skip to main content
research-article

A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase Transition

Published:03 January 2024Publication History
Skip Abstract Section

Abstract

Recent years have witnessed the rapid deployment of numerous physics-based modeling and simulation algorithms and techniques for fluids, solids, and their delicate coupling in computer animation. However, it still remains a challenging problem to model the complex elastic-viscoplastic behaviors during fluid–solid phase transitions and facilitate their seamless interactions inside the same framework. In this article, we propose a practical method capable of simulating granular flows, viscoplastic liquids, elastic-plastic solids, rigid bodies, and interacting with each other, to support novel phenomena all heavily involving realistic phase transitions, including dissolution, melting, cooling, expansion, shrinking, and so on. At the physics level, we propose to combine and morph von Mises with Drucker–Prager and Cam–Clay yield models to establish a unified phase-field-driven EVP model, capable of describing the behaviors of granular, elastic, plastic, viscous materials, liquid, non-Newtonian fluids, and their smooth evolution. At the numerical level, we derive the discretization form of Cahn–Hilliard and Allen–Cahn equations with the material point method to effectively track the phase-field evolution, so as to avoid explicit handling of the boundary conditions at the interface. At the application level, we design a novel heuristic strategy to control specialized behaviors via user-defined schemes, including chemical potential, density curve, and so on. We exhibit a set of numerous experimental results consisting of challenging scenarios to validate the effectiveness and versatility of the new unified approach. This flexible and highly stable framework, founded upon the unified treatment and seamless coupling among various phases, and effective numerical discretization, has its unique advantage in animation creation toward novel phenomena heavily involving phase transitions with artistic creativity and guidance.

REFERENCES

  1. Band Stefan, Gissler Christoph, Peer Andreas, and Teschner Matthias. 2018. MLS pressure boundaries for divergence-free and viscous SPH fluids. Comput. Graph. 76 (2018), 3746. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  2. Bargteil Adam W., Wojtan Chris, Hodgins Jessica K., and Turk Greg. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3 (Jul.2007), 16–es. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bender Jan and Koschier Dan. 2017. Divergence-free SPH for incompressible and viscous fluids. IEEE Trans. Vis. Comput. Graph. 23, 3 (2017), 11931206. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bialek James M.. 1998. Nonlinear continuum mechanics for finite element analysis. Nucl. Fusion 38 (1998), 776776.Google ScholarGoogle ScholarCross RefCross Ref
  5. Cahn John W. and Hilliard John E.. 1958. Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 2 (1958), 258267.Google ScholarGoogle ScholarCross RefCross Ref
  6. Carreau Pierre J.. 1972. Rheological equations from molecular network theories. Trans. Soc. Rheol. 16, 1 (1972), 99127.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chen Xiao-Song, Li Chen-Feng, Cao Geng-Chen, Jiang Yun-Tao, and Hu Shi-Min. 2020. A moving least square reproducing kernel particle method for unified multiphase continuum simulation. ACM Trans. Graph. 39, 6, Article 176 (Nov.2020), 15 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ding Mengyuan, Han Xuchen, Wang Stephanie, Gast Theodore F., and Teran Joseph M.. 2019. A thermomechanical material point method for baking and cooking. ACM Trans. Graph. 38, 6, Article 192 (Nov.2019), 14 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fang Yu, Li Minchen, Gao Ming, and Jiang Chenfanfu. 2019. Silly rubber: An implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Trans. Graph. 38, 4, Article 118 (Jul.2019), 13 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fang Yu, Qu Ziyin, Li Minchen, Zhang Xinxin, Zhu Yixin, Aanjaneya Mridul, and Jiang Chenfanfu. 2020. IQ-MPM: An interface quadrature material point method for non-sticky strongly two-way coupled nonlinear solids and fluids. ACM Trans. Graph. 39, 4, Article 51 (Jul.2020), 16 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fei Yun (Raymond), Batty Christopher, Grinspun Eitan, and Zheng Changxi. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Trans. Graph. 37, 4, Article 51 (Jul.2018), 16 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fei Yun (Raymond), Guo Qi, Wu Rundong, Huang Li, and Gao Ming. 2021. Revisiting integration in the material point method: A scheme for easier separation and less dissipation. ACM Trans. Graph. 40, 4, Article 109 (Jul.2021), 16 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fu Chuyuan, Guo Qi, Gast Theodore, Jiang Chenfanfu, and Teran Joseph. 2017. A polynomial particle-in-cell method. ACM Trans. Graph. 36, 6, Article 222 (Nov.2017), 12 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gao Ming, Pradhana Andre, Han Xuchen, Guo Qi, Kot Grant, Sifakis Eftychios, and Jiang Chenfanfu. 2018a. Animating fluid sediment mixture in particle-laden flows. ACM Trans. Graph. 37, 4, Article 149 (Jul.2018), 11 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gao Ming, Wang Xinlei, Wu Kui, Pradhana Andre, Sifakis Eftychios, Yuksel Cem, and Jiang Chenfanfu. 2018b. GPU optimization of material point methods. ACM Trans. Graph. 37, 6, Article 254 (Dec.2018), 12 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Goktekin Tolga G., Bargteil Adam W., and O’Brien James F.. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3 (Aug.2004), 463468. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Han Xuchen, Gast Theodore F., Guo Qi, Wang Stephanie, Jiang Chenfanfu, and Teran Joseph. 2019. A hybrid material point method for frictional contact with diverse materials. Proc. ACM Comput. Graph. Interact. Tech. 2, 2, Article 17 (Jul.2019), 24 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Herschel Winslow H. and Bulkley Ronald. 1926. Konsistenzmessungen von gummi-benzollösungen. Koll.-Zeitschr. 39, 4 (1926), 291300.Google ScholarGoogle Scholar
  19. Hu Yuanming, Fang Yu, Ge Ziheng, Qu Ziyin, Zhu Yixin, Pradhana Andre, and Jiang Chenfanfu. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans. Graph. 37, 4, Article 150 (Jul.2018), 14 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jiang Chenfanfu, Gast Theodore, and Teran Joseph. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. 36, 4, Article 152 (Jul.2017), 14 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jiang Chenfanfu, Schroeder Craig, Selle Andrew, Teran Joseph, and Stomakhin Alexey. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34, 4, Article 51 (Jul.2015), 10 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Klár Gergely, Gast Theodore, Pradhana Andre, Fu Chuyuan, Schroeder Craig, Jiang Chenfanfu, and Teran Joseph. 2016. Drucker-prager elastoplasticity for sand animation. ACM Trans. Graph. 35, 4, Article 103 (Jul.2016), 12 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Larionov Egor, Batty Christopher, and Bridson Robert. 2017. Variational stokes: A unified pressure-viscosity solver for accurate viscous liquids. ACM Trans. Graph. 36, 4, Article 101 (Jul.2017), 11 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Li Dong, Quan Chaoyu, and Tang Tao. 2022b. Stability and convergence analysis for the implicit-explicit method to the Cahn-Hilliard equation. Math. Comp. 91, 334 (2022), 785809.Google ScholarGoogle ScholarCross RefCross Ref
  25. Li Wei, Ma Yihui, Liu Xiaopei, and Desbrun Mathieu. 2022a. Efficient kinetic simulation of two-phase flows. ACM Trans. Graph. 41, 4, Article 114 (Jul.2022), 17 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Müller Matthias, Schirm Simon, Teschner Matthias, Heidelberger Bruno, and Gross Markus. 2004. Interaction of fluids with deformable solids. Comput. Anim. Virt. Worlds 15, 3-4 (2004), 159171.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Museth Ken, Lait Jeff, Johanson John, Budsberg Jeff, Henderson Ron, Alden Mihai, Cucka Peter, Hill David, and Pearce Andrew. 2013. OpenVDB: An open-source data structure and toolkit for high-resolution volumes. In ACM SIGGRAPH 2013 Courses (SIGGRAPH ’13). Association for Computing Machinery, New York, NY, USA, Article 19, 1 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nagasawa Kentaro, Suzuki Takayuki, Seto Ryohei, Okada Masato, and Yue Yonghao. 2019. Mixing sauces: A viscosity blending model for shear thinning fluids. ACM Trans. Graph. 38, 4, Article 95 (Jul.2019), 17 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Oldroyd James G.. 1950. On the formulation of rheological equations of state. Proc. Roy. Soc. Lond. Ser. A: Math. Phys. Sci. 200, 1063 (1950), 523541.Google ScholarGoogle ScholarCross RefCross Ref
  30. Ram Daniel, Gast Theodore, Jiang Chenfanfu, Schroeder Craig, Stomakhin Alexey, Teran Joseph, and Kavehpour Pirouz. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA ’15). Association for Computing Machinery, New York, NY, 157163. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ren Bo, Li Chenfeng, Yan Xiao, Lin Ming C., Bonet Javier, and Hu Shi-Min. 2014. Multiple-fluid SPH simulation using a mixture model. ACM Trans. Graph. 33, 5, Article 171 (Sep.2014), 11 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ren Bo, Xu Ben, and Li Chenfeng. 2021. Unified particle system for multiple-fluid flow and porous material. ACM Trans. Graph. 40, 4, Article 118 (Jul.2021), 14 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Roscoe K. H. and Burland John B.. 1968. On the Generalized Stress-Strain Behavior of Wet Clays. Cambridge University Press, Cambridge. 535–609 pages.Google ScholarGoogle Scholar
  34. Setaluri Rajsekhar, Aanjaneya Mridul, Bauer Sean, and Sifakis Eftychios. 2014. SPGrid: A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans. Graph. 33, 6, Article 205 (Nov.2014), 12 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Simo Juan C. and Hughes Thomas J. R.. 2006. Computational Inelasticity. Vol. 7. Springer Science & Business Media, New York.Google ScholarGoogle Scholar
  36. Smith Breannan, Goes Fernando De, and Kim Theodore. 2018. Stable neo-hookean flesh simulation. ACM Trans. Graph. 37, 2, Article 12 (Mar.2018), 15 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Solenthaler Barbara, Schläfli Jürg, and Pajarola Renato. 2007. A unified particle model for fluid-solid interactions. Comput. Animat. Virt. Worlds 18, 1 (2007), 6982. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  38. Stomakhin Alexey, Schroeder Craig, Chai Lawrence, Teran Joseph, and Selle Andrew. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4, Article 102 (Jul.2013), 10 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stomakhin Alexey, Schroeder Craig, Jiang Chenfanfu, Chai Lawrence, Teran Joseph, and Selle Andrew. 2014. Augmented MPM for phase-change and varied materials. ACM Trans. Graph. 33, 4, Article 138 (Jul.2014), 11 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Su Haozhe, Xue Tao, Han Chengguizi, Jiang Chenfanfu, and Aanjaneya Mridul. 2021. A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase change. ACM Trans. Graph. 40, 4, Article 119 (Jul.2021), 18 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sulsky Deborah, Chen Zhen, and Schreyer Howard L.. 1993. A particle method for history-dependent materials. Computer Methods Appl. Mech. Eng. 118 (1993), 179196.Google ScholarGoogle ScholarCross RefCross Ref
  42. Sun Yuchen, Ni Xingyu, Zhu Bo, Wang Bin, and Chen Baoquan. 2021. A material point method for nonlinearly magnetized materials. ACM Trans. Graph. 40, 6, Article 205 (Dec.2021), 13 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Tampubolon Andre Pradhana, Gast Theodore, Klár Gergely, Fu Chuyuan, Teran Joseph, Jiang Chenfanfu, and Museth Ken. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. 36, 4, Article 105 (Jul.2017), 11 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Terzopoulos Demetri and Fleischer Kurt. 1988. Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. SIGGRAPH Comput. Graph. 22, 4 (Jun.1988), 269278. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wang Stephanie, Ding Mengyuan, Gast Theodore F., Zhu Leyi, Gagniere Steven, Jiang Chenfanfu, and Teran Joseph M.. 2019. Simulation and visualization of ductile fracture with the material point method. Proc. ACM Comput. Graph. Interact. Tech. 2, 2, Article 18 (jul2019), 20 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wang Xinlei, Qiu Yuxing, Slattery Stuart R., Fang Yu, Li Minchen, Zhu Song-Chun, Zhu Yixin, Tang Min, Manocha Dinesh, and Jiang Chenfanfu. 2020. A massively parallel and scalable multi-GPU material point method. ACM Trans. Graph. 39, 4, Article 30 (Jul.2020), 15 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Weiler Marcel, Koschier Dan, Brand Magnus, and Bender Jan. 2018. A physically consistent implicit viscosity solver for SPH fluids. Comput. Graph. Forum 37, 2 (2018), 145155. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  48. Wolper Joshuah, Chen Yunuo, Li Minchen, Fang Yu, Qu Ziyin, Lu Jiecong, Cheng Meggie, and Jiang Chenfanfu. 2020. AnisoMPM: Animating anisotropic damage mechanics. ACM Trans. Graph. 39, 4, Article 37 (Jul.2020), 16 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wolper Joshuah, Fang Yu, Li Minchen, Lu Jiecong, Gao Ming, and Jiang Chenfanfu. 2019. CD-MPM: Continuum damage material point methods for dynamic fracture animation. ACM Trans. Graph. 38, 4, Article 119 (Jul.2019), 15 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Xue Tao, Su Haozhe, Han Chengguizi, Jiang Chenfanfu, and Aanjaneya Mridul. 2020. A novel discretization and numerical solver for non-fourier diffusion. ACM Trans. Graph. 39, 6, Article 178 (Nov.2020), 14 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Yan Xiao, Jiang Yun-Tao, Li Chen-Feng, Martin Ralph R., and Hu Shi-Min. 2016. Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graph. 35, 4, Article 79 (Jul.2016), 11 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Yan Xiao, Li Chen-Feng, Chen Xiao-Song, and Hu Shi-Min. 2018. MPM simulation of interacting fluids and solids. Comput. Graph. Forum 37, 8 (2018), 183193. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  53. Yang Tao, Chang Jian, Lin Ming C., Martin Ralph R., Zhang Jian J., and Hu Shi-Min. 2017. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Trans. Graph. 36, 6, Article 224 (Nov.2017), 13 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yang Tao, Chang Jian, Ren Bo, Lin Ming C., Zhang Jian Jun, and Hu Shi-Min. 2015. Fast multiple-fluid simulation using Helmholtz free energy. ACM Trans. Graph. 34, 6, Article 201 (Oct.2015), 11 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Yue Yonghao, Smith Breannan, Batty Christopher, Zheng Changxi, and Grinspun Eitan. 2015. Continuum foam: A material point method for shear-dependent flows. ACM Trans. Graph. 34, 5, Article 160 (Nov.2015), 20 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Yue Yonghao, Smith Breannan, Chen Peter Yichen, Chantharayukhonthorn Maytee, Kamrin Ken, and Grinspun Eitan. 2018. Hybrid grains: Adaptive coupling of discrete and continuum simulations of granular media. ACM Trans. Graph. 37, 6, Article 283 (Dec.2018), 19 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Zhu Bo, Lee Minjae, Quigley Ed, and Fedkiw Ronald. 2015. Codimensional non-newtonian fluids. ACM Trans. Graph. 34, 4, Article 115 (Jul.2015), 9 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase Transition

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 43, Issue 2
      April 2024
      199 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3613549
      • Editor:
      • Carol O'Sullivan
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 3 January 2024
      • Online AM: 20 December 2023
      • Accepted: 7 December 2023
      • Revised: 28 September 2023
      • Received: 30 November 2022
      Published in tog Volume 43, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)534
      • Downloads (Last 6 weeks)100

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text