1932

Abstract

At the scale of drops, water either sticks to inclined solids or moves, yet slowly—without the mobility we expect of a liquid of low viscosity. We first recall that the contact line that bounds a drop is responsible for these special adhesion and enhanced friction properties. Then, we discuss how inducing nonwetting states (pearls and marbles) minimizes the role of this line, restores mobility, and even boosts the liquid when it is viscous.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032822-041643
2024-03-11
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032822-041643.html?itemId=/content/journals/10.1146/annurev-conmatphys-032822-041643&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Proust M. 1913. Du côté de chez Swann Transl. C.K. Scott Moncrieff, 1922 London: Chatto & Windus (from French)
    [Google Scholar]
  2. 2.
    Nabokov V. 1966. Speak Memory: An Autobiography Revisited New York: G. P. Putnam's Sons.
    [Google Scholar]
  3. 3.
    Young T. 1805. Philos. Trans. R. Soc. 95:65–87
    [Google Scholar]
  4. 4.
    Marshall JS, Palmer WM. 1948. J. Meteor. 5:165–66
    [Google Scholar]
  5. 5.
    Tadmor R, Bahadur P, Leh A, N'guessan HE, Jaini R, Dang L 2009. Phys. Rev. Lett. 103:266101
    [Google Scholar]
  6. 6.
    Finn R, Shinbrot M. 1988. Math. Meth. Appl. Sci. 10:165–96
    [Google Scholar]
  7. 7.
    Johnson RE Jr., Dettre RH 1964. Contact Angle, Wettability, and Adhesion 43 Advances in Chemistry,112–35 Washington, DC: ACS
    [Google Scholar]
  8. 8.
    Dussan V EB, Chow RTP 1983. J. Fluid Mech. 137:1–29
    [Google Scholar]
  9. 9.
    Dussan V EB 1985. J. Fluid Mech. 151:1–20
    [Google Scholar]
  10. 10.
    De Gennes PG. 1985. Rev. Modern Phys. 57:827–63
    [Google Scholar]
  11. 11.
    Schwartz LW, Garoff S. 1985. Langmuir 1:219–30
    [Google Scholar]
  12. 12.
    Pockels A. 1914. Phys. Z. 15:39–46
    [Google Scholar]
  13. 13.
    Joanny JF, de Gennes PG. 1984. J. Chem. Phys. 81:552–62
    [Google Scholar]
  14. 14.
    Pomeau Y, Vannimenus J. 1985. J. Colloid Interface Sci. 104:477–88
    [Google Scholar]
  15. 15.
    Olsen DA, Joyner PA, Olson MD. 1962. J. Phys. Chem. 66:883–86
    [Google Scholar]
  16. 16.
    Furmidge CGL. 1962. J. Colloid Sci. 17:309–24
    [Google Scholar]
  17. 17.
    Savva N, Kalliadasis S. 2013. J. Fluid Mech. 725:462–91
    [Google Scholar]
  18. 18.
    Frenkel YI. 1948. JETP (USSR) 18:659–69
    [Google Scholar]
  19. 19.
    Extrand CW, Kumagai Y. 1995. J. Colloid Interface Sci. 170:515–21
    [Google Scholar]
  20. 20.
    Beitollahpoor M, Farzam M, Pesika NS. 2022. Langmuir 38:2132–36
    [Google Scholar]
  21. 21.
    Gao N, Geyer F, Pilat DW, Wooh S, Vollmer D et al. 2018. Nat. Phys. 14:191–96
    [Google Scholar]
  22. 22.
    Spori DM. 2010. Structural influences on self-cleaning surfaces PhD Thesis ETH Zürich https://doi.org/10.3929/ethz-a-006193586
    [Google Scholar]
  23. 23.
    Yonemoto Y, Fujii Y, Sugino Y, Kunugi T. 2022. Micromachines 13:1849–64
    [Google Scholar]
  24. 24.
    Quéré D. 2005. Rep. Prog. Phys. 68:2495–532
    [Google Scholar]
  25. 25.
    Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD et al. 2011. Nature 477:443–47
    [Google Scholar]
  26. 26.
    Lafuma A, Quéré D. 2011. Slippery pre-suffused surfaces. Europhys. Lett. 96:56001
    [Google Scholar]
  27. 27.
    Chen L, Huang S, Ras RHA, Tian X. 2023. Nat. Rev. Chem. 7:123–137
    [Google Scholar]
  28. 28.
    Guan JH, Gutierrez ER, Xu B, Wood D, McHale G et al. 2017. Soft Matter 13:3404–10
    [Google Scholar]
  29. 29.
    Anand S, Paxson AT, Dhiman R, Smith JD, Varanasi KK. 2012. ACS Nano 6:10122–29
    [Google Scholar]
  30. 30.
    Snoeijer JH, Andreotti B. 2013. Annu. Rev. Fluid Mech. 45:269–92
    [Google Scholar]
  31. 31.
    Voinov OV. 1976. Fluid Dyn. 11:714–21
    [Google Scholar]
  32. 32.
    Kim HY, Lee HJ, Kang BH. 2002. J. Colloid Interface Sci. 247:372–80
    [Google Scholar]
  33. 33.
    Huh C, Scriven LE. 1971. J. Colloid Interface Sci. 35:85–101
    [Google Scholar]
  34. 34.
    Hocking LM. 1981. Q. J. Mech. Appl. Math. 34:37–55
    [Google Scholar]
  35. 35.
    Eggers J. 2005. Phys. Rev. E 72:061605
    [Google Scholar]
  36. 36.
    Dussan V EB, Davis SH 1974. J. Fluid Mech. 65:71–95
    [Google Scholar]
  37. 37.
    Eggers J, Stone HA. 2004. J. Fluid Mech. 505:309–21
    [Google Scholar]
  38. 38.
    Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE et al. 2013. Soft Matter 9:1772–80
    [Google Scholar]
  39. 39.
    Keiser A, Keiser L, Clanet C, Quéré D. 2017. Soft Matter 13:6981–87
    [Google Scholar]
  40. 40.
    Daniel D, Timonen JV, Li R, Velling SJ, Aizenberg J. 2017. Nat. Phys. 13:1020–25
    [Google Scholar]
  41. 41.
    Leidenfrost JG. 1756. De Aquae Communis Nonnullis Qualitatibus Tractatus Duisburg, Ger: Ovenius
    [Google Scholar]
  42. 42.
    Barthlott W, Neinhuis C. 1997. Planta 202:1–8
    [Google Scholar]
  43. 43.
    Onda T, Shibuichi S, Satoh N, Tsujii K. 1996. Langmuir 12:2125–27
    [Google Scholar]
  44. 44.
    Liu K, Vuckovac M, Latikka M, Huhtamäki T, Ras RHA. 2019. Science 363:1147–48
    [Google Scholar]
  45. 45.
    Sakai M, Kono H, Nakajima A, Zhang X, Sakai H et al. 2009. Langmuir 25:14182–86
    [Google Scholar]
  46. 46.
    Olin P, Lindström SB, Pettersson T, Wådberg L. 2013. Langmuir 29:9079–89
    [Google Scholar]
  47. 47.
    Jin P, Zhao K, Blin Z, Allais M, Mouterde T, Quéré D. 2023. J. Chem. Phys. 158:204709
    [Google Scholar]
  48. 48.
    Schellenberger F, Encinas N, Vollmer D, Butt HJ. 2016. Phys. Rev. Lett. 116:096101
    [Google Scholar]
  49. 49.
    Daniel D, Lay CL, Sng A, Lee CJJ, Neo DCJ et al. 2019. PNAS 116:25008–12
    [Google Scholar]
  50. 50.
    Vieira A, Cui W, Jokinen V, Ras RHA, Zhou Q. 2023. Soft Matter 19:2350–59
    [Google Scholar]
  51. 51.
    Aussillous P, Quéré D. 2001. Nature 411:924–27
    [Google Scholar]
  52. 52.
    McHale G, Newton MI. 2011. Soft Matter 7:5473–81
    [Google Scholar]
  53. 53.
    Bormashenko E. 2011. Curr. Opin. Colloid Interface Sci. 16:266–71
    [Google Scholar]
  54. 54.
    Mahadevan L, Pomeau Y. 1999. Phys. Fluids 11:2449–53
    [Google Scholar]
  55. 55.
    Timonen JVI, Latikka M, Ikkala O, Ras RHA. 2013. Nat. Commun. 4:2398
    [Google Scholar]
  56. 56.
    Al-Azawi A, Latikka M, Jokinen V, Franssila S, Ras RHA. 2017. Small 13:1700860
    [Google Scholar]
  57. 57.
    Boreyko JB, Chen CH. 2009. Phys. Rev. Lett. 103:174502
    [Google Scholar]
  58. 58.
    Reyssat M, Quéré D. 2009. J. Phys. Chem. B 113:3906–9
    [Google Scholar]
  59. 59.
    Hao P, Lv C, Yao Z, He F. 2010. Europhys. Lett. 90:66003
    [Google Scholar]
  60. 60.
    Backholm M, Molpeceres D, Vuckovac M, Nurmi H, Hokkanen MJ et al. 2020. Commun. Mater. 1:64
    [Google Scholar]
  61. 61.
    Rabinowicz E. 1965. Friction and Wear of Materials Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  62. 62.
    Alazemi AA. 2021. Lubricants 9:81–93
    [Google Scholar]
  63. 63.
    Xie J, Xu J, Shang W, Zhang K. 2018. Int. J. Heat Mass Trans. 122:45–58
    [Google Scholar]
  64. 64.
    Burkarter E, Berlim LS, Schreiner WH, Saul CK. 2010. Phys. Fluids 22:012102
    [Google Scholar]
  65. 65.
    Butt HJ, Gao N, Papadopoulos P, Steffen W, Kappl M, Berger R. 2017. Langmuir 33:107–16
    [Google Scholar]
  66. 66.
    Cottin-Bizonne C, Barrat JL, Bocquet L, Charlaix E. 2003. Nat. Mater. 2:237–40
    [Google Scholar]
  67. 67.
    Ou J, Perot B, Rothstein JP. 2004. Phys. Fluids 16:4635–43
    [Google Scholar]
  68. 68.
    Truesdell R, Mammoli A, Vorobieff P, van Swol F, Brinker CJ. 2006. Phys. Rev. Lett. 97:044504
    [Google Scholar]
  69. 69.
    Ybert C, Barentin C, Cottin-Bizonne C, Joseph P, Bocquet L. 2007. Phys. Fluids 19:123601
    [Google Scholar]
  70. 70.
    Smith AFW, Mahelona K, Hendy SC. 2018. Phys. Rev. E 98:033113
    [Google Scholar]
  71. 71.
    Richard D, Quéré D. 1999. Europhys. Lett. 48:286–91
    [Google Scholar]
  72. 72.
    Mognetti BM, Kusumaatmaja H, Yeomans JM. 2010. Faraday Discuss. 146:153–65
    [Google Scholar]
  73. 73.
    Yariv E, Schnitzer O. 2019. Phys. Rev. Fluids 4:093602
    [Google Scholar]
  74. 74.
    Schnitzer O, Davis AMJ, Yariv E. 2020. J. Fluid Mech. 903:A25
    [Google Scholar]
  75. 75.
    Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. 2000. Langmuir 13:5754–60
    [Google Scholar]
  76. 76.
    Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F et al. 2005. Phys. Fluids 17:051701
    [Google Scholar]
  77. 77.
    Sakai M, Song JH, Yoshida N, Suzuki S, Kameshima Y, Nakajima A. 2006. Langmuir 22:4906–9
    [Google Scholar]
  78. 78.
    Mouterde T, Raux P, Clanet C, Quéré D. 2019. PNAS 116:8220–23
    [Google Scholar]
  79. 79.
    Magnaudet J, Riverot M, Fabre J. 1995. J. Fluid Mech. 284:97–135
    [Google Scholar]
  80. 80.
    Maxworthy T, Gnann C, Kürten M, Durst F. 1996. J. Fluid Mech. 321:421–41
    [Google Scholar]
  81. 81.
    Jiang X, Chen S, Xu E, Meng X, Wu G, Li HZ. 2021. Powder Technol. 394:1240–47
    [Google Scholar]
  82. 82.
    Levich VG. 1962. Physicochemical Hydrodynamics Englewood Cliffs, NJ: Prentice Hall
    [Google Scholar]
  83. 83.
    Podgorski T, Flesselles JM, Limat L. 2001. Phys. Rev. Lett. 87:036102
    [Google Scholar]
  84. 84.
    Hao P, Lv C, Yao Z. 2013. Langmuir 29:5160–66
    [Google Scholar]
  85. 85.
    Schneider J, Egatz-Gómez A, Melle S, Lindsay S, Domínguez-García P et al. 2008. Colloids Surf. A 323:19–27
    [Google Scholar]
  86. 86.
    Imai S. 2018. Sens. Actuators A 274:73–84
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-032822-041643
Loading
/content/journals/10.1146/annurev-conmatphys-032822-041643
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error