Skip to main content
Log in

Impact of Source Modelling and Poroelastic Models on Numerical Modelling of Unconsolidated Granular Media: Application at the Laboratory Scale

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The near surface is characterized by using different numerical techniques, among them seismic techniques that are non-destructive. More particularly, for a better understanding of acoustic and seismic measurements in unconsolidated granular media that can constitute the near surface, many studies have been conducted in situ and also at the laboratory scale where theoretical models have been developed. In this article, we want to model such granular media that are difficult to characterize. At the laboratory scale, dry granular media can be modelled with a homogenized power-law elastic model that depends on depth. In this context, we validate numerically a similar power-law elastic model for such media by applying it to a homogenized elastic medium or to the solid frame of a poroelastic medium that consists of solid and air components. By comparing the response of both rheologies, we want to highlight what poroelastic media can bring to better reproduce the experimental data in the time and frequency domains. To achieve this objective, we revisit studies carried out on unconsolidated granular media at the laboratory scale and we compare different models with different rheologies (elastic or poroelastic), dimensions (2D or 3D), boundary conditions (perfectly matched layer/PML, or Dirichlet) and locations of the source (modelled as a vibratory stick or a point force) in order to reproduce the experimental data. We show here that a poroelastic model describes better the amplitudes of the seismograms. Furthermore, we study the sensitivity of the seismic data to the source location, which is crucial to improve the amplitude of the signals and the detection of the different seismic modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Bachrach R, Dvorkin J, Nur A (1998) High-resolution shallow-seismic experiments in sand, part ii: velocities in shallow unconsolidated sand. Geophysics 63(4):1234–1240

    Article  Google Scholar 

  • Bergamo P, Bodet L, Socco LV, Mourgues R, Tournat V (2014) Physical modelling of a surface-wave survey over a laterally varying granular medium with property contrasts and velocity gradients. Geophys J Int doi 10(1121/1):4712020

    Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I: low-frequency range. J Acoust Soc Am 28:168–178

    Article  Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II: higher-frequency range. J Acoust Soc Am 28:179–191

    Article  Google Scholar 

  • Bitri A, Grandjean G, Baltassat J (2002) Caractérisation du proche sous-sol le long de tracés linéaires par profilage sasw. In: In Journées AGAP, LCPC, pp 503-506

  • Bodet L, Jacob X, Tournat V, Mourgues R, Gusev V (2010) Elasticity profile of an unconsolidated granular medium inferred from guided waves: toward acoustic monitoring of analogue models. Tectonophysics 496:99–104

    Article  Google Scholar 

  • Bodet L, Dhemaied A, Martin R, Mourgues R, Rejiba F, Tournat V (2014) Small-scale physical modeling of seismic-wave propagation using unconsolidated granular media. Geophysics 79(6):T323–T339

    Article  Google Scholar 

  • Carcione JM (2007) Wave fields in real media: theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media, 2nd edn. Elsevier Science, Amsterdam, The Netherlands

    Google Scholar 

  • Carcione JM (2014) Wave fields in real media: wave propagation in anisotropic. Anelastic, Elsevier, Porous and Electromagnetic Media

    Google Scholar 

  • Chau M, El Baz D, Guivarch R, Spiteri P (2007) MPI implementation of parallel subdomain methods for linear and nonlinear convection-diffusion problems. J Parallel Distrib Comput 67(5):581–591

    Article  Google Scholar 

  • Dumbser M, Käser M (2006) An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-II. The three-dimensional isotropic case. Geophys J Int 167(1):319–336. https://doi.org/10.1111/j.1365-246X.2006.03120.x

    Article  Google Scholar 

  • El Baz D, Miellou J, Spiteri P (2001) Asynchronous schwarz alternating methods with flexible communication for the obstacle problem. Calculateurs Parallèles, Réseaux et Systmes Répartis 13(01):47–66

    Google Scholar 

  • El Baz D, Frommer A, Spiteri P (2005) Asynchronous iterations with flexible communication: contracting operators. J Comput Appl Math 176:91–103

    Article  Google Scholar 

  • Forbriger T, Groos L, Schäfer M (2014) Line-source simulation for shallow-seismic data. Part 1: theoretical background. Geophys J Int 198(3):1387–1404

    Article  Google Scholar 

  • Foti S (2000) Multistation method for geotecnical characterization using surface waves. PhD thesis, Politechnico di Torino, Italy

  • Ganji V, Gucunski N, Maher A (1997) Detection of underground obsacles by sasw method - numerical aspects. J Geotech Geoenviron Eng 123:212–219

    Article  Google Scholar 

  • Gassmann F (1951) Elastic waves through a packing of spheres. Geophysics 16(4):673–685

    Article  Google Scholar 

  • Graves RW (1996) Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull Seismol Soc Am 86(4):1091–1106

    Article  Google Scholar 

  • Groos L, Schäfer M, Forbriger T, Bohlen T (2013) Comparison of 1d conventional and 2d full waveform inversion of recorded shallow seismic rayleigh waves 10.3997/2214-4609.20131337

  • Groos L, Schäfer M, Butzer S, Forbriger T, Bohlen T (2014a) Challenges for 2-d elastic full waveform inversion of shallow-seismic rayleigh waves 10.3997/2214-4609.20140532

  • Groos L, Schäfer M, Forbriger T, Bohlen T (2014) The role of attenuation in 2d full-waveform inversion of shallow-seismic body and rayleigh waves. Geophysics 79(6):R247–R261. https://doi.org/10.1190/geo2013-0462.1

    Article  Google Scholar 

  • Improta L, Zollo A, Herrero A, Frattini R, Virieux J, Dell Aversana P (2002) Seismic imaging of complex structures by non-linear traveltime inversion of dense wide-angle data?: application to a thrust belt. Geophys J Int 151:264–278

    Article  Google Scholar 

  • Jacob X, Aleshin V, Tournat V, Leclaire P, Lauriks W, Gusev V (2008) Acoustic probing of the jamming transition in an unconsolidated granular medium. Phys Rev Lett 100(15):158003

    Article  CAS  Google Scholar 

  • Komatitsch D (1997) Méthodes spectrales et éléments spectraux pour l’équation de l’élastodynamique 2D et 3D en milieu hétérogène (Spectral and spectral-element methods for the 2D and 3D elastodynamics equations in heterogeneous media). PhD thesis, Institut de Physique du Globe, Paris, France, p 187

  • Komatitsch D, Martin R (2007) An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5):SM155–SM167. https://doi.org/10.1190/1.2757586

    Article  Google Scholar 

  • Le Meur H (1994) Tomographie tridimensionnelle à partir des temps des premières arrivés des ondes p et s. application á la rǵion de patras (grèce). PhD thesis, Université de Paris VII, Paris, France

  • Makse HA, Gland N, Johnson DL, Schwartz LM (1999) Why effective medium theory fails in granular materials. Phys Rev Lett 83(24):5070

    Article  CAS  Google Scholar 

  • Martin R, Komatitsch D (2009) An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation. Geophys J Int 179(1):333–344. https://doi.org/10.1111/j.1365-246X.2009.04278.x

    Article  Google Scholar 

  • Martin R, Komatitsch D, Blitz C, Le Goff N (2008) Simulation of seismic wave propagation in an asteroid based upon an unstructured MPI spectral-element method: blocking and non-blocking communication strategies. Lect Notes Comput Sci 5336:350–363

    Article  Google Scholar 

  • Martin R, Komatitsch D, Ezziani A (2008) An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave equation in poroelastic media. Geophysics 73(4):T51–T61. https://doi.org/10.1190/1.2939484

    Article  Google Scholar 

  • Martin R, Komatitsch D, Gedney SD, Bruthiaux E (2010) A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML). Comput Model Eng Sci 56(1):17–42

    Google Scholar 

  • Miellou J, El Baz D, Spiteri P (1998) A new class of asynchronous iterative methods with order intervals. Math Comput 67(01):237–255. https://doi.org/10.1090/S0025-5718-98-00885-0

    Article  Google Scholar 

  • Moczo P, Bystrický E, Kristek J, Carcione JM, Bouchon M (1997) Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures. Bull Seismol Soc Am 87:1305–1323

    Article  Google Scholar 

  • Moczo P, Kristek J, Bystrický E (2001) Efficiency and optimization of the 3-D finite-difference modeling of seismic ground motion. J Comput Acoust 9(2):593–609

    Article  Google Scholar 

  • Moczo P, Kristek J, Galis M, Pazak P (2010) On accuracy of the finite-difference and finite-element schemes with respect to p-wave to s-wave speed ratio. Geophys J Int 182(1):493–510

    Google Scholar 

  • Morency C, Tromp J (2008) Spectral-element simulations of wave propagation in porous media. Geophys J Int 175:301–345. https://doi.org/10.1111/j.1365-246X.2008.03907.x

    Article  Google Scholar 

  • Morency C, Luo Y, Tromp J (2009) Finite-frequency kernels for wave propagation in porous media based upon adjoint methods. Geophys J Int 179:1148–1168. https://doi.org/10.1111/j.1365-246X.2009.04332

    Article  Google Scholar 

  • Nazarian S, Stokoe K (1984) In situ shear wave velocities from spectral analysis of surface waves. Proc 8th Conf Earthquake Eng Nice France 3:31–38

    Google Scholar 

  • Palermo A, Krödel S, Matlack KH, Zaccherini R, Dertimanis VK, Chatzi EN, Marzani A, Daraio C (2018) Hybridization of guided surface acoustic modes in unconsolidated granular media by a resonant metasurface. Phys Rev Appl 9:054026. https://doi.org/10.1103/PhysRevApplied.9.054026

    Article  CAS  Google Scholar 

  • Park S, Elrick S (1998) Predictions of shear-wave velocities in southern California using surface geology. Bullet Seism Soc Am 88(3):677–685

    Article  Google Scholar 

  • Pasquet S, Bodet L (2017) Swip: an integrated workflow for surface-wave dispersion inversion and profiling. Geophysics 82(6):WB47–WB61

    Article  Google Scholar 

  • Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res 109:681–693

    Article  Google Scholar 

  • Pu X, Palermo A, Cheng Z, Shi Z, Marzani A (2020) Seismic metasurfaces on porous layered media: surface resonators and fluid-solid interaction effects on the propagation of rayleigh waves. Int J Eng Sci 154:103347. https://doi.org/10.1016/j.ijengsci.2020.103347

    Article  Google Scholar 

  • Ravaut C (2003) Tomographie sismique haute résolution de la croûte terrestre : inversion combiné des temps de trajet et des formes d’ondes de données sismiques réflexion/réfraction grand angle multitraces. PhD thesis, Université de Nice Sophia Antipolis, Nice, France

  • Schäfer M, Groos L, Forbriger T, Bohlen T (2012) On the effects of geometrical spreading corrections for a 2d full waveform inversion of recorded shallow seismic surface waves. 10.3997/2214-4609.20148327

  • Schäfer M, Groos L, Forbriger T, Bohlen T (2013) 2D full waveform inversion of recorded shallow seismic rayleigh waves on a significantly 2d structure. Near Surf Geosci. https://doi.org/10.3997/2214-4609.20131338

    Article  Google Scholar 

  • Schäfer M, Groos L, Forbriger T, Bohlen T (2014) Line-source simulation for shallow-seismic data. part 2: full-waveform inversion-a synthetic 2-d case study. Geophys J Int 198:1405–1418. https://doi.org/10.1093/gji/ggu171

    Article  Google Scholar 

  • Schön JH (2015) Physical properties of rocks: Fundamentals and principles of petrophysics. Elsevier

  • Sidler R, Carcione JM, Holliger K (2014) A pseudospectral method for the simulation of 3-D ultrasonic and seismic waves in heterogeneous poroelastic borehole environments. Geophys J Int 196(2):1134–1151

    Article  Google Scholar 

  • Tournat V, Gusev V (2010) Acoustics of unconsolidated “model” granular media: An overview of recent results and several open problems. Acta Acust United Acust 96(2):208–224

  • Xia J (2014) Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods. J Appl Geophys 103:140–151

    Article  Google Scholar 

  • Xia J, Miller R, Park C (1999) Estimation of near-surface shear-wave velocity by inversion of rayleigh waves. Geophysics 64(3):691–700

    Article  Google Scholar 

  • Zaccherini R, Palermo A, Marzani A, Colombi A, Dertimanis V, Chatzi E (2020) Mitigation of rayleigh-like waves in granular media via multi-layer resonant metabarriers. Appl Phys Lett 117(25):254103. https://doi.org/10.1063/5.0031113

    Article  CAS  Google Scholar 

  • Zelt C, Smith R (1992) Seismic traveltime inversion for 2d crustal velocity structure. Geophys J Int 108:16–34

    Article  Google Scholar 

  • Zeng YQ, Liu QH (2001) A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations. J Acoust Soc Am 109(6):2571–2580. https://doi.org/10.1121/1.1369783

    Article  CAS  Google Scholar 

  • Zimmer MA, Prasad M, Mavko G, Nur A (2007) Seismic velocities of unconsolidated sands: Part 1-pressure trends from 0.1 to 20 mpa. Geophysics 72(1):E1–E13

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Université Fédérale de Toulouse Midi-Pyrénées (UFT-MIP) and Occitanie Region Research Council under DIMSCALE3D project, the CALMIP mesocentre in Toulouse, France, under supercomputing project \(P1135-2021A\) and \(P1135-2022A\), and computing platform NUWA of the OMP/Observatoire Midi-Pyrénées, France. The authors thank the reviewers for their very useful suggestions and remarks to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Martin.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. 3D Elastic Wave Equations

The elastodynamics equations can be formulated at the second order in displacement as:

$$\begin{aligned}&\rho \frac{\partial ^2 u_i}{\partial t^2} = \partial _j \sigma _{ij} + s_i ,\\&\epsilon _{ij} = \frac{1}{2} \left( u_{i,j} + u_{j,i} \right) , \\&\sigma _{ij} = \lambda \delta _{ij} \epsilon _{kk} + 2 \mu \epsilon _{ij}. \end{aligned}$$

However, the first-order formulation (velocity-stress) of the 3D elastic wave equations for a linear, isotropic medium submitted to external forces is given by Graves (1996):

$$\begin{aligned}&\rho \frac{\partial v_x}{\partial t} = \frac{\partial \sigma _{xx}}{\partial x} + \frac{\partial \sigma _{xy}}{\partial y} + \frac{\partial \sigma _{xz}}{\partial z} + s_x \nonumber ,\\&\rho \frac{\partial v_y}{\partial t} = \frac{\partial \sigma _{xy}}{\partial x} + \frac{\partial \sigma _{yy}}{\partial y} + \frac{\partial \sigma _{yz}}{\partial z} + s_y \nonumber ,\\&\rho \frac{\partial v_z}{\partial t} = \frac{\partial \sigma _{xz}}{\partial x} + \frac{\partial \sigma _{yz}}{\partial y} + \frac{\partial \sigma _{zz}}{\partial z} + s_z \nonumber ,\\&\frac{\partial \sigma _{xx} }{\partial t} = \left( \lambda + 2 \mu \right) \frac{\partial v_x}{\partial x} + \lambda (\frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}) \nonumber ,\\&\frac{\partial \sigma _{yy} }{\partial t} = \left( \lambda + 2 \mu \right) \frac{\partial v_y}{\partial y} + \lambda (\frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z}) \nonumber ,\\&\frac{\partial \sigma _{zz} }{\partial t} = \left( \lambda + 2 \mu \right) \frac{\partial v_z}{\partial z} + \lambda ( \frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} ) \nonumber ,\\&\frac{\partial \sigma _{xy}}{\partial t} = \mu \left( \frac{\partial v_y}{\partial x} + \frac{\partial v_x}{\partial y}\right) \nonumber ,\\&\frac{\partial \sigma _{xz}}{\partial t} = \mu \left( \frac{\partial v_z}{\partial x} + \frac{\partial v_x}{\partial z}\right) \nonumber ,\\&\frac{\partial \sigma _{yz}}{\partial t} = \mu \left( \frac{\partial v_z}{\partial y} + \frac{\partial v_y}{\partial z}\right) . \end{aligned}$$
(2)

In these equations, \(v_x,\) \(v_y,\) \(v_z\) are the velocity components; \(\sigma _{xx},\) \(\sigma _{yy},\) \(\sigma _{zz},\) \(\sigma _{xy},\) \(\sigma _{xz},\) \(\sigma _{yz}\) are the stress components; \(s_x,\) \(s_y,\) \(s_z\) are the body-force components; \(\rho\) is the density; \(\lambda\) and \(\mu\) are Lamé parameters.

Appendix B. 2D Elastic Wave Equations

In the 2D particular case, 2D elastic wave equations for an isotropic medium submitted to external forces can be written using a velocity-stress formulation such as the following linear and hyperbolic system (Dumbser and Käser 2006):

$$\begin{aligned}&\rho \frac{\partial v_x}{\partial t} = \frac{\partial \sigma _{xx}}{\partial x} + \frac{\partial \sigma _{xz}}{\partial z} + s_x \nonumber ,\\&\rho \frac{\partial v_z}{\partial t} = \frac{\partial \sigma _{xz}}{\partial x} + \frac{\partial \sigma _{zz}}{\partial z} + s_z \nonumber ,\\&\frac{\partial \sigma _{xx} }{\partial t} = \left( \lambda + 2 \mu \right) \frac{\partial v_x}{\partial x} + \lambda \frac{\partial v_z}{\partial z} \nonumber ,\\&\frac{\partial \sigma _{zz} }{\partial t} = \left( \lambda + 2 \mu \right) \frac{\partial v_z}{\partial z} + \lambda \frac{\partial v_x}{\partial x} \nonumber ,\\&\frac{\partial \sigma _{xz}}{\partial t} = \mu \left( \frac{\partial v_z}{\partial x} + \frac{\partial v_x}{\partial z}\right) , \end{aligned}$$
(3)

where \({\lambda}\) and \(\mu\) are Lamé parameters, \(\rho\) is the density, and \(s_x\) and \(s_z\) are the space-dependent source terms in x and z directions. The compressional stress components are given by \(\sigma _{xx}\) and \(\sigma _{zz}\), and the shear stress is \(\sigma _{xz}\). The components of particle velocities in direction x and z are denoted by \(v_x\) and \(v_z\), respectively.

Appendix C. 2D Poroelastic Wave Equations

Porous materials are made of a solid phase (called the frame) and of a fluid phase and can be considered as an interconnected network of pores inside the solid (Pride et al. 2004). When a fluid flow is able to cause the solid to deform, the material is called poroelastic. Unconsolidated granular media can be seen as a poroelastic material in which air or water can play the role of the fluid and grains the solid. Poroelastic materials are most of the time modelled using the Biot theory (Biot (1956a) and Biot (1956b)). The differential or "strong" formulation of the poroelastic wave equations can be written as (Carcione 2007), (Carcione 2014):

$$\begin{aligned} \rho \partial _t^2 u^s + \rho _f \partial _t^2 w&= \nabla . \left( C : \nabla u^s - \alpha P^f I\right) , \end{aligned}$$
(4)
$$\begin{aligned} \rho _f \partial _t^2 u^s + \rho _w \partial _t^2 w&= - \nabla P^f - K \partial _t w, \end{aligned}$$
(5)
$$\begin{aligned} P^f&= - \alpha M \nabla . u^s - M \nabla . w, \end{aligned}$$
(6)

where \(u^s = (u^s_i)_{i=1,2}\), \(w = \Phi \left( u^f - u^s\right)\) and \(u^f = (u^f_i)_{i=1,2}\) are, respectively, the solid, relative, and fluid displacement vectors; \(\Phi\) is the porosity; and C is the stiffness tensor of the isotropic elastic solid matrix, defined as:

$$\begin{aligned} \sigma _{ij}^s&= \left( C :\epsilon \right) _{ij} = \lambda _s \delta _{ij}\epsilon _{kk} + 2 \mu \epsilon _{ij}, \end{aligned}$$
(7)
$$\begin{aligned} \epsilon _{ij}&= \frac{1}{2} \left( \frac{\partial u_i^s}{\partial x_j} + \frac{\partial u_j^s}{\partial x_i}\right) , \end{aligned}$$
(8)
$$\begin{aligned} P^f&= - \alpha M \nabla . u^s - M \nabla . w, \end{aligned}$$
(9)

where indices i and j can be here 1 or 2 in 2D and with the Einstein convention of implicit summation over a repeated index. \(P^f\) is the pressure in the fluid. \(\sigma ^s\) and \(\epsilon\) are, respectively, the stress and strain tensors of the isotropic elastic solid frame. The stress tensor of the fluid-filled solid matrix is \(\sigma = \sigma ^s - \alpha P^f I\), and \(\rho = \Phi \rho _f + \left( 1- \Phi \right) \rho _s\) is the density of the saturated medium, where \(\rho _s\) and \(\rho _f\) are the solid and fluid densities, respectively. The apparent density is \(\rho _w = a \frac{\rho _f}{\Phi }\) where a denotes the tortuosity. The shear modulus is \(\mu\) and \(\lambda _s = \lambda - \alpha ^2 M\) is the Lamé coefficient in the solid matrix, where \(\lambda\) is the Lamé coefficient of the saturated matrix. The \(\alpha\) and M variables are functions of the porosity and bulk moduli of the fluid and solid components of the porous medium and are given by the following expressions:

$$\begin{aligned} \alpha&= 1 - \frac{K_{fr}}{K_s} , \end{aligned}$$
(10)
$$\begin{aligned} M&= 1/\left[ \Phi /K_f + (\Phi -\alpha )/K_s\right] , \end{aligned}$$
(11)

where \(K_{fr}\) is the incompressibility modulus of the porous frame, \(K_s\) is the incompressibility modulus of the solid matrix, and \(K_f\) is the incompressibility modulus of the fluid. The viscous damping coefficient is:

$$\begin{aligned} K = \kappa / \eta , \end{aligned}$$
(12)

where \(\kappa\) is the permeability of the solid matrix and \(\eta\) is the fluid viscosity. Equations (4) to (7) can be written using a first-order velocity-stress formulation:

$$\begin{aligned} \left( \rho _w \rho - \rho _f^2 \right) \partial _t v^s&= \rho _w \nabla . \sigma + \rho _f \nabla P^f + \rho K v^f, \end{aligned}$$
(13)
$$\begin{aligned} \left( \rho _w \rho - \rho _f^2 \right) \partial _t v^f&= -\rho _f \nabla . \sigma - \rho \nabla P^f - \rho _f K v^f, \end{aligned}$$
(14)
$$\begin{aligned} \partial _t \sigma&= C: \nabla v^s - \alpha \partial _t P^f I, \end{aligned}$$
(15)
$$\begin{aligned} \partial _t P^f&= - \alpha M \nabla . v^s - M \nabla . v^f, \end{aligned}$$
(16)

where \(v^s = (v^s_i)_{i=1,2}\) and \(v^f = \partial _t w = (v^f_i)_{i=1,2}\) are the solid and filtration velocity vectors, respectively. \(\sigma\) is the effective stress tensor of the porous medium. As in Zeng and Liu (2001), using the trace of the strain tensor \(Tr(\epsilon )= \epsilon _{ii}\) and an auxiliary variable \(\xi\), we rewrite the system as:

$$\begin{aligned} \left( \rho _w \rho - \rho _f^2 \right) \partial _t v^s_i&= \rho _w \partial _j \sigma _{ij} + \rho _f \partial _i P^f + \rho K v^f_i, \end{aligned}$$
(17)
$$\begin{aligned} \left( \rho _w \rho - \rho _f^2 \right) \partial _t v^f_i&= -\rho _f \partial _j \sigma _{ij} - \rho \partial _i P^f - \rho _f K v^f_i, \end{aligned}$$
(18)
$$\begin{aligned} \epsilon _{ij}&= \frac{1}{2} \left( \partial _j v_i^s + \partial _i v_j^s\right) , \end{aligned}$$
(19)
$$\begin{aligned} \partial _t \xi&= -\partial _i v_i^f, \end{aligned}$$
(20)
$$\begin{aligned} P^f&= - \alpha M Tr(\epsilon ) + M \xi , \end{aligned}$$
(21)
$$\begin{aligned} \sigma _{ij}^s&= \lambda ^s \delta _{ij} Tr(\epsilon ) + 2 \mu \epsilon _{ij}, \end{aligned}$$
(22)
$$\begin{aligned} \sigma _{ij}&= \sigma _{ij}^s -\alpha P^f \delta _{ij}. \end{aligned}$$
(23)

This system of equations has seven wave eigenvalues related to seven wave velocity modes (instead of five for the elastic case). Those wave velocities are \(\pm V_{pFAST}\), \(\pm V_{pSLOW}\), \(\pm V_{s}\) and 0. The shear velocity \(V_s\) and the fast and slow P-wave velocities (\(V_{pFAST}\) and \(V_{pSLOW}\)) can be expressed as (Sidler et al. 2014):

$$\begin{aligned} V_s&= \sqrt{ \frac{\mu }{a_1}}, \end{aligned}$$
(24)
$$\begin{aligned} {V_p}_{FAST}&= \sqrt{ \frac{-b_1 + \sqrt{\Delta }}{2 a_1}}, \end{aligned}$$
(25)
$$\begin{aligned} {V_p}_{SLOW}&= \sqrt{ \frac{-b_1 - \sqrt{\Delta }}{2 a_1}}, \end{aligned}$$
(26)

where

\(a_1 = \rho _{11} \rho _{22}-\rho _{12}^2,\)

\(b_1 = -S \rho _{22} - R \rho _{11} + 2 ga \rho _{11},\)

\(c_1 = S R - ga^2,\)

\(\rho _{11} = \rho + \rho _f \Phi (a - 2),\)

\(\rho _{12} = \Phi \rho _f (1-a),\)

\(\rho _{22} = a \rho _f \Phi ,\)

\(S = \lambda + 2 \mu ,\)

\(R = M \Phi ^2,\)

\(\Delta = b_1^2 - 4 a_1 c_1,\)

\(ga = M \Phi (\alpha - \Phi ).\)

In Table 1, a summary of the different parameters of the poroelastic model is provided.

Table 1 Parameters of the poroelastic model

Biot’s characteristic frequency \(f_c\) defines the transition between two poroelastic regimes (with or without attenuation) and is given as follows (see Biot 1956b; Carcione 2007 and Morency and Tromp 2008):

$$\begin{aligned} f_c = \min (\frac{\eta \Phi }{ 2 \pi a \rho _f \kappa }), \end{aligned}$$
(27)

see parameters in Table 1.

In our study, the maximum frequency range \(f_{max}\) of the source is such that \(f_{max}< f_c\). Therefore, in the experimental and numerical modelling of unconsolidated granular media under study, we choose to stay in the poroelastic regime without attenuation.

Appendix D. Performance of UNISOLVER Parallel Code

The fourth-order 3D UNISOLVER parallel code has been scaled over different numbers of processors (up to 400) of Olympe supercomputer at CALMIP computing centre of Toulouse (France) by using MPI (Message-Passing-Interface) library. The computational domain has been cut along the longitudinal y-axis (from 20 points down to 5 grid points per processor along the y-axis). A buffer overlapping corresponding to two grid points between subdomains (one subdomain per processor) is used to communicate the particle velocities and stresses and material properties between processors via ’MPI\(_{-}\)Send’ and ’MPI\(_{-}\)Recv’ communication operations. As we can see in Fig. 22, the strong scaling obtained by measuring the CPU time versus the number of processors is very satisfactory, despite the use of blocking communication operations. This strategy is classical (see (Komatitsch and Martin 2007)).

Fig. 22
figure 22

Strong scaling of the UNISOLVER code over 200 up to 400 processors on Olympe supercomputer. Ideal and numerical tests scaling curves are shown

We underline that asynchronous iterative schemes of computation which cover communications by computations in the inner subdomains as depicted in Miellou et al. 1998; El Baz et al. 2001; Chau et al. 2007; El Baz et al. 2005; Martin et al. 2008a are also very efficient.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfour, K., Martin, R., Baz, D.E. et al. Impact of Source Modelling and Poroelastic Models on Numerical Modelling of Unconsolidated Granular Media: Application at the Laboratory Scale. Surv Geophys 45, 489–524 (2024). https://doi.org/10.1007/s10712-023-09812-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-023-09812-w

Keywords

Navigation