, N.H. (2017). A theoretical study of carbon dioxide adsorption and activation on metal-doped (Fe, Co, Ni) carbon nanotube. Comput. Theor. Chem. 1100: 46–51, https://doi.org/10.1016/j.comptc.2016.12.006.Search in Google Scholar

Nobarzad, M.J., Tahmasebpoor, M., Imani, M., Pevida, C., and Heris, S.Z. (2021). Improved CO2 adsorption capacity and fluidization behavior of silica-coated amine-functionalized multi-walled carbon nanotubes. J. Environ. Chem. Eng. 9: 105786, https://doi.org/10.1016/j.jece.2021.105786.Search in Google Scholar

Osler, K., Dheda, D., Ngoy, J., Wagner, N., and Daramola, M.O. (2017). Synthesis and evaluation of carbon nanotubes composite adsorbent for CO2 capture: a comparative study of CO2 adsorption capacity of single-walled and multi-walled carbon nanotubes. Int. J. Coal Sci. Technol. 4: 41–49, https://doi.org/10.1007/s40789-017-0157-2.Search in Google Scholar

Osler, K., Twala, N., Oluwasina, O.O., and Daramola, M.O. (2017). Synthesis and performance evaluation of chitosan/carbon nanotube (Chitosan/MWCNT) composite adsorbent for post-combustion carbon dioxide capture. Energy Procedia 114: 2330–2335, https://doi.org/10.1016/j.egypro.2017.03.1368.Search in Google Scholar

Ouyang, L., Xiao, J., Jiang, H., and Yuan, S. (2021). Nitrogen-doped porous carbon materials derived from graphene oxide/melamine resin composites for CO2 adsorption. Molecules 26: 5293, https://doi.org/10.3390/molecules26175293.Search in Google Scholar PubMed PubMed Central

Panda, D., Singh, S.K., and Kumar, E.A. (2018). A comparative study of CO2 capture by amine grafted vs amine impregnated zeolite 4A. Paper presented at the Materials Science and Engineering, IOP Publishing Ltd.10.1088/1757-899X/377/1/012148Search in Google Scholar

Patel, H.A., Byun, J., and Yavuz, C.T. (2017). Carbon dioxide capture adsorbents: chemistry and methods. ChemSusChem 10: 1303–1317, https://doi.org/10.1002/cssc.201601545.Search in Google Scholar PubMed

Persson, I., Halim, J., Lind, H., Hansen, T.W., Wagner, J.B., Näslund, L.-Å., , Darakchieva, V., Palisaitis, J., Rosen, J., Persson, P.O.Å. (2019). 2D transition metal carbides (MXenes) for carbon capture. Adv. Mater. 31: 1805472, https://doi.org/10.1002/adma.201805472.Search in Google Scholar PubMed

Pogorielov, M., Smyrnova, K., Kyrylenko, S., Gogotsi, O., Zahorodna, V., and Pogrebnjak, A. (2021). MXenes - a new class of two-dimensional materials: structure, properties and potential applications. Nanomaterials 11: 3412, https://doi.org/10.3390/nano11123412.Search in Google Scholar PubMed PubMed Central

Politakos, N., Barbarin, I., Cantador, L.S., Cecilia, J.A., Mehravar, E., and Tomovska, R. (2020). Graphene-based monolithic nanostructures for CO2 capture. Ind. Eng. Chem. Res. 59: 8612–8621, https://doi.org/10.1021/acs.iecr.9b06998.Search in Google Scholar

Pruna, A.I., Barjola, A., Cárcel, A.C., Alonso, B., and Giménez, E. (2020). Effect of varying amine functionalities on CO(2) capture of carboxylated graphene oxide-based cryogels. Nanomaterials 10: 1446, https://doi.org/10.3390/nano10081446.Search in Google Scholar PubMed PubMed Central

Rahimi, K., Riahi, S., Abbasi, M., and Fakhroueian, Z. (2019). Modification of multi-walled carbon nanotubes by 1,3-diaminopropane to increase CO2 adsorption capacity. J. Environ. Manage. 242: 81–89, https://doi.org/10.1016/j.jenvman.2019.04.036.Search in Google Scholar PubMed

Rahmam, S., Mohamed, N.M., and Sufian, S. (2014). Effect of acid treatment on the multiwalled carbon nanotubes. Mater. Res. Innov. 18: 196–199, https://doi.org/10.1179/1432891714z.0000000001038.Search in Google Scholar

Re Fiorentin, M., Gaspari, R., Quaglio, M., Massaglia, G., and Saracco, G. (2018). Nitrogen doping and CO2 adsorption on graphene: a thermodynamical study. Phys. Rev. B 97: 155428, https://doi.org/10.1103/physrevb.97.155428.Search in Google Scholar

Rodríguez-García, S., Santiago, R., López-Díaz, D., Merchán, M.D., Velázquez, M.M., Fierro, J.L.G., and Palomar, J. (2019). Role of the structure of graphene oxide sheets on the CO2 adsorption properties of nanocomposites based on graphene oxide and polyaniline or Fe3O4-nanoparticles. ACS Sustain. Chem. Eng. 7: 12464–12473.10.1021/acssuschemeng.9b02035Search in Google Scholar

Shokuhi Rad, A. and Pouralijan Foukolaei, V. (2015). Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O. Synth. Met. 210: 171–178, https://doi.org/10.1016/j.synthmet.2015.09.026.Search in Google Scholar

Sirijaraensre, J. and Limtrakul, J. (2016). Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: a DFT study. Appl. Surf. Sci. 364: 241–248, https://doi.org/10.1016/j.apsusc.2015.12.117.Search in Google Scholar

Sitko, R., Zawisza, B., and Malicka, E. (2012). Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions. TrAC, Trends Anal. Chem. 37: 22–31, https://doi.org/10.1016/j.trac.2012.03.016.Search in Google Scholar

Speranza, G. (2019). The role of functionalization in the applications of carbon materials: an overview. C 5: 84, https://doi.org/10.3390/c5040084.Search in Google Scholar

Sun, Z., Fang, S., and Hu, Y.H. (2020). 3D graphene materials: from understanding to design and synthesis control. Chem. Rev. 120: 10336–10453, https://doi.org/10.1021/acs.chemrev.0c00083.Search in Google Scholar PubMed

Tian, Y., Lin, Y., Hagio, T., and Hu, Y.H. (2020). Surface-microporous graphene for CO2 adsorption. Catal. Today 356: 514–518, https://doi.org/10.1016/j.cattod.2020.06.002.Search in Google Scholar

Tit, N., Said, K., Mahmoud, N.M., Kouser, S., and Yamani, Z.H. (2017). Ab-initio investigation of adsorption of CO and CO2 molecules on graphene: role of intrinsic defects on gas sensing. Appl. Surf. Sci. 394: 219–230, https://doi.org/10.1016/j.apsusc.2016.10.052.Search in Google Scholar

Tiwari, S.K., Sahoo, S., Wang, N., and Huczko, A. (2020). Graphene research and their outputs: status and prospect. J. Sci.: Adv. Mater. 5: 10–29, https://doi.org/10.1016/j.jsamd.2020.01.006.Search in Google Scholar

Tobias, G., Mendoza, E., and Ballesteros, B. (2016). Functionalization of carbon nanotubes. In: Bhushan, B. (Ed.). Encyclopedia of nanotechnology. Springer Netherlands, Dordrecht, pp. 1281–1291.10.1007/978-94-017-9780-1_48Search in Google Scholar

Wang, B., Zhou, A., Liu, F., Cao, J., Wang, L., and Hu, Q. (2018). Carbon dioxide adsorption of two-dimensional carbide MXenes. J. Adv. Ceram. 7: 237–245, https://doi.org/10.1007/s40145-018-0275-3.Search in Google Scholar

Wang, C., Fang, Y., Duan, H., Liang, G., Li, W., Chen, D., and Long, M. (2021). DFT study of CO2 adsorption properties on pristine, vacancy and doped graphenes. Solid State Commun. 337: 114436, https://doi.org/10.1016/j.ssc.2021.114436.Search in Google Scholar

Wang, H., Zhou, A., Peng, F., Yu, H., and Yang, J. (2007). Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J. Colloid Interface Sci. 316: 277–283, https://doi.org/10.1016/j.jcis.2007.07.075.Search in Google Scholar PubMed

Wang, H., Xu, C., Zhou, Y., Zhao, W., Zhong, J., Huang, W., and Chen, R. (2019). Fabrication of hierarchical N-doped carbon nanotubes for CO2 adsorption. Nano 14: 1950072, https://doi.org/10.1142/s1793292019500723.Search in Google Scholar

Wang, W., Motuzas, J., Zhao, X.S., and Diniz da Costa, J.C. (2019). 2D/3D assemblies of amine-functionalized graphene silica (templated) aerogel for enhanced CO2 sorption. ACS Appl. Mater. Interfaces 11: 30391–30400, https://doi.org/10.1021/acsami.9b07192.Search in Google Scholar PubMed

Wang, X., He, T., Hu, J., and Liu, M. (2021). The progress of nanomaterials for carbon dioxide capture via the adsorption process. Environ. Sci. Nano 8: 890–912, https://doi.org/10.1039/d0en01140a.Search in Google Scholar

Wang, X. and Song, C. (2020). Carbon capture from flue gas and the atmosphere: a perspective. Front. Energy Res. 8: 560849, https://doi.org/10.3389/fenrg.2020.560849.Search in Google Scholar

Wang, Y., Wang, H., Zhang, T.C., Yuan, S., and Liang, B. (2020). N-Doped porous carbon derived from rGO-Incorporated polyphenylenediamine composites for CO2 adsorption and supercapacitors. J. Power Sources 472: 228610, https://doi.org/10.1016/j.jpowsour.2020.228610.Search in Google Scholar

Wang, Y., Xiao, J., Wang, H., Zhang, T.C., and Yuan, S. (2021). N-Doped porous carbon derived from solvent-free synthesis of cross-linked triazine polymers for simultaneously achieving CO2 capture and supercapacitors. Chem.–Eur. J. 27: 7908–7914, https://doi.org/10.1002/chem.202100414.Search in Google Scholar PubMed

Xiao, J., Wang, Y., Zhang, T.C., and Yuan, S. (2021). N, S-containing polycondensate-derived porous carbon materials for superior CO2 adsorption and supercapacitor. Appl. Surf. Sci. 562: 150128, https://doi.org/10.1016/j.apsusc.2021.150128.Search in Google Scholar

Xiao, J., Wang, Y., Zhang, T.C., Ouyang, L., and Yuan, S. (2022). Phytic acid-induced self-assembled chitosan gel-derived N, P-co-doped porous carbon for high-performance CO2 capture and supercapacitor. J. Power Sources 517: 230727, https://doi.org/10.1016/j.jpowsour.2021.230727.Search in Google Scholar

Xiong, Y., Wang, Y., Jiang, H., and Yuan, S. (2021). MWCNT decorated rich N-doped porous carbon with tunable porosity for CO2 capture. Molecules 26: 3451, https://doi.org/10.3390/molecules26113451.Search in Google Scholar PubMed PubMed Central

Yamamoto, S., Takeuchi, K., Hamamoto, Y., Liu, R.-Y., Shiozawa, Y., Koitaya, T., Someya, T., Tashima, K., Fukidome, H., Mukai, K., et al.. (2018). Enhancement of CO2 adsorption on oxygen-functionalized epitaxial graphene surface under near-ambient conditions. Phys. Chem. Chem. Phys. 20: 19532–19538, https://doi.org/10.1039/c8cp03251c.Search in Google Scholar PubMed

Ye, M., Wang, X., Liu, E., Ye, J., and Wang, D. (2018). Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. ChemSusChem 11: 1606–1611, https://doi.org/10.1002/cssc.201800083.Search in Google Scholar PubMed

Ye, Q., Jiang, J., Wang, C., Liu, Y., Pan, H., and Shi, Y. (2012). Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy Fuels 26: 2497–2504, https://doi.org/10.1021/ef201699w.Search in Google Scholar

Yoon, S.H., Park, H., Elbashir, N.O., and Han, D.S. (2020). Effect of Fe/N-doped carbon nanotube (CNT) wall thickness on CO2 conversion: a DFT study. Sustainable Mater. Technol. 26: e00224, https://doi.org/10.1016/j.susmat.2020.e00224.Search in Google Scholar

Yu, C.-H., Huang, C.-H., and Tan, C.-S. (2012). A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12: 745–769, https://doi.org/10.4209/aaqr.2012.05.0132.Search in Google Scholar

Yuan, X., Xiao, J., Yılmaz, M., Zhang, T.C., and Yuan, S. (2022). N, P Co-doped porous biochar derived from cornstalk for high performance CO2 adsorption and electrochemical energy storage. Sep. Purif. Technol. 299: 121719, https://doi.org/10.1016/j.seppur.2022.121719.Search in Google Scholar

Zgrzebnicki, M., Krauze, N., Gęsikiewicz-Puchalska, A., Kapica-Kozar, J., Piróg, E., Jędrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W., and Wrobel, R.J. (2017). Impact on CO2 uptake of MWCNT after acid treatment study. J. Nanomater. 2017: 7359591.10.1155/2017/7359591Search in Google Scholar

Zhang, C.-P., Li, B., and Shao, Z.-G. (2019). First-principle investigation of CO and CO2 adsorption on Fe-doped penta-graphene. Appl. Surf. Sci. 469: 641–646, https://doi.org/10.1016/j.apsusc.2018.11.072.Search in Google Scholar

Received: 2022-12-02
Accepted: 2023-09-29
Published Online: 2023-11-21

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2022-0071/html
Scroll to top button