1932

Abstract

The superconducting nickelates were first proposed as potential analogs to the cuprate unconventional superconductors in 1999, but it took twenty years before superconductivity was successfully stabilized in epitaxial thin films. Since then, a flurry of both experimental and theoretical efforts have sought to understand the similarities and differences between the two systems and how they manifest in the macroscopic superconducting and normal state properties. Although the nickelates and cuprates indeed share many commonalities within their respective phase diagrams, several notable differences have also emerged, especially regarding their parent compounds, electronic hybridization, and fermiology. Here, we provide a survey of the rapidly developing landscape of layered nickelate superconductors, including recent experimental progress to probe not just the superconducting but also normal state and other ordered phases stabilized in these compounds.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032922-093307
2024-03-11
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032922-093307.html?itemId=/content/journals/10.1146/annurev-conmatphys-032922-093307&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bednorz JG, Müller KA. 1986. Z. Phys. B Condens. Matter 64:2189–93
    [Google Scholar]
  2. 2.
    Anisimov VI, Bukhvalov D, Rice TM. 1999. Phys. Rev. B 59:127901–6
    [Google Scholar]
  3. 3.
    Li D, Lee K, Wang BY, Osada M, Crossley S et al. 2019. Nature 572:7771624–27
    [Google Scholar]
  4. 4.
    Osada M, Wang BY, Goodge BH, Lee K, Yoon H et al. 2020. Nano Lett. 20:85735–40
    [Google Scholar]
  5. 5.
    Osada M, Wang BY, Goodge BH, Harvey SP, Lee K et al. 2021. Adv. Mater. 33:452104083
    [Google Scholar]
  6. 6.
    Zeng S, Li C, Chow LE, Cao Y, Zhang Z et al. 2022. Sci. Adv. 8:7eabl9927
    [Google Scholar]
  7. 7.
    Pan GA, Ferenc Segedin D, LaBollita H, Song Q, Nica EM et al. 2022. Nat. Mater. 21:2160–64
    [Google Scholar]
  8. 8.
    Ferenc Segedin D, Goodge BH, Pan GA, Song Q, LaBollita H et al. 2023. Nat. Commun. 14:1468
    [Google Scholar]
  9. 9.
    Mitchell J. 2021. Front. Phys. 9:813483
    [Google Scholar]
  10. 10.
    Lee K, Wang BY, Osada M, Goodge BH, Wang TC et al. 2023. Nature 619:288–92
    [Google Scholar]
  11. 11.
    Rossi M, Osada M, Choi J, Agrestini S, Jost D et al. 2022. Nat. Phys. 18:869–873
    [Google Scholar]
  12. 12.
    Li D, Wang BY, Lee K, Harvey SP, Osada M et al. 2020. Phys. Rev. Lett. 125:2027001 https://doi.org/10.1103/PhysRevLett.125.027001
    [Google Scholar]
  13. 13.
    Zeng S, Tang CS, Yin X, Li C, Li M et al. 2020. Phys. Rev. Lett. 125:14147003 https://doi.org/10.1103/PhysRevLett.125.147003
    [Google Scholar]
  14. 14.
    Tam CC, Choi J, Ding X, Agrestini S, Nag A et al. 2022. Nat. Mater. 21:101116–20
    [Google Scholar]
  15. 15.
    Krieger G, Martinelli L, Zeng S, Chow L, Kummer K et al. 2022. Phys. Rev. Lett. 129:2027002
    [Google Scholar]
  16. 16.
    Lu H, Rossi M, Nag A, Osada M, Li D et al. 2021. Science 373:6551213–16
    [Google Scholar]
  17. 17.
    Lee KW, Pickett WE. 2004. Phys. Rev. B 70:16165109
    [Google Scholar]
  18. 18.
    Botana AS, Bernardini F, Cano A. 2021. J. Exp. Theor. Phys. 132:618–27
    [Google Scholar]
  19. 19.
    Norman MR. 2020. Physics 13:85
    [Google Scholar]
  20. 20.
    Chow LE, Ariando A. 2022. Front. Phys. 10:20
    [Google Scholar]
  21. 21.
    Ji Y, Liu J, Li L, Liao Z. 2021. J. Appl. Phys. 130:6060901
    [Google Scholar]
  22. 22.
    Nomura Y, Arita R. 2022. Rep. Prog. Phys. 85:5052501
    [Google Scholar]
  23. 23.
    Pickett WE. 2021. Nat. Rev. Phys. 3:7–8
    [Google Scholar]
  24. 24.
    Zhang J, Tao X. 2021. CrystEngComm 23:183249–64
    [Google Scholar]
  25. 25.
    Gu Q, Wen H. 2022. Innovation 3:100202
    [Google Scholar]
  26. 26.
    Yang X, Li M, Ding Z, Li L, Ji C, Wu G. 2023. Adv. Quantum Technol. 6:2200065
    [Google Scholar]
  27. 27.
    Zhou X, Qin P, Feng Z, Yan H, Wang X et al. 2022. Mater. Today 55:170–85
    [Google Scholar]
  28. 28.
    Zaanen J, Sawatzky GA, Allen JW. 1985. Phys. Rev. Lett. 55:4418–21
    [Google Scholar]
  29. 29.
    Hu LH, Wu C. 2019. Phys. Rev. Res. 1:3032046
    [Google Scholar]
  30. 30.
    Jiang M, Berciu M, Sawatzky GA. 2020. Phys. Rev. Lett. 124:20207004
    [Google Scholar]
  31. 31.
    Hirayama M, Tadano T, Nomura Y, Arita R. 2020. Phys. Rev. B 101:7075107
    [Google Scholar]
  32. 32.
    Karp J, Botana AS, Norman MR, Park H, Zingl M, Millis A. 2020. Phys. Rev. X 10:2021061
    [Google Scholar]
  33. 33.
    Hepting M, Li D, Jia CJ, Lu H, Paris E et al. 2020. Nat. Mater. 19:4381–85
    [Google Scholar]
  34. 34.
    Goodge BH, Li D, Lee K, Osada M, Wang BY et al. 2021. PNAS 118:2e2007683118
    [Google Scholar]
  35. 35.
    Chen Z, Osada M, Li D, Been EM, Chen SD et al. 2022. Matter 5:61806–15
    [Google Scholar]
  36. 36.
    Rossi M, Lu H, Nag A, Li D, Osada M et al. 2021. Phys. Rev. B 104:22L220505 https://doi.org/10.1103/PhysRevB.104.L220505
    [Google Scholar]
  37. 37.
    Botana AS, Norman MR. 2020. Phys. Rev. X 10:011024
    [Google Scholar]
  38. 38.
    Kitatani M, Si L, Janson O, Arita R, Zhong Z, Held K 2020. npj Quantum Mater 5:59
    [Google Scholar]
  39. 39.
    Been E, Lee WS, Hwang HY, Cui Y, Zaanen J et al. 2021. Phys. Rev. X 11:011050
    [Google Scholar]
  40. 40.
    Gao J, Peng S, Wang Z, Fang C, Weng H. 2021. Natl. Sci. Rev. 8:8nwaa218
    [Google Scholar]
  41. 41.
    Bernardini F, Olevano V, Cano A. 2020. Phys. Rev. Res. 2:013219
    [Google Scholar]
  42. 42.
    Ryee S, Yoon H, Kim TJ, Jeong MY, Han MJ. 2020. Phys. Rev. B 101:6064513
    [Google Scholar]
  43. 43.
    Leonov I, Skornyakov S, Savrasov S. 2020. Phys. Rev. B 101:24241108
    [Google Scholar]
  44. 44.
    Liu Z, Xu C, Cao C, Zhu W, Wang Z, Yang J. 2021. Phys. Rev. B 103:4045103
    [Google Scholar]
  45. 45.
    Lechermann F. 2021. Phys. Rev. Mater. 5:4044803
    [Google Scholar]
  46. 46.
    Lechermann F. 2020. Phys. Rev. B 101:8081110
    [Google Scholar]
  47. 47.
    Nomura Y, Hirayama M, Tadano T, Yoshimoto Y, Nakamura K, Arita R. 2019. Phys. Rev. B 100:20205138
    [Google Scholar]
  48. 48.
    Werner P, Hoshino S. 2020. Phys. Rev. B 101:4041104
    [Google Scholar]
  49. 49.
    Olevano V, Bernardini F, Blase X, Cano A. 2020. Phys. Rev. B 101:16161102
    [Google Scholar]
  50. 50.
    Wu X, Di Sante D, Schwemmer T, Hanke W, Hwang HY et al. 2020. Phys. Rev. B 101:6060504
    [Google Scholar]
  51. 51.
    Sakakibara H, Usui H, Suzuki K, Kotani T, Aoki H, Kuroki K. 2020. Phys. Rev. Lett. 125:7077003
    [Google Scholar]
  52. 52.
    Zhang F, Rice T. 1988. Phys. Rev. B 37:73759
    [Google Scholar]
  53. 53.
    Wang BY, Li D, Goodge BH, Lee K, Osada M et al. 2021. Nat. Phys. 17:4473–77
    [Google Scholar]
  54. 54.
    Chow LE, Sudheesh SK, Nandi P, Zeng S, Zhang Z et al. 2022. arXiv:2201.10038
  55. 55.
    Sun W, Li Y, Liu R, Yang J, Li J et al. 2023. Adv. Mater. 35:322303400
    [Google Scholar]
  56. 56.
    Ji Y, Liu J, Gao X, Li L, Chen K, Liao Z. 2023. Phys. C Supercond. Appl. 604:1354190
    [Google Scholar]
  57. 57.
    Ji H, Liu Y, Li Y, Ding X, Xie Z et al. 2023. Nat. Commun. 14:7155
    [Google Scholar]
  58. 58.
    Zhou XR, Feng ZX, Qin PX, Yan H, Wang XN et al. 2021. Rare Metals 40:102847–54
    [Google Scholar]
  59. 59.
    Ortiz RA, Menke H, Misják F, Mantadakis DT, Fürsich K et al. 2021. Phys. Rev. B 104:16165137
    [Google Scholar]
  60. 60.
    Zeng S, Yin X, Li C, Chow L, Tang C et al. 2022. Nat. Commun. 13:743
    [Google Scholar]
  61. 61.
    Chow LE, Rubi K, Yip KY, Pierre M, Leroux M et al. 2023. arXiv:2301.07606
  62. 62.
    Kawai M, Matsumoto K, Ichikawa N, Mizumaki M, Sakata O et al. 2010. Crystal Growth Des 10:52044–46
    [Google Scholar]
  63. 63.
    Lee K, Goodge BH, Li D, Osada M, Wang BY et al. 2020. APL Mater 8:4041107
    [Google Scholar]
  64. 64.
    Li Y, Sun W, Yang J, Cai X, Guo W et al. 2021. Front. Phys. 9:719534
    [Google Scholar]
  65. 65.
    Gao Q, Zhao Y, Zhou X, Zhu Z. 2021. Chin. Phys. Lett. 38:7077401
    [Google Scholar]
  66. 66.
    Onozuka T, Chikamatsu A, Katayama T, Fukumura T, Hasegawa T. 2016. Dalton Trans 45:3012114–18
    [Google Scholar]
  67. 67.
    Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, Shimakawa Y. 2009. Appl. Phys. Lett. 94:8082102
    [Google Scholar]
  68. 68.
    Li H, Hao P, Zhang J, Gordon K, Linn AG et al. 2023. Sci. Adv. 9:2eade4418
    [Google Scholar]
  69. 69.
    Gu Q, Li Y, Wan S, Li H, Guo W et al. 2020. Nat. Commun. 11:6027
    [Google Scholar]
  70. 70.
    Wang RF, Xiong YL, Yan H, Hu X, Osada M et al. 2023. Phys. Rev. B 107:11115411
    [Google Scholar]
  71. 71.
    Wang BX, Zheng H, Krivyakina E, Chmaissem O, Lopes PP et al. 2020. Phys. Rev. Mater. 4:8084409
    [Google Scholar]
  72. 72.
    Puphal P, Wu YM, Fürsich K, Lee H, Pakdaman M et al. 2021. Sci. Adv. 7:49eabl8091
    [Google Scholar]
  73. 73.
    Puphal P, Wehinger B, Nuss J, Küster K, Starke U et al. 2023. Phys. Rev. Mater. 7:014804
    [Google Scholar]
  74. 74.
    Goodge BH, Geisler B, Lee K, Osada M, Wang BY et al. 2023. Nat. Mater. 22:466–73
    [Google Scholar]
  75. 75.
    Catalano S, Gibert M, Fowlie J, Iniguez J, Triscone JM, Kreisel J. 2018. Rep. Prog. Phys. 81:4046501
    [Google Scholar]
  76. 76.
    Crespin M, Levitz P, Gatineau L. 1983. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 79:81181–94
    [Google Scholar]
  77. 77.
    Hayward MA, Green MA, Rosseinsky MJ, Sloan J. 1999. J. Am. Chem. Soc. 121:388843–54
    [Google Scholar]
  78. 78.
    Hayward M, Rosseinsky M. 2003. Solid State Sci 5:839–50
    [Google Scholar]
  79. 79.
    Kaneko D, Yamagishi K, Tsukada A, Manabe T, Naito M. 2009. Phys. C Supercond. 469:15–20936–39
    [Google Scholar]
  80. 80.
    Moriga T, Usaka O, Nakabayashi I, Kinouchi T, Kikkawa S, Kanamaru F 1995. Solid State Ion 79:252–55
    [Google Scholar]
  81. 81.
    Wei W, Shin K, Hong H, Shin Y, Thind AS et al. 2023. Phys. Rev. Mater. 7:013802
    [Google Scholar]
  82. 82.
    Fürsich K, Pons R, Bluschke M, Ortiz R, Wintz S et al. 2022. Front. Phys. 9:793
    [Google Scholar]
  83. 83.
    Ando Y, Segawa K. 2002. Phys. Rev. Lett. 88:16167005
    [Google Scholar]
  84. 84.
    Yu Y, Ma L, Cai P, Zhong R, Ye C et al. 2019. Nature 575:7781156–63
    [Google Scholar]
  85. 85.
    Segedin DF, Goodge BH, Pan GA, Song Q, LaBollita H et al. 2023. Nat. Commun. 14:1468
    [Google Scholar]
  86. 86.
    Ren X, Li J, Chen W-C, Gao Q, Sanchez JJ et al. 2021. arXiv:2109.05761v3
  87. 87.
    Li Q, He C, Si J, Zhu X, Zhang Y, Wen HH. 2020. Commun. Mater. 1:16
    [Google Scholar]
  88. 88.
    He C, Ming X, Li Q, Zhu X, Si J, Wen HH. 2021. J. Phys. Condens. Matter 33:26265701
    [Google Scholar]
  89. 89.
    Geisler B, Pentcheva R. 2020. Phys. Rev. B 102:2020502
    [Google Scholar]
  90. 90.
    He R, Jiang P, Lu Y, Song Y, Chen M et al. 2020. Phys. Rev. B 102:3035118
    [Google Scholar]
  91. 91.
    Ikeda A, Krockenberger Y, Irie H, Naito M, Yamamoto H. 2016. Appl. Phys. Express 9:6061101
    [Google Scholar]
  92. 92.
    Wang N, Yang M, Yang Z, Chen K, Zhang H et al. 2022. Nat. Commun. 13:4367
    [Google Scholar]
  93. 93.
    Si L, Xiao W, Kaufmann J, Tomczak JM, Lu Y et al. 2020. Phys. Rev. Lett. 124:16166402
    [Google Scholar]
  94. 94.
    Si L, Worm P, Held K. 2022. Crystals 12:5656
    [Google Scholar]
  95. 95.
    Malyi OI, Varignon J, Zunger A. 2022. Phys. Rev. B 105:014106
    [Google Scholar]
  96. 96.
    Ding X, Tam CC, Sui X, Zhao Y, Xu M et al. 2023. Nature 615:795050–55
    [Google Scholar]
  97. 97.
    Moodenbaugh A, Xu Y, Suenaga M, Folkerts T, Shelton R. 1988. Phys. Rev. B 38:74596
    [Google Scholar]
  98. 98.
    Tranquada J, Sternlieb B, Axe J, Nakamura Y, Uchida S. 1995. Nature 375:6532561–63
    [Google Scholar]
  99. 99.
    Chaloupka J, Khaliullin G. 2008. Phys. Rev. Lett. 100:016404
    [Google Scholar]
  100. 100.
    Hansmann P, Yang X, Toschi A, Khaliullin G, Andersen O, Held K. 2009. Phys. Rev. Lett. 103:016401
    [Google Scholar]
  101. 101.
    Han MJ, Wang X, Marianetti C, Millis A. 2011. Phys. Rev. Lett. 107:20206804
    [Google Scholar]
  102. 102.
    Lacorre P. 1992. J. Solid State Chem. 97:2495–500
    [Google Scholar]
  103. 103.
    Zhang J, Botana A, Freeland J, Phelan D, Zheng H et al. 2017. Nat. Phys. 13:9864–69
    [Google Scholar]
  104. 104.
    Nica EM, Krishna J, Yu R, Si Q, Botana AS, Erten O. 2020. Phys. Rev. B 102:2020504
    [Google Scholar]
  105. 105.
    Keimer B, Kivelson SA, Norman MR, Uchida S, Zaanen J. 2015. Nature 518:7538179–86
    [Google Scholar]
  106. 106.
    Si Q, Steglich F. 2010. Science 329:59961161–66
    [Google Scholar]
  107. 107.
    Grewe N, Steglich F. 1991. Handb. Phys. Chem. Rare Earths 14:343–474
    [Google Scholar]
  108. 108.
    Emery V, Kivelson S. 1995. Nature 374:434–37
    [Google Scholar]
  109. 109.
    Cervasio R, Tomarchio L, Verseils M, Brubach JB, Macis S et al. 2023. ACS Appl. Electron. Mater. 5:94770–77
    [Google Scholar]
  110. 110.
    Harvey SP, Wang BY, Fowlie J, Osada M, Lee K et al. 2022. arXiv:2201.12971
  111. 111.
    Emery V, Kivelson S. 1995. Phys. Rev. Lett. 74:163253
    [Google Scholar]
  112. 112.
    Xiang Y, Li Q, Li Y, Yang H, Nie Y, Wen HH. 2021. Chin. Phys. Lett. 38:4047401
    [Google Scholar]
  113. 113.
    Ding X, Shen S, Leng H, Xu M, Zhao Y et al. 2022. Sci. China Phys. Mech. Astron. 65:6267411
    [Google Scholar]
  114. 114.
    Shao T, Zhang Z, Qiao Y, Zhao Q, Liu H et al. 2022. arXiv:2209.06400
  115. 115.
    Tinkham M. 2004. Introduction to Superconductivity Minneola, NY: Dover Publ.
    [Google Scholar]
  116. 116.
    Wang BY, Wang TC, Hsu YT, Osada M, Lee K et al. 2023. Sci. Adv. 9:20eadf6655
    [Google Scholar]
  117. 117.
    Clogston AM. 1962. Phys. Rev. Lett. 9:6266
    [Google Scholar]
  118. 118.
    Chandrasekhar B. 1962. Appl. Phys. Lett. 1:7–8
    [Google Scholar]
  119. 119.
    Saito Y, Nojima T, Iwasa Y. 2017. Nat. Rev. Mater. 2:16094
    [Google Scholar]
  120. 120.
    Chow L, Yip K, Pierre M, Zeng S, Zhang Z et al. 2022. arXiv:2204.12606
  121. 121.
    Krieger G, Raji A, Schlur L, Versini G, Bouillet C et al. 2022. J. Phys. D Appl. Phys. 56:2024003
    [Google Scholar]
  122. 122.
    Takagi H, Batlogg B, Kao H, Kwo J, Cava RJ et al. 1992. Phys. Rev. Lett. 69:202975–78
    [Google Scholar]
  123. 123.
    Boebinger G, Ando Y, Passner A, Kimura T, Okuya M et al. 1996. Phys. Rev. Lett. 77:275417–20
    [Google Scholar]
  124. 124.
    Cooper R, Wang Y, Vignolle B, Lipscombe O, Hayden S et al. 2009. Science 323:5914603–7
    [Google Scholar]
  125. 125.
    Shi R, Lee K, Wang BY, Iguchi Y, Hwang H, Moler K. 2023. Bull. Am. Phys. Soc 68:3S19.00006 (Abstr.)
    [Google Scholar]
  126. 126.
    Hussey N, Takenaka K, Takagi H. 2004. Philos. Mag. 84:272847–64
    [Google Scholar]
  127. 127.
    Gunnarsson O, Calandra M, Han J. 2003. Rev. Mod. Phys. 75:41085
    [Google Scholar]
  128. 128.
    Gurvitch M, Fiory A. 1987. Phys. Rev. Lett. 59:121337–40
    [Google Scholar]
  129. 129.
    Phillips PW, Hussey NE, Abbamonte P. 2022. Science 377:6602eabh4273
    [Google Scholar]
  130. 130.
    Hsu YT, Wang BY, Berben M, Li D, Lee K et al. 2021. Phys. Rev. Res. 3:4L042015
    [Google Scholar]
  131. 131.
    Hsu YT, Osada M, Wang B, Berben M, Duffy C et al. 2022. Front. Phys. 10:846639
    [Google Scholar]
  132. 132.
    Takagi H, Ido T, Ishibashi S, Uota M, Uchida S, Tokura Y. 1989. Phys. Rev. B 40:42254–61
    [Google Scholar]
  133. 133.
    Suzuki M. 1989. Phys. Rev. B 39:42312–21
    [Google Scholar]
  134. 134.
    Hwang H, Batlogg B, Takagi H, Kao H, Kwo J et al. 1994. Phys. Rev. Lett. 72:162636–39
    [Google Scholar]
  135. 135.
    Yang Yf, Zhang GM. 2022. Front. Phys. 9:783
    [Google Scholar]
  136. 136.
    Zhang GM, Yang YF, Zhang FC. 2020. Phys. Rev. B 101:2020501
    [Google Scholar]
  137. 137.
    Bötzel S, Eremin IM, Lechermann F. 2023. Phys. Rev. B 107:174526
    [Google Scholar]
  138. 138.
    Ortiz RA, Puphal P, Klett M, Hotz F, Kremer RK et al. 2022. Phys. Rev. Res. 4:2023093
    [Google Scholar]
  139. 139.
    Lin H, Gawryluk DJ, Klein YM, Huangfu S, Pomjakushina E et al. 2022. N. J. Phys. 24:013022
    [Google Scholar]
  140. 140.
    Gao Q, Fan S, Wang Q, Li J, Ren X et al. 2022. arXiv:2208.05614
  141. 141.
    Fowlie J, Hadjimichael M, Martins MM, Li D, Osada M et al. 2022. Nat. Phys. 18:91043–47
    [Google Scholar]
  142. 142.
    Cui Y, Li C, Li Q, Zhu X, Hu Z et al. 2021. Chin. Phys. Lett. 38:6067401
    [Google Scholar]
  143. 143.
    Zhao D, Zhou Y, Fu Y, Wang L, Zhou X et al. 2021. Phys. Rev. Lett. 126:19197001
    [Google Scholar]
  144. 144.
    Ren X, Sutarto R, Gao Q, Wang Q, Li J et al. 2023. arXiv:2303.02865
  145. 145.
    Raji A, Krieger G, Viart N, Preziosi D, Rueff J-P, Gloter A. 2023. Small 19:492304872
    [Google Scholar]
  146. 146.
    Parzyck CT, Gupta NK, Wu Y, Anil V, Bhatt L, Bouliane M et al. 2023. arXiv:2307.06486
  147. 147.
    Wei W, Sun W, Sun Y, Jin G, Yang F et al. 2023. Phys. Rev. B 107:L220503
    [Google Scholar]
  148. 148.
    Mazin I. 2022. Nat. Phys. 18:4367–68
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-032922-093307
Loading
/content/journals/10.1146/annurev-conmatphys-032922-093307
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error