1932

Abstract

Living cells are spatially organized by compartments that can nucleate, grow, and dissolve. Compartmentalization can emerge by phase separation, leading to the formation of droplets in the cell's nucleo- or cytoplasm, also called biomolecular condensates. Such droplets can organize the biochemistry of the cell by providing specific chemical environments in space and time. These compartments provide transient environments, suggesting the relevance of nonequilibrium physics of droplets as a key to unraveling the underlying physicochemical principles of biological functions in living cells. In this review, we highlight coarse-grained approaches that capture the physics of chemically active emulsions as a model for condensates orchestrating chemical processes. We also discuss the dynamics of single molecules in condensates and the material properties of biological condensates and their relevance for the cell. Finally, we propose wetting, prewetting, and surface phase transitions as a possibility for intracellular surfaces to control biological condensates, spatially organize membranes, and exert mechanical forces.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031720-032917
2024-03-11
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-031720-032917.html?itemId=/content/journals/10.1146/annurev-conmatphys-031720-032917&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alberts B, Bray D, Hopkin K, Johnson AD, Lewis J et al. 2015. Essential Cell Biology New York: Tayor & Francis Group
    [Google Scholar]
  2. 2.
    Hyman AA, Weber CA, Jülicher F. 2014. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  3. 3.
    Brangwynne CP. 2013. J. Cell Biol. 203:6875–81
    [Google Scholar]
  4. 4.
    Zwicker D, Decker M, Jaensch S, Hyman AA, Jülicher F. 2014. PNAS 111:26E2636–45
    [Google Scholar]
  5. 5.
    Woodruff JB, Gomes BF, Widlund PO, Mahamid J, Honigmann A, Hyman AA. 2017. Cell 169:61066–77
    [Google Scholar]
  6. 6.
    Brangwynne CP, Mitchison TJ, Hyman AA. 2011. PNAS 108:114334–39
    [Google Scholar]
  7. 7.
    Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L et al. 2016. Cell 165:71686–97
    [Google Scholar]
  8. 8.
    Lafontaine DL, Riback JA, Bascetin R, Brangwynne CP. 2021. Nat. Rev. Mol. Cell Biol. 22:3165–82
    [Google Scholar]
  9. 9.
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C et al. 2009. Science 324:59351729–32
    [Google Scholar]
  10. 10.
    Updike DL, Knutson AK, Egelhofer TA, Campbell AC, Strome S. 2014. Curr. Biol. 24:9970–75
    [Google Scholar]
  11. 11.
    Strome S, Wood WB. 1983. Cell 35:15–25
    [Google Scholar]
  12. 12.
    Lee CF, Brangwynne CP, Gharakhani J, Hyman AA, Jülicher F. 2013. Phys. Rev. Lett. 111:8088101
    [Google Scholar]
  13. 13.
    Weber CA, Lee CF, Jülicher F. 2017. New J. Phys. 19:5053021
    [Google Scholar]
  14. 14.
    Griffin EE, Odde DJ, Seydoux G. 2011. Cell 146:6955–68
    [Google Scholar]
  15. 15.
    Schubert CM, Lin R, De Vries CJ, Plasterk RH, Priess JR. 2000. Mol. Cell 5:4671–82
    [Google Scholar]
  16. 16.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Nat. Rev. Mol. Cell Biol. 18:5285–98
    [Google Scholar]
  17. 17.
    Alberti S. 2017. Curr. Biol. 27:20R1097–102
    [Google Scholar]
  18. 18.
    Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M et al. 2018. Trends Cell Biol. 28:6420–35
    [Google Scholar]
  19. 19.
    McSwiggen DT, Hansen AS, Teves SS, Marie-Nelly H, Hao Y et al. 2019. eLife 8:e47098
    [Google Scholar]
  20. 20.
    Taylor NO, Wei MT, Stone HA, Brangwynne CP. 2019. Biophys. J. 117:71285–300
    [Google Scholar]
  21. 21.
    Hubatsch L, Jawerth LM, Love C, Bauermann J, Tang TD et al. 2021. eLife 10:e68620
    [Google Scholar]
  22. 22.
    Ghosh A, Kota D, Zhou HX. 2021. Nat. Commun. 12:5995
    [Google Scholar]
  23. 23.
    Weber CA, Zechner C. 2021. Phys. Today 74:638–43
    [Google Scholar]
  24. 24.
    Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. Cell 169:13–23
    [Google Scholar]
  25. 25.
    Maharana S, Wang J, Papadopoulos DK, Richter D, Pozniakovsky A et al. 2018. Science 360:6391918–21
    [Google Scholar]
  26. 26.
    Franzmann TM, Alberti S. 2019. Cold Spring Harb. Perspect. Biol. 11:6a034058
    [Google Scholar]
  27. 27.
    Nakashima KK, Vibhute MA, Spruijt E. 2019. Front. Mol. Biosci. 6:21
    [Google Scholar]
  28. 28.
    Bauermann J, Laha S, McCall PM, Jülicher F, Weber CA. 2022. J. Am. Chem. Soc. 144:4219294–304
    [Google Scholar]
  29. 29.
    Spruijt E. 2023. Commun. Chem. 6:23
    [Google Scholar]
  30. 30.
    Lyon AS, Peeples WB, Rosen MK. 2021. Nat. Rev. Mol. Cell Biol. 22:3215–35
    [Google Scholar]
  31. 31.
    Klosin A, Oltsch F, Harmon T, Honigmann A, Jülicher F et al. 2020. Science 367:6476464–68
    [Google Scholar]
  32. 32.
    Roden C, Gladfelter AS. 2021. Nat. Rev. Mol. Cell Biol. 22:3183–95
    [Google Scholar]
  33. 33.
    Tibble RW, Depaix A, Kowalska J, Jemielity J, Gross JD. 2021. Nat. Chem. Biol. 17:5615–23
    [Google Scholar]
  34. 34.
    Wunder T, Mueller-Cajar O. 2020. Curr. Opin. Plant Biol. 58:1–7
    [Google Scholar]
  35. 35.
    Sagui C, Grant M. 1999. Phys. Rev. E 59:44175–87
    [Google Scholar]
  36. 36.
    Bray AJ. 2002. Adv. Phys. 51:2481–587
    [Google Scholar]
  37. 37.
    Weber CA, Zwicker D, Jülicher F, Lee CF. 2019. Rep. Prog. Phys. 82:6064601
    [Google Scholar]
  38. 38.
    Shimobayashi SF, Ronceray P, Sanders DW, Haataja MP, Brangwynne CP. 2021. Nature 599:7885503–6
    [Google Scholar]
  39. 39.
    Lomakin A, Asherie N, Benedek GB. 1996. J. Chem. Phys. 104:41646–56
    [Google Scholar]
  40. 40.
    Bartolucci G, Adame-Arana O, Zhao X, Weber CA. 2021. Biophys. J. 120:214682–97
    [Google Scholar]
  41. 41.
    Adame-Arana O, Weber CA, Zaburdaev V, Prost J, Jülicher F. 2020. Biophys. J. 119:81590–605
    [Google Scholar]
  42. 42.
    Overbeek JTG, Voorn M. 1957. J. Cell. Comp. Physiol. 49:S17–26
    [Google Scholar]
  43. 43.
    de Groot SR, Mazur P. 1984. Non-Equilibrium Thermodynamics New York: Dover Publ. Unabridged corrected republication ed.
    [Google Scholar]
  44. 44.
    Alberty RA. 2003. Thermodynamics of Biochemical Reactions Hoboken, NJ: Wiley-Intersci.
    [Google Scholar]
  45. 45.
    Glotzer SC, Di Marzio EA, Muthukumar M. 1995. Phys. Rev. Lett. 74:112034–37
    [Google Scholar]
  46. 46.
    Zwicker D, Hyman AA, Jülicher F. 2015. Phys. Rev. E 92:012317
    [Google Scholar]
  47. 47.
    Wurtz JD, Lee CF. 2018. Phys. Rev. Lett. 120:7078102
    [Google Scholar]
  48. 48.
    Zwicker D, Seyboldt R, Weber CA, Hyman AA, Jülicher F. 2017. Nat. Phys. 13:4408–13
    [Google Scholar]
  49. 49.
    Seyboldt R, Jülicher F. 2018. New J. Phys. 20:10105010
    [Google Scholar]
  50. 50.
    Bergmann AM, Bauermann J, Bartolucci G, Donau C, Stasi M et al. 2023. Nat. Commun. 14:6552
    [Google Scholar]
  51. 51.
    Bauermann J, Weber CA, Jülicher F. 2022. Ann. Phys. 534:92200132
    [Google Scholar]
  52. 52.
    Zwicker D. 2022. Curr. Opin. Colloid Interface Sci. 61:101606
    [Google Scholar]
  53. 53.
    Heltberg ML, Miné-Hattab J, Taddei A, Walczak AM, Mora T. 2021. eLife 10:e69181
    [Google Scholar]
  54. 54.
    Bajpai G, Amiad Pavlov D, Lorber D, Volk T, Safran S. 2021. eLife 10:e63976
    [Google Scholar]
  55. 55.
    Zhang Y, Lee DS, Meir Y, Brangwynne CP, Wingreen NS. 2021. Phys. Rev. Lett. 126:25258102
    [Google Scholar]
  56. 56.
    Adame-Arana O, Bajpai G, Safran S. 2021. Biophys. J. 120:3318a–319a
    [Google Scholar]
  57. 57.
    Wei MT, Chang YC, Shimobayashi SF, Shin Y, Strom AR, Brangwynne CP. 2020. Nat. Cell Biol. 22:101187–96
    [Google Scholar]
  58. 58.
    Deviri D, Safran SA. 2021. PNAS 118:25e2100099118
    [Google Scholar]
  59. 59.
    Terlecki-Zaniewicz S, Humer T, Eder T, Schmoellerl J, Heyes E et al. 2021. Nat. Struct. Mol. Biol. 28:2190–201
    [Google Scholar]
  60. 60.
    Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. 2017. Nature 547:7662241–45
    [Google Scholar]
  61. 61.
    Michieletto D, Colì D, Marenduzzo D, Orlandini E. 2019. Phys. Rev. Lett. 123:22228101
    [Google Scholar]
  62. 62.
    Lohse DJ, Hadjichristidis N. 1997. Curr. Opin. Colloid Interface Sci. 2:2171–76
    [Google Scholar]
  63. 63.
    Clark A, Kavanagh G, Ross-Murphy S 2001. Food Hydrocolloids 15:4–6383–400
    [Google Scholar]
  64. 64.
    Gil T, Sabra MC, Ipsen JH, Mouritsen OG. 1997. Biophys. J. 73:41728–41
    [Google Scholar]
  65. 65.
    Zhao X, Bartolucci G, Honigmann A, Jülicher F, Weber CA. 2021. New J. Phys. 23:12123003
    [Google Scholar]
  66. 66.
    Rouches M, Veatch SL, Machta BB. 2021. PNAS 118:40e2103401118
    [Google Scholar]
  67. 67.
    Beutel O, Maraspini R, Pombo-García K, Martin-Lemaitre C, Honigmann A. 2019. Cell 179:4923–936
    [Google Scholar]
  68. 68.
    Morin JA, Wittmann S, Choubey S, Klosin A, Golfier S et al. 2022. Nat. Phys. 18:3271–76
    [Google Scholar]
  69. 69.
    Renger R, Morin JA, Lemaitre R, Ruer-Gruss M, Jülicher F et al. 2022. PNAS 119:10e2107871119
    [Google Scholar]
  70. 70.
    Quail T, Golfier S, Elsner M, Ishihara K, Murugesan V et al. 2021. Nat. Phys. 17:91007–12
    [Google Scholar]
  71. 71.
    Flory PJ. 1942. J. Chem. Phys. 10:51–61
    [Google Scholar]
  72. 72.
    Huggins ML. 1942. J. Phys. Chem. 46:151–58
    [Google Scholar]
  73. 73.
    Fritsch AW, Diaz-Delgadillo AF, Adame-Arana O, Hoege C, Mittasch M et al. 2021. PNAS 118:37e2102772118
    [Google Scholar]
  74. 74.
    Doi M, Edwards SF. 1988. The Theory of Polymer Dynamics Oxford, UK: Clarendon
    [Google Scholar]
  75. 75.
    Rubinstein M, Colby RH 2003. Polymer Physics 23 New York: Oxford Univ. Press
    [Google Scholar]
  76. 76.
    Safran S. 2018. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes Boca Raton, FL: CRC
    [Google Scholar]
  77. 77.
    Lin YH, Forman-Kay JD, Chan HS. 2016. Phys. Rev. Lett. 117:17178101
    [Google Scholar]
  78. 78.
    Lin YH, Song J, Forman-Kay JD, Chan HS. 2017. J. Mol. Liquids 228:176–93
    [Google Scholar]
  79. 79.
    McCall PM, Kim K, Fritsch AW, Iglesias-Artola J, Jawerth L et al. 2020. bioRxiv:2020.10.25.352823
  80. 80.
    Saha S, Weber CA, Nousch M, Adame-Arana O, Hoege C et al. 2016. Cell 166:61572–84
    [Google Scholar]
  81. 81.
    Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V et al. 2019. Nat. Cell Biol. 21:101286–99
    [Google Scholar]
  82. 82.
    Milo R, Phillips R. 2015. Cell Biology by the Numbers New York: Garland Sci
    [Google Scholar]
  83. 83.
    Mabillard J, Weber CA, Jülicher F. 2023. Phys. Rev. E 107:014118
    [Google Scholar]
  84. 84.
    Mittasch M, Gross P, Nestler M, Fritsch AW, Iserman C et al. 2018. Nat. Cell Biol. 20:3344–51
    [Google Scholar]
  85. 85.
    Jülicher F, Prost J. 2009. Eur. Phys. J. E 29:27–36
    [Google Scholar]
  86. 86.
    Wagner C. 1961. Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 65:7–8581–91
    [Google Scholar]
  87. 87.
    Lifschitz I, Slyozov V. 1961. J. Phys. Chem. Solids 19: 1/2:35–50
    [Google Scholar]
  88. 88.
    Tjhung E, Nardini C, Cates ME. 2018. Phys. Rev. X 8:3031080
    [Google Scholar]
  89. 89.
    Cates ME, Tjhung E. 2018. J. Fluid Mech. 836:P1
    [Google Scholar]
  90. 90.
    Grosberg AY, Joanny JF. 2015. Phys. Rev. E 92:3032118
    [Google Scholar]
  91. 91.
    Ilker E, Joanny JF. 2020. Phys. Rev. Res. 2:2023200
    [Google Scholar]
  92. 92.
    Landau LD, Lifshitz EM. 2013. Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics 6 New York: Elsevier
    [Google Scholar]
  93. 93.
    Arana OA. 2019. Chemical control of liquid phase separation in the cell PhD Thesis Tech. Univ. Dresden Dresden, Germ.:
    [Google Scholar]
  94. 94.
    Anderson JL. 1989. Annu. Rev. Fluid Mech. 21:61–99
    [Google Scholar]
  95. 95.
    Krüger S, Weber CA, Sommer JU, Jülicher F. 2018. New J. Phys. 20:7075009
    [Google Scholar]
  96. 96.
    Weber C, Michaels T, Mahadevan L. 2019. eLife 8:e42315
    [Google Scholar]
  97. 97.
    Bo S, Hubatsch L, Bauermann J, Weber CA, Jülicher F. 2021. Phys. Rev. Res. 3:4043150
    [Google Scholar]
  98. 98.
    Jawerth LM, Ijavi M, Ruer M, Saha S, Jahnel M et al. 2018. Phys. Rev. Lett. 121:25258101
    [Google Scholar]
  99. 99.
    Jawerth L, Fischer-Friedrich E, Saha S, Wang J, Franzmann T et al. 2020. Science 370:65221317–23
    [Google Scholar]
  100. 100.
    Alberti S, Hyman AA. 2021. Nat. Rev. Mol. Cell Biol. 22:3196–213
    [Google Scholar]
  101. 101.
    Boke E, Mitchison TJ. 2017. Cell Cycle 16:2153–54
    [Google Scholar]
  102. 102.
    Woodruff JB, Hyman AA, Boke E. 2018. Trends Biochem. Sci. 43:281–94
    [Google Scholar]
  103. 103.
    Marrone L, Drexler HC, Wang J, Tripathi P, Distler T et al. 2019. Acta Neuropathol. 138:67–84
    [Google Scholar]
  104. 104.
    Cahn JW. 1977. J. Chem. Phys. 66:83667–72
    [Google Scholar]
  105. 105.
    Gennes PG, Brochard-Wyart F, Quéré D et al. 2004. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves New York: Springer
    [Google Scholar]
  106. 106.
    De Gennes PG. 1985. Rev. Mod. Phys. 57:3827–63
    [Google Scholar]
  107. 107.
    Nakanishi H, Fisher ME. 1982. Phys. Rev. Lett. 49:211565–68
    [Google Scholar]
  108. 108.
    Pandit R, Fisher ME. 1983. Phys. Rev. Lett. 51:191772–75
    [Google Scholar]
  109. 109.
    Schmidt JW, Moldover MR. 1983. J. Chem. Phys. 79:379–87
    [Google Scholar]
  110. 110.
    Kellay H, Bonn D, Meunier J. 1993. Phys. Rev. Lett. 71:2607–10
    [Google Scholar]
  111. 111.
    Kusumaatmaja H, May AI, Knorr RL. 2021. J. Cell Biol. 220:10e202103175
    [Google Scholar]
  112. 112.
    Aumeier C. 2022. Biophys. J. 121:33a
    [Google Scholar]
  113. 113.
    Rao M, Mayor S. 2014. Curr. Opin. Cell Biol. 29:126–32
    [Google Scholar]
  114. 114.
    Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Sachl R et al. 2018. Chem. Rev. 118:2311259–97
    [Google Scholar]
  115. 115.
    Lipowsky R. 2023. Membranes 13:2223
    [Google Scholar]
  116. 116.
    Lu T, Liese S, Schoenmakers L, Weber CA, Suzuki H et al. 2022. J. Am. Chem. Soc. 144:3013451–55
    [Google Scholar]
  117. 117.
    Agudo-Canalejo J, Schultz SW, Chino H, Migliano SM, Saito C et al. 2021. Nature 591:7848142–46
    [Google Scholar]
  118. 118.
    Hernández-Vega A, Braun M, Scharrel L, Jahnel M, Wegmann S et al. 2017. Cell Rep. 20:102304–12
    [Google Scholar]
  119. 119.
    Setru SU, Gouveia B, Alfaro-Aco R, Shaevitz JW, Stone HA, Petry S. 2021. Nat. Phys. 17:4493–98
    [Google Scholar]
  120. 120.
    Quéré D, Di Meglio JM, Brochard-Wyart F. 1990. Science 249:49741256–60
    [Google Scholar]
  121. 121.
    Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska KM, Bennett RE et al. 2018. EMBO J. 37:7e98049
    [Google Scholar]
  122. 122.
    Ukmar-Godec T, Wegmann S, Zweckstetter M. 2020. Semin. Cell Dev. Biol. 99:202–14
    [Google Scholar]
  123. 123.
    Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H. 2019. Science 366:64711345–49
    [Google Scholar]
  124. 124.
    Golfier S, Quail T, Kimura H, Brugués J. 2020. eLife 9:e53885
    [Google Scholar]
  125. 125.
    Deleted in proof
  126. 126.
    Sear RP, Cuesta JA. 2003. Phys. Rev. Lett. 91:24245701
    [Google Scholar]
  127. 127.
    Jacobs WM, Frenkel D. 2017. Biophys. J. 112:4683–91
    [Google Scholar]
  128. 128.
    Shrinivas K, Brenner MP. 2021. PNAS 118:45e2108551118
    [Google Scholar]
  129. 129.
    Jacobs WM, Frenkel D. 2013. J. Chem. Phys. 139:2024108
    [Google Scholar]
  130. 130.
    Zwicker D, Laan L. 2022. PNAS 119:28e2201250119
    [Google Scholar]
  131. 131.
    Ong SE, Mann M. 2005. Nat. Chem. Biol. 1:5252–62
    [Google Scholar]
  132. 132.
    Semenov AN, Rubinstein M. 1998. Macromolecules 31:41373–85
    [Google Scholar]
  133. 133.
    Choi JM, Dar F, Pappu RV. 2019. PLOS Comput. Biol. 15:10e1007028
    [Google Scholar]
  134. 134.
    Choi JM, Holehouse AS, Pappu RV. 2020. Annu. Rev. Biophys. 49:107–33
    [Google Scholar]
  135. 135.
    Bremer A, Farag M, Borcherds WM, Peran I, Martin EW et al. 2022. Nat. Chem. 14:2196–207
    [Google Scholar]
  136. 136.
    Guillén-Boixet J, Kopach A, Holehouse AS, Wittmann S, Jahnel M et al. 2020. Cell 181:2346–61
    [Google Scholar]
  137. 137.
    Kar M, Dar F, Welsh TJ, Vogel LT, Kühnemuth R et al. 2022. PNAS 119:28e2202222119
    [Google Scholar]
  138. 138.
    Patel A, Malinovska L, Saha S, Wang J, Alberti S et al. 2017. Science 356:6339753–56
    [Google Scholar]
  139. 139.
    Blankschtein D, Thurston GM, Benedek GB. 1985. Phys. Rev. Lett. 54:9955
    [Google Scholar]
  140. 140.
    Tanaka F. 2011. Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation Cambridge, UK: Cambridge Univ. Press, 1st ed.
    [Google Scholar]
  141. 141.
    Deviri D, Safran SA. 2020. Soft Matter 16:235458–69
    [Google Scholar]
  142. 142.
    Bartolucci G, Haugerud IS, Michaels TCT, Weber CA. 2023. bioRxiv:2023.04.18.537072. https://www.biorxiv.org/content/10.1101/2023.04.18.537072v3
  143. 143.
    Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA. 2016. Curr. Opin. Struct. Biol. 40:163–85
    [Google Scholar]
  144. 144.
    Michaels TC, Mahadevan L, Weber CA. 2022. Phys. Rev. Res. 4:4043173
    [Google Scholar]
  145. 145.
    Pönisch W, Michaels TC, Weber CA. 2023. Biophys. J. 122:197–214
    [Google Scholar]
  146. 146.
    Welsh TJ, Krainer G, Espinosa JR, Joseph JA, Sridhar A et al. 2022. Nano Lett. 22:2612–21
    [Google Scholar]
  147. 147.
    Scott E, Tung L, Drickamer H. 1951. J. Chem. Phys. 19:91075–78
    [Google Scholar]
  148. 148.
    Auer P, Murbach E. 1954. J. Chem. Phys. 22:61054–59
    [Google Scholar]
  149. 149.
    Zhang Y, Pyo AGT, Jiang Y, Brangwynne CP, Stone HA, Wingreen NS. 2022. bioRxiv:2022.03.16.484641
  150. 150.
    Wanger C. 1961. Z. Elektrochem. 65:581–91
    [Google Scholar]
  151. 151.
    Folkmann AW, Putnam A, Lee CF, Seydoux G. 2021. Science 373:65601218–24
    [Google Scholar]
  152. 152.
    Cochard A, Navarro MGJ, Piroska L, Kashida S, Kress M et al. 2022. Biophys. J. 121:91675–90
    [Google Scholar]
  153. 153.
    Goldberg GS, Valiunas V, Brink PR. 2004. Biochim. Biophys. Acta (BBA)-Biomembranes 1662:1–296–101
    [Google Scholar]
  154. 154.
    Krug SM, Schulzke JD, Fromm M. 2014. Semin. Cell Dev. Biol. 36:166–76
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031720-032917
Loading
/content/journals/10.1146/annurev-conmatphys-031720-032917
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error