Skip to main content
Log in

Ecological Functions and Management of Large Wood in Fluvial Systems

  • Ecological Function (K Verheyen, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this review is to provide an overview of the functional role of large wood in the functioning of fluvial ecosystems, ranging from the scale of microhabitats to entire catchments. To this purpose, this review is structured according to the major ecosystem processes occurring at different spatial scales, ranging from the microhabitat scale, e.g. the internal processes of organic matter breakdown by microbes, to the catchment scale, e.g. the catchment-scale-processes of water flow, sediment transport, and nutrient fluxes.

Recent Findings

Recent research increasingly shows that dead wood drives a complex of multi-scaled processes. The role of large wood as a channel structuring entity and a driver of hydromorphological functioning is well known, but the importance of large wood at higher spatial scales has not been fully acknowledged. This encompasses the importance of large wood in enhancing multiple channel — floodplain interactions by creating a dynamic exchange of matter (water, sediments, nutrients) and energy. It also strengthens the water retention and storage capacity of rivers, attenuating floods and droughts and plays an important role in sediment, nutrient and organic matter interception, and processing. All these attributes contribute to ecosystem complexity and functioning, as well as providing valuable ecosystem services. Furthermore, large wood also acts as an important dispersal vector which, together with the multiple scale processes, promotes biodiversity.

Summary

Recognising the multiple scale spatial and temporal processes acting in, around, and induced by large wood can strongly support future fluvial management, especially regarding the re-introduction and way of installing of large wood in rivers. As large wood management is context-dependent, research should focus on catchment specific processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wohl E, Scott DN. Wood and sediment storage and dynamics in river corridors. Earth Surf Proc Land. 2017;42:5–23. A valuable insight in the role of large wood and the dynamics of POM, suspended sediment, and bedload at different spatial scales.

    Article  ADS  Google Scholar 

  2. Montgomery DR, Massong TM, Hawley SC. Influence of debris flows and log jams on the location of pools and alluvial channel reaches, Oregon Coast Range. Geol Soc Am Bull. 2003;115:78–88.

    Article  Google Scholar 

  3. Belletti B, Rinaldi M, Bussettini M, Comiti F, Gurnell AM, Mao L, Nardi L, Vezza P. Characterising physical habitats and fluvial hydromorphology: a new system for the survey and classification of river geomorphic units. Geomorphology. 2017;283:143–57.

    Article  ADS  Google Scholar 

  4. Naiman RJ, Balian EV, Bartz KK, Robert E, Latterell JJ. Dead wood dynamics in stream ecosystems. In Proceedings of the symposium on the ecology and management of dead wood in western forests. November 2-4, 1999, Reno, Nevada. Pacific Southwest Research Station, Forest Service, US Department of Agriculture. 2002;181:23–48

  5. Anlanger C, Attermeyer K, Hille S, Kamjunke N, Koll K, König M, et al. Large wood in river restoration: a case study on the effects on hydromorphology, biodiversity, and ecosystem functioning. Int Rev Hydrobiol. 2022;107:34–45. One of the restoration studies that used an integrated approach of both biophysical and social aspects.

    Article  Google Scholar 

  6. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW. Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res. 1986;15:133–302.

    Article  Google Scholar 

  7. Hering D, Kail J, Eckert S, Gerhard M, Meyers E, Mutz M, Reich M, Weiss I. Coarse woody debris quantity and distribution in Central European streams. Int Rev Hydrobiol. 2000;85:5e23.

    Article  Google Scholar 

  8. Kail J. Geomorphic effects of large wood in streams and rivers and its use in stream restoration: a central European perspective. PhD Thesis. University of Duisburg-Essen, Germany. 2005;1–160.

  9. Testa SIII, Douglas Shields Jr, Cooper CM. Macroinvertebrate response to stream restoration by large wood addition. Ecohydrology. 2011;4:631-643.

  10. Pitt D, Batzer D. Woody debris as a resource for aquatic macroinvertebrates in stream and river habitats of the southeastern United States: a review. 2010.

  11. Hilderbrand RH, Lemly AD, Dolloff CA, Harpster KL. Effects of large woody debris placement on stream channels and benthic macroinvertebrates. Can J Fish Aquat Sci. 1997;54:931–9.

    Article  Google Scholar 

  12. Diez J, Elosegi A, Pozo J. Woody debris in North Iberian streams: influence of geomorphology, vegetation, and management. Environ Manage. 2001;28:687–98. https://doi.org/10.1007/s002670010253.

    Article  PubMed  CAS  Google Scholar 

  13. Bertoldi W, Gurnell AM. Physical engineering of an island-braided river by two riparian tree species: evidence from aerial images and airborne lidar. River Res Appl. 2020;36:1183–201.

    Article  Google Scholar 

  14. Berg N, Carlson A, Azuma D. Function and dynamics of woody debris in stream reaches in the central Sierra Nevada, California. Can J Fish Aquat Sci. 1998;55:1807–20.

    Article  Google Scholar 

  15. Braudrick CA, Grant GE. When do logs move in rivers? Water Resour Res. 2000;36:571–83.

    Article  ADS  Google Scholar 

  16. Elosegi A, Johnson LB. Wood in streams and rivers in developed landscapes. In: The ecology and management of wood in World rivers. S.V. Gregory, K. L. Boyer A. M. Gurnell (eds.). American Fisheries Society, Bethesda, MD. 2003;337–354.

  17. Wohl E. Floodplains and wood. Earth Sci Rev. 2013;123:194–212.

    Article  ADS  Google Scholar 

  18. Gurnell AM, Piégay H, Swanson FJ, Gregory SV. Large wood and fluvial processes. Freshw Biol. 2002;47:601–19.

    Article  Google Scholar 

  19. Wohl E. A legacy of absence: wood removal in US rivers. Prog Phys Geogr. 2014;38:637–63.

    Article  Google Scholar 

  20. Brooks AP, Gehrke PC, Jansen JD, Abbe TB. Experimental reintroduction of woody debris on the Williams River, NSW: geomorphic and ecological responses. River Res Appl. 2004;20:513–36.

    Article  Google Scholar 

  21. Davidson SL, Eaton BC. Modeling channel morphodynamic response to variations in large wood: implications for stream rehabilitation in degraded watersheds. Geomorphology. 2013;202:59–73.

    Article  ADS  Google Scholar 

  22. Seo JI, Nakamura F, Chun KW. Dynamics of large wood at the watershed scale: a perspective on current research limits and future directions. Landscape Ecol Eng. 2010;6:271–87.

    Article  Google Scholar 

  23. Kail J, Hering D, Muhar S, Gerhard M, Preis S. The use of large wood in stream restoration: experiences from 50 projects in Germany and Austria. J Appl Ecol. 2007;44:1145–55.

    Article  Google Scholar 

  24. Antón A, Elosegi A, García-Arberas L, Díez J, Rallo A. Restoration of dead wood in Basque stream channels: effects on brown trout population. Ecol Freshw Fish. 2011;20:461–71.

    Article  Google Scholar 

  25. Gurnell A. Wood and river landscapes. Nat Geosci. 2012;5:93–4.

    Article  ADS  CAS  Google Scholar 

  26. Gurnell A, England J, Burgess-Gamble L. Trees and wood: working with natural river processes. Water Environ J. 2018;342-352. https://doi.org/10.1111/wej.12426.

  27. Cashman MJ, Wharton G, Harvey GL, Naura M, Bryden A. Trends in the use of large wood in UK river restoration projects: insights from the National River Restoration Inventory. Water Environ J. 2018;318–328. https://doi.org/10.1111/wej.12407.

  28. Thompson MSA, Brooks SJ, Sayer CD, Woodward G, Axmacher JC, Perkins DM, Gray C. Large woody debris “rewilding” rapidly restores biodiversity in riverine food webs. J Appl Ecol. 2017;201:1–10.

    Google Scholar 

  29. Lo HW, Smith M, Klaar M, Woulds C. Potential secondary effects of in-stream wood structures installed for natural flood management: a conceptual model. Wiley Interdiscip Rev Water. 2021;8:1–22. https://doi.org/10.1002/wat2.1546.

    Article  Google Scholar 

  30. Collins BD, Montgomery DR, Haas AD. Historical changes in the distribution and functions of large wood in Puget Lowland rivers. Can J Fish Aquat Sci. 2002;59:66–76.

    Article  Google Scholar 

  31. Gregory SV, Meleason M, Sobota DJ. Modeling the dynamics of wood in streams and rivers. In: Gregory SV, Boyer KL, Gurnell A.M. (Eds.). The ecology and management of wood in world rivers, vol. 37. American Fisheries Society, Symposium, Bethesda, Maryland, USA. 2003;315e336.

  32. Gurnell AM, Tockner K, Edwards P, Petts G. Effects of deposited wood on biocomplexity of river corridors. Front Ecol Environ. 2005;3:377e382.

    Article  Google Scholar 

  33. Wohl E, Cenderelli DA, Dwire KA, Ryan-Burkett SE, Young MK, Fausch KD. Large in-stream wood studies: a call for common metrics. Earth Surf Process Landforms. 2010;35:618–25.

    Article  ADS  Google Scholar 

  34. LeLay YF, Piégay H, Moulin B. Wood entrance, deposition, transfer and effects on fluvial forms and processes: problem statements and challenging issues. Treat Geomorphol. 2013;12:20e36.

    Google Scholar 

  35. Gurnell AM, Corenblit D, de García Jalón D, del González Tánago M, Grabowski RC, O’Hare MT, Szewczk M. A conceptual model of vegetation-hydrogeomorphology interactions within river corridors. River Res Appl. 2016;32:142e163.

    Google Scholar 

  36. Wohl E, Bledsoe BP, Fausch KD, Kramer N, Bestgen KR, Gooseff MN. Management of large wood in streams: an overview and proposed framework for hazard evaluation. J Am Water Resour Assoc. 2016;52(2):315–35.

  37. Ruiz-Villanueva V, Bladé Castellet E, Díez-Herrero A, Bodoque JM, Sánchez-Juny M. Two-dimensional modelling of large wood transport during flash floods. Earth Surf Process Landforms. 2014;39:438e449.

    Article  Google Scholar 

  38. Griffith MB, McManus MG. Consideration of spatial and temporal scales in stream restorations and biotic monitoring to assess restoration outcomes: A literature review, part 2. River Res Appl. 2020;36:1398–415. https://doi.org/10.1002/rra.3694. A good example of a multiple scale approach.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wohl E. Bridging the gaps: an overview of wood across time and space in diverse rivers. Geomorphology. 2017;279:3–26. A extensive overview of scale in space and time.

    Article  ADS  Google Scholar 

  40. Wohl E, Kramer N, Ruiz-Villanueva V, Scott DN, Comiti F, Gurnell AM, Piegay H, Lininger KB, Jaeger KL, Walters DM, Fausch KD. The natural wood regime in rivers. Bioscience. 2019;69:259–73. An up-to-date overview of the components of wood regimes with respect to recruitment, transport, and storage.

    Article  Google Scholar 

  41. Braudrick CA, Grant GE, Ishikawa Y, Ikeda H. Dynamics of wood transport in streams: a flume experiment. Earth Surf Process Landforms. 1997;22:669–83.

    Article  ADS  Google Scholar 

  42. Comiti F, Lucía A, Rickenmann D. Large wood recruitment and transport during large floods: a review. Geomorphology. 2016;269:23–39.

    Article  ADS  Google Scholar 

  43. Kramer N, Wohl E. Rules of the road: A qualitative and quantitative synthesis of large wood transport through drainage networks. Geomorphology. 2017;279:74–97.

    Article  ADS  Google Scholar 

  44. Rasmussen JL. Controls on large woody debris distributions in Yellowstone streams. Doctoral dissertation, Montana State University-Bozeman, College of Letters Science. 2002.

  45. Bertoldi W, Gurnell AM, Welber M. Wood recruitment and retention: the fate of eroded trees on a braided river explored using a combination of field and remotely-sensed data sources. Geomorphology. 2013;180:146–55.

    Article  ADS  Google Scholar 

  46. Suberkropp K. Microorganisms and organic matter decomposition. In Naiman R, Bilby RE (eds) River ecology and management: lessons from the Pacific coastal ecoregion. 1998;6:120–143.

  47. Spänhoff B, Meyer EI. Breakdown rates of wood in streams. J N Am Benthol Soc. 2004;23:189–97.

    Article  Google Scholar 

  48. Wohl E, Hall RO Jr, Lininger KB, Sutfin NA, Walters DM. Carbon dynamics of river corridors and the effects of human alterations. Ecol Monogr. 2017;87:379–409.

    Article  Google Scholar 

  49. Galia T, Šilhán K, Ruiz-Villanueva V, Tichavský R, Stoffel M. Temporal dynamics of instream wood in headwater streams draining mixed Carpathian forests. Geomorphology. 2017;292:35–46.

    Article  ADS  Google Scholar 

  50. Elosegi A, Díez J, Pozo J. Contribution of dead wood to the carbon flux in forested streams. Earth Surf Proc Land. 2007;32:1219–28.

    Article  ADS  Google Scholar 

  51. Webster JR, Benfield EF, Ehrman TP, Schaeffer MA, Tank JL, Hutchens JJ, D’angelo DJ. What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshw Biol. 1999;41:687–705.

    Article  Google Scholar 

  52. Díez J, Elosegi A, Chauvet E, Pozo J. Breakdown of wood in the Agüera stream. Freshw Biol. 2002;47:2205–15.

    Article  Google Scholar 

  53. Triska FJ, Cromack K Jr. The role of wood debris in forests and streams. Forests: fresh perspectives from ecosystem analysis. Oregon State University Press, Corvallis, Oregon, USA. 1980;171–190.

  54. Steeb N, Rickenmann D, Badoux A, Rickli C, Waldner P. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005. Geomorphology. 2017;279:112–27.

    Article  ADS  Google Scholar 

  55. Benke AC, Wallace JB. Influence of wood on invertebrate communities in streams and rivers. Am Fish Soc Symp. 2003;37:149–77.

    Google Scholar 

  56. Blanchette RA. Microbial degradation of wood from aquatic and cultural heritage. American Society for Microbiology: Fundamental Studies in Conservation Science. American Society for Microbiology Press. Washington, 2010;179.

  57. Bärlocher F, Boddy L. Aquatic fungal ecology–how does it differ from terrestrial? Fungal Ecol. 2016;19:5–13.

    Article  Google Scholar 

  58. Negrão DR, da Silva Júnior TAF, de Souza Passos JR, Sansígolo CA, de Almeida Minhoni MT, Furtado EL. Biodegradation of Eucalyptus urograndis wood by fungi. Int Biodeterior Biodegrad. 2014;89:95–102.

    Article  Google Scholar 

  59. Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T. Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology. 1993;74:1586–93.

    Article  CAS  Google Scholar 

  60. Jones JM, Heath KD, Ferrer A, Brown SP, Canam T, Dalling JW. Wood decomposition in aquatic and terrestrial ecosystems in the tropics: contrasting biotic and abiotic processes. FEMS Microbiol Ecol. 2019;95:fiy223.

    Article  CAS  Google Scholar 

  61. Lamore BJ, Goos RD. Wood-inhabiting fungi of a freshwater stream in Rhode Island. Mycologia. 1978;70:1025–34.

    Article  Google Scholar 

  62. Hyde KD, Goh TK. Fungi on submerged wood from the River Coln, England. Mycol Res. 1999;103:1561–74.

    Article  Google Scholar 

  63. Tsui CK, Hyde KD, Hodgkiss IJ. Biodiversity of fungi on submerged wood in Hong Kong streams. Aquat Microb Ecol. 2000;21:289–98.

    Article  Google Scholar 

  64. Gulis V, Suberkropp K, Rosemond AD. Comparison of fungal activities on wood and leaf litter in unaltered and nutrient-enriched headwater streams. Appl Environ Microbiol. 2008;74:1094–101.

    Article  PubMed  ADS  CAS  Google Scholar 

  65. Gulis V, Rosemond AD, Suberkropp K, Weyers HS, Benstead JP. Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshw Biol. 2004;49:1437–47.

    Article  Google Scholar 

  66. Anderson NH, Sedell JR. Detritus processing by macroinvertebrates in stream ecosystems. Annu Rev Entomol. 1979;24:351–77.

    Article  Google Scholar 

  67. Hoffmann A, Hering D. Wood-associated macroinvertebrate fauna in Central European streams. Int Rev Hydrobiol. 2000;85:25–48.

    Article  Google Scholar 

  68. Maser C, Sedell J. From the Forest to the sea: the ecology of wood instreams, rivers, estuaries, and oceans. Delray Beach, FL: St. Lucie Press; 1994.

    Google Scholar 

  69. Besemer K. Biodiversity, community structure and function of biofilms in stream ecosystems. Res Microbiol. 2015;166:774–81.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packmann AI. The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol. 2016;14:251–63.

    Article  PubMed  CAS  Google Scholar 

  71. Danger M, Cornut J, Chauvet E, Chavez P, Elger A, Lecerf A. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology. 2013;94:1604–13.

    Article  PubMed  Google Scholar 

  72. Woodcock S, Besemer K, Battin TJ, Curtis TP, Sloan WT. Modelling the effects of dispersal mechanisms and hydrodynamic regimes upon the structure of microbial communities within fluvial biofilms. Environ Microbiol. 2013;15:1216–25.

    Article  PubMed  Google Scholar 

  73. Wang J, Shen JI, Wu Y, Tu C, Soininen J, Stegen JC, et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 2013;7:1310–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Singer G, Besemer K, Schmitt-Kopplin P, Hödl I, Battin TJ. Physical heterogeneity increases biofilm resource use and its molecular diversity in stream mesocosms. PLoS ONE. 2010;5:e9988.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  75. Cardinale BJ. Biodiversity improves water quality through niche partitioning. Nature. 2011;472:86–9.

    Article  PubMed  ADS  CAS  Google Scholar 

  76. Pilotto F, Harvey GL, Wharton G, Pusch MT. Simple large wood structures promote hydromorphological heterogeneity and benthic macroinvertebrate diversity in low-gradient rivers. Aquat Sci. 2016;78:755–66.

    Article  CAS  Google Scholar 

  77. Sawyer AH, Cardenas MB. Effect of experimental wood addition on hyporheic exchange and thermal dynamics in a losing meadow stream. Water Resour Res. W10537. 2012;48:1–11.

  78. Flores L, Larranaga A, Diez J, Elosegi A. Experimental wood addition in streams: effects on organic matter storage and breakdown. Freshw Biol. 2011;56:2156–67.

    Article  Google Scholar 

  79. Entrekin SA, Tank JL, Rosi-marshall EJ, Hoellein TJ, Lamberti GA. Response of secondary production by macroinvertebrates to large wood addition in three Michigan streams. Freshw Biol. 2009;54:1741–58.

    Article  CAS  Google Scholar 

  80. De Brouwer JHF, Kraak MHS, Besse-Lototskaya AA, Verdonschot PFM. The significance of refuge heterogeneity for lowland stream caddisfly larvae to escape from drift. Sci Rep. 2019;9:2140.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  81. Addy S, Wilkinson ME. Representing natural and artificial in-channel large wood in numerical hydraulic and hydrological models. Wiley Interdiscip Rev Water. 2019;6:e1389.

    Article  Google Scholar 

  82. Treadwell S, Koehn J, Bunn S, Brooks A. Wood and other aquatic habitat. Principles for Riparian Lands Management. 2007;117–40.

  83. Schulz-Zunkel C, Seele-Dilbat C, Anlanger C, Baborowski M, Bondar-Kunze E, Brauns M, Gapinski C, et al. Effective restoration measures in river-floodplain ecosystems: lessons learned from the ‘Wilde Mulde’ project. Int Rev Hydrobiol. 2022;1–13. https://doi.org/10.1002/iroh.202102086. A fine example of an intensive scientific monitoring of biodiversity, hydromorphology, ecosystem functions and services, as well as socio-economic aspects using a Before/After-Control/Impact (BACI) methodology. Something worth reading by practitioners.

  84. Magliozzi C, Usseglio-Polatera P, Meyer A, Grabowski RC. Functional traits of hyporheic and benthic invertebrates reveal the importance of wood-driven geomorphological processes in rivers. Funct Ecol. 2019;33:1758–70. https://doi.org/10.1111/1365-2435.13381.

    Article  Google Scholar 

  85. Rickenmann D, Koschni A. Sediment loads due to fluvial transport debris flows during the 2005 flood events in Switzerland. Hydrol Process. 2010;24:993–1007.

    Article  ADS  Google Scholar 

  86. Schalko I, Wohl E, Nepf HM. Flow and wake characteristics associated with large wood to inform river restoration. Sci Rep. 2021;11:1–12. A valuable attempt to quantify relevant parameters of log size and placement to support biodiversity restoration.

    Article  ADS  Google Scholar 

  87. Klaar MJ, Shelley FS, Hannah DM, Krause S. Instream wood increases riverbed temperature variability in a lowland sandy stream. River Res Appl. 2020;36:1529–42. A small scale study on temperature effects indicating warming but opening a wider field of the yet unknown large wood and climate change interactions.

    Article  Google Scholar 

  88. Naiman RJ, Bechtold JS, Drake DC, Latterell JJ, O'Keefe TC, Balian EV. Origins, patterns, and importance of heterogeneity in riparian systems. Ecosystem function in heterogeneous landscapes. 2005;279–309.

  89. Kiffney PM, Richardson JS. Organic matter inputs into headwater streams of southwestern British Columbia as a function of riparian reserves and time since harvesting. For Ecol Manage. 2010;260:1931–42.

    Article  Google Scholar 

  90. Solari L, van Oorschot M, Belletti B, Hendriks D, Rinaldi M, Vargas-Luna A. Advances on modelling riparian vegetation-hydromorphology interactions. River Res Appl. 2016;32:164–78.

    Article  Google Scholar 

  91. Keys TA, Govenor H, Jones CN, Hession WC, Hester ET, Scott DT. Effects of large wood on floodplain connectivity in a headwater Mid-Atlantic stream. Ecol Eng. 2018;118:134–42. https://doi.org/10.1016/j.ecoleng.2018.05.007.

    Article  Google Scholar 

  92. Osei NA, Gurnell AM, Harvey GL. The role of large wood in retaining fine sediment, organic matter and plant propagules in a small, single-thread forest river. Geomorphology. 2015;235:77–87.

    Article  ADS  Google Scholar 

  93. Gippel CJ, O’Neill IC, Finlayson BL, Schnatz I. Hydraulic guidelines for the re-introduction and management of large woody debris in lowland rivers. Regula Rivers-Res Manage. 1996;12:223–36.

    Article  Google Scholar 

  94. Mitsch WJ, Gosselink JG. The value of wetlands: importance of scale and landscape setting. Ecol Econ. 2000;35:25–33.

    Article  Google Scholar 

  95. Gurnell AM, Linstead C. Interactions between large woody debris accumulations, hydrological processes and channel morphology in British headwater rivers. In: Wheater H, Kirby C, editors. Hydrology in a Changing Environment, vol. 1. Wiley: Chichester; 1998. p. 381–489.

    Google Scholar 

  96. Ward JV, Tockner K, Arscott DB, Claret C. Riverine landscape diversity. Freshw Biol. 2002;47:517–39.

  97. Gurnell AM, Bertoldi W, Corenblit D. Changing river channels: the roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci Rev. 2012;111:129–41.

    Article  ADS  Google Scholar 

  98. Roni P, Beechie T, Pess G, Hanson K. Wood placement in river restoration: fact, fiction, and future direction. Can J Fish Aquat Sci. 2015;72:466–78. https://doi.org/10.1139/cjfas-2014-0344.

    Article  Google Scholar 

  99. Coe HJ, Kiffney PM, Pess GR, Kloehn KK, McHenry ML. Periphyton and invertebrate response to wood placement in large Pacific coastal rivers. River Res Appl. 2009;25:1025–35.

    Article  Google Scholar 

  100. Kail J, Hering D. The influence of adjacent stream reaches on the local ecological status of Central European mountain streams. River Res Appl. 2009;25:537–50.

    Article  Google Scholar 

  101. Westveer JJ. Go with the flow: Unravelling the ecological mechanisms of dispersal and colonization by aquatic macroinvertebrates in restored lowland streams. Doctoral thesis University of Amsterdam, Amsterdam. 2018.

  102. Magliozzi C, Meyer A, Usseglio-Polatera P, Robertson A, Grabowski RC. Investigating invertebrate biodiversity around large wood: taxonomic vs functional metrics. Aquat Sci. 2020;82:1–13.

    Article  Google Scholar 

  103. Benke AC, Henry RLI, Gillespie DM, Hunter RJ. Importance of snag habitat for animal production in Southeastern streams. Fisheries. 1985;10:8–13.

    Article  Google Scholar 

  104. Dörge N, Walther C, Beinlich B, Plachter H. The significance of passive transport for dispersal in terrestrial snails (Gastropoda, Pulmonata). Zeitschrift für Ökologie und Naturschutz. 1999;8:10.

    Google Scholar 

  105. Tenzer C. Ausbreitung terrestrischer Wirbelloser durch Fliessgewässer. Dissertation. Philipps-Universität Marburg (in German). 2003.

  106. Čiliak M, Čejka T, Šteffek J. Molluscan diversity in stream driftwood: relation to land use and river section. Pol J Ecol. 2015;63:124–34.

    Google Scholar 

  107. Fleming KJ, Schaefer JA, Abraham KF, Smith MA, Beresford DV. Evidence for passive dispersal of ground beetles (Coleoptera: Carabidae) in the Nearctic boreal forest. Écoscience. 2021;28:93–105.

    Article  Google Scholar 

  108. Ptatscheck C, Gansfort B. Dispersal of free-living nematodes. In: Ecology of freshwater nematodes. Wallingford UK, CABI. 2021;151–184

  109. Matthews J, Van der Velde G, Bij de Vaate A, Collas FP, Koopman KR, Leuven RS. Rapid range expansion of the invasive quagga mussel in relation to zebra mussel presence in The Netherlands and Western Europe. Biol Invasions. 2014;16:23–42.

    Article  Google Scholar 

  110. Haden GA, Blinn DW, Shannon JP, Wilson KP. Driftwood: an alternative habitat for macroinvertebrates in a large desert river. Hydrobiologia. 1999;397:179–86.

    Article  Google Scholar 

  111. Cabezas MP, Navarro-Barranco C, Ros M, Guerra-García JM. Long-distance dispersal, low connectivity and molecular evidence of a new cryptic species in the obligate rafter Caprella andreae Mayer, 1890 (Crustacea: Amphipoda: Caprellidae). Helgol Mar Res. 2013;67:483–97.

    Article  ADS  Google Scholar 

  112. Wantzen KM, Callil C, Butakka CM. Benthic invertebrates of the Pantanal and its tributaries. The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia: Pensoft Publishers. 2011.

  113. Wohl E, Uno H, Dunn SB, Kemper JT, Marshall A, Means‐Brous M, ScaScamardo JE, Triantafillou SP. Why wood should move in rivers. River Res Appl. 2023;1–12

  114. Haden GA, Blinn DW, Shannon JP, Wilson KP. Driftwood: An alternative habitat for macroinvertebrates in a large desert river. Hydrobiologia. 1999;397:179–86.

    Article  Google Scholar 

  115. Graeber D, Pusch MT, Lorenz S, Brauns M. Cascading effects of flow reduction on the benthic invertebrate community in a lowland river. Hydrobiologia. 2013;717:147–59.

    Article  CAS  Google Scholar 

  116. Ruiz-Villanueva V, Badoux A, Rickenmann D, Böckli M, Schläfli S, Steeb N, Stoffel M, Rickli C. Impacts of a large flood along a mountain river basin: the importance of channel widening and estimating the large wood budget in the upper Emme River (Switzerland). Earth Surf Dyn. 2018;6:1115–37.

    Article  ADS  Google Scholar 

  117. Swanson FJ, Gregory SV, Iroumé A, Ruiz-Villanueva V, Wohl E. Reflections on the history of research on large wood in rivers. Earth Surf Process Landform. 2021;46:55–66.

    Article  ADS  Google Scholar 

  118. Sturm M, Gems B, Keller F, Mazzorana B, Fuchs S, Papathoma-Köhle M, Aufeger M. Experimental analyses of impact forces on buildings exposed to fuvial hazards. J Hydrol. 2018;565:1–13. https://doi.org/10.1016/j.jhydrol.2018.07.070.

    Article  Google Scholar 

  119. Montgomery DR, Buffington JM. Channel-reach morphology in mountain drainage basins. Geol Soc Am Bull. 1997;109:596–611.

    Article  Google Scholar 

  120. Roni P, Beechie TJ, Bilby RE, Leonetti FE, Pollock MM, Pess GR. A review of stream restoration techniques and a hierarchical strategy for prioritizing restoration in Pacific Northwest watersheds. N Am J Fish Manage. 2002;22:1–20.

    Article  Google Scholar 

  121. Gregory SV, Boyer KL, Gurnell AM, editors. The ecology and management of wood in world rivers, vol. 37. Symposium, Bethesda, Maryland, USA: American Fisheries Society; 2003.

    Google Scholar 

  122. Lepori F, Palm D, Brännäs E, Malmqvist B. Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecol Appl. 2005;15:2060–71.

    Article  Google Scholar 

  123. Palmer MA, Menninger HL, Bernhardt E. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw Biol. 2010;55:205–22.

    Article  Google Scholar 

  124. Palmer M, Ruhi A. Linkages between flow regime, biota, and ecosystem processes: implications for river restoration. Science. 2019;365:6459, eaaw2087.

  125. Klaar MJ, Maddock I, Milner AM. The development of hydraulic and geomorphic complexity in recently formed streams in Glacier Bay National Park, Alaska. River Res Appl. 2009;25:1331–8.

    Article  Google Scholar 

  126. Dossi F, Leitner P, Graf W. Age matters: substrate-specific colonization patterns of benthic invertebrates on installed large wood. Aquat Ecol. 2020;54:741–60. https://doi.org/10.1007/s10452-020-09772-y.

    Article  Google Scholar 

  127. Donadi S, Sandin L, Tamario C, Degerman E. Country-wide analysis of large wood as a driver of fish abundance in Swedish streams: which species benefit and where? Aquat Conserv Mar Freshwat Ecosyst. 2019;29:706–16.

    Article  ADS  Google Scholar 

  128. Nagayama S, Nakamura F. Fish habitat rehabilitation using wood in the world. Landscape Ecol Eng. 2010;6:289–305.

    Article  Google Scholar 

  129. Zalewski M, Lapinska M, Bayley PB. Fish relationships with wood in large rivers. Am Fish Soc Symp. 2003;37:195–211.

    Google Scholar 

  130. Elosegi A, Díez J, Mutz M. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia. 2010;657:199–215.

    Article  Google Scholar 

  131. Sweeney BW, Bott TL, Jackson JK, Kaplan LA, Newbold JD, Standley LJ, Hession WC, Horwitz RJ. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc Natl Acad Sci. 2004;101:14132–7.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  132. Hester ET, Hammond B, Scott DT. Effects of inset floodplains and hyporheic exchange induced by in-stream structures on nitrate removal in a headwater stream. Ecol Eng. 2016;97:452–64.

    Article  Google Scholar 

  133. Symmank L, Natho S, Scholz M, Schröder U, Raupach K, Schulz-Zunkel C. The impact of bioengineering techniques for riverbank protection on ecosystem services of riparian zones. Ecol Eng. 2020;158:106040.

    Article  Google Scholar 

  134. Gilvear DJ, Spray CJ, Casas-Mulet R. River rehabilitation for the delivery of multiple ecosystem services at the river network scale. J Environ Manage. 2013;126:30–43.

    Article  PubMed  Google Scholar 

  135. Gasser E, Schwarz M, Simon A, Perona P, Phillips C, Hübl J, Dorren L. A review of modeling the effects of vegetation on large wood recruitment processes in mountain catchments. Earth Sci Rev. 2019;194:350–73.

    Article  ADS  Google Scholar 

  136. Keys T, Govenor H, Jones CN, Hession WC, Scott D, Hester ET. Effects of large wood on river-floodplain connectivity in a headwater Appalachian stream. In AGU Fall Meeting Abstracts. 2017;2017:H51D-1303.

    Google Scholar 

  137. Riis T, Kelly-Quinn M, Aguiar FC, Manolaki P, Bruno D, Bejarano MD, et al. Global overview of ecosystem services provided by riparian vegetation. Bioscience. 2020;70:501–14.

    Article  Google Scholar 

  138. Poledniková Z, Galia T. Ecosystem services of large wood: mapping the research gap. Water. 2021;13:2594. Their a systematic literature review shows that the field of large wood ecosystem services is far from well-studied.

    Article  Google Scholar 

  139. Gurnell AM, Gregory KJ, Petts GE. The role of coarse woody debris in forest aquatic habitats: implications for management. Aquat Conserv Mar Freshwat Ecosyst. 1995;5:143–66.

    Article  ADS  Google Scholar 

  140. Cashman MJ, Pilotto F, Harvey GL, Wharton G, Pusch MT. Combined stable-isotope and fatty-acid analyses demonstrate that large wood increases the autochthonous trophic base of a macroinvertebrate assemblage. Freshw Biol. 2016;61:549–64.

    Article  CAS  Google Scholar 

  141. Tank JL, Webster JR, Benfield EF. Microbial respiration on decaying leaves and sticks in a southern Appalachian stream. J N Am Benthol Soc. 1993;12:394–405.

    Article  Google Scholar 

  142. Eggert SL, Wallace JB. Wood biofilm as a food resource for stream detritivores. Limnol Oceanogr. 2007;52:1239–45.

    Article  ADS  Google Scholar 

  143. Vera M, Jara C, Iroume A, Ulloa H, Andreoli A, Barrientos S. Reach scale ecologic influence of in-stream large wood in a coastal mountain range channel, Southern Chile/Influencia ecológica a nivel de tramo de la madera en el cauce en un canal de la Cordillera de la Costa, sur de Chile. Gayana. 2014;78:85.

    Google Scholar 

  144. Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML. A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc. 2010;29:118–46.

    Article  Google Scholar 

  145. De Brouwer JHF. Spatiotemporal heterogeneity in lowland streams: a benthic macroinvertebrate perspective. PhD thesis. University of Amsterdam, Amsterdam. 2020;1–189.

  146. Thorp JH, Thoms MC, Delong MD. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res Appl. 2006;22:123–47.

    Article  Google Scholar 

  147. Dixon SJ, Sear DA, Odoni NA, Sykes T, Lane SN. The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surf Proc Land. 2016;41:997–1008.

    Article  ADS  Google Scholar 

  148. Moore RD, Richardson JS. Natural disturbance and forest management in riparian zones: comparison of effects at reach, catchment, and landscape scales. Freshwater Sci. 2012;31:239–47.

    Article  Google Scholar 

  149. Naiman RJ, Decamps H. The ecology of interfaces: riparian zones. Annu Rev Ecol Syst. 1997;28:621–58.

    Article  Google Scholar 

  150. Picco L, Lenzi MA, Bertoldi W, Comiti F, Rigon E, Tonon A (eds). Wood in world rivers. Proceedings of the Third International Conference Wood in World Rivers 2015 - Extended Abstracts. 2015;1–264.

  151. De Cicco PN, Paris E, Ruiz-Villanueva V, Solari L, Stoffel M. In-channel wood-related hazards at bridges: a review. River Res Appl. 2018;34:617–28.

    Article  Google Scholar 

  152. Grabowski RC, Gurnell AM, Burgess-Gamble L, England J, Holland D, Klaar MJ, et al. The current state of the use of large wood in river restoration and management. Water Environ J. 2019;33:366–77.

    Article  Google Scholar 

  153. Krause S, Freer J, Hannah DM, Howden NJ, Wagener T, Worrall F. Catchment similarity concepts for understanding dynamic biogeochemical behaviour of river basins. Hydrol Process. 2014;28:1554–60.

    Article  ADS  CAS  Google Scholar 

  154. Pringle CM, Naiman RJ, Bretschko G, Karr JR, Oswood MW, Webster JR, Welcomme RL, Winterbourn MJ. Patch dynamics in lotic systems: the stream as a mosaic. J N Am Benthol Soc. 1988;7:503–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PFMV designed the study, co-conducted the surveys, and performed the literature review. PFMV and RCMV co-wrote the manuscript.

Corresponding author

Correspondence to Piet F. M. Verdonschot.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdonschot, P.F.M., Verdonschot, R.C.M. Ecological Functions and Management of Large Wood in Fluvial Systems. Curr. For. Rep. 10, 39–55 (2024). https://doi.org/10.1007/s40725-023-00209-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-023-00209-x

Keywords

Navigation