Skip to main content
Log in

Mast cell stabilizer, an anti-allergic drug, reduces ventricular arrhythmia risk via modulation of neuroimmune interaction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Mast cells (MCs) are important intermediates between the nervous and immune systems. The cardiac autonomic nervous system (CANS) crucially modulates cardiac electrophysiology and arrhythmogenesis, but whether and how MC-CANS neuroimmune interaction influences arrhythmia remain unclear. Our clinical data showed a close relationship between serum levels of MC markers and CANS activity, and then we use mast cell stabilizers (MCSs) to alter this MC-CANS communication. MCSs, which are well-known anti-allergic agents, could reduce the risk of ventricular arrhythmia (VA) after myocardial infarction (MI). RNA-sequencing (RNA-seq) analysis to investigate the underlying mechanism by which MCSs could affect the left stellate ganglion (LSG), a key therapeutic target for modulating CANS, showed that the IL-6 and γ-aminobutyric acid (GABA)-ergic system may be involved in this process. Our findings demonstrated that MCSs reduce VA risk along with revealing the potential underlying antiarrhythmic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

Abbreviations

VA:

Ventricular arrhythmia

CANS:

Cardiac autonomic nervous system

LSG:

Left stellate ganglion

MI:

Myocardial infarction

MC:

Mast cell

MCS:

MC stabilizer

GABA:

γ-Aminobutyric acid

AAV:

Adeno-Associated Virus

SBP:

Systolic blood pressure

ERP:

Effective refractory period

VPB:

Ventricular premature beat

LVA:

Left ventricular apex

LVB:

Left ventricular base

LVM:

Left mid ventricle

HRV:

Heart rate variability

SDNN:

Standard deviation of the NN intervals

SDANN:

Standard deviation of the average NN intervals

DC:

Deceleration capacity

SCD:

Sudden cardiac death

References

  1. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 72:e91–e220. https://doi.org/10.1016/j.jacc.2017.10.054

    Article  PubMed  Google Scholar 

  2. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 138:e272–e391. https://doi.org/10.1161/CIR.0000000000000549

    Article  PubMed  Google Scholar 

  3. Bauer A, Kantelhardt JW, Barthel P, Schneider R, Makikallio T, Ulm K, Hnatkova K, Schomig A, Huikuri H, Bunde A, Malik M, Schmidt G (2006) Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367:1674–1681. https://doi.org/10.1016/S0140-6736(06)68735-7

    Article  PubMed  Google Scholar 

  4. Behrens MM, Ali SS, Dugan LL (2008) Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 28:13957–13966. https://doi.org/10.1523/JNEUROSCI.4457-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462. https://doi.org/10.1038/35013070

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Bowery NG, Brown DA (1974) Depolarizing actions of gamma-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br J Pharmacol 50:205–218. https://doi.org/10.1111/j.1476-5381.1974.tb08563.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown DA (2020) Neurons, receptors, and channels. Annu Rev Pharmacol Toxicol 60:9–30. https://doi.org/10.1146/annurev-pharmtox-010919-023755

    Article  CAS  PubMed  Google Scholar 

  8. Caporali A, Sala-Newby GB, Meloni M, Graiani G, Pani E, Cristofaro B, Newby AC, Madeddu P, Emanueli C (2008) Identification of the prosurvival activity of nerve growth factor on cardiac myocytes. Cell Death Differ 15:299–311. https://doi.org/10.1038/sj.cdd.4402263

    Article  CAS  PubMed  Google Scholar 

  9. Chen M, Liu Q, Zhou S (2016) The networks between the sympathetic nervous system and immune system in atherosclerosis. J Am Coll Cardiol 68:431–432. https://doi.org/10.1016/j.jacc.2016.04.049

    Article  PubMed  Google Scholar 

  10. Druart M, Nosten-Bertrand M, Poll S, Crux S, Nebeling F, Delhaye C, Dubois Y, Mittag M, Leboyer M, Tamouza R, Fuhrmann M, Le Magueresse C (2021) Elevated expression of complement C4 in the mouse prefrontal cortex causes schizophrenia-associated phenotypes. Mol Psychiatry 26:3489–3501. https://doi.org/10.1038/s41380-021-01081-6

    Article  CAS  PubMed  Google Scholar 

  11. Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P (2002) Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 106:2257–2262. https://doi.org/10.1161/01.cir.0000033971.56802.c5

    Article  CAS  PubMed  Google Scholar 

  12. Forsythe P (2019) Mast Cells in neuroimmune interactions. Trends Neurosci 42:43–55. https://doi.org/10.1016/j.tins.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  13. Georgin-Lavialle S, Lhermitte L, Baude C, Barete S, Bruneau J, Launay JM, Chandesris MO, Hanssens K, de Gennes C, Damaj G, Lanternier F, Hamidou M, Lortholary O, Dubreuil P, Feger F, Lepelletier Y, Hermine O (2011) Blood CD34-c-Kit+ cell rate correlates with aggressive forms of systemic mastocytosis and behaves like a mast cell precursor. Blood 118:5246–5249. https://doi.org/10.1182/blood-2011-02-335950

    Article  CAS  PubMed  Google Scholar 

  14. Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095–1104. https://doi.org/10.1038/ni1503

    Article  CAS  PubMed  Google Scholar 

  15. Hasan W, Jama A, Donohue T, Wernli G, Onyszchuk G, Al-Hafez B, Bilgen M, Smith PG (2006) Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res 1124:142–154. https://doi.org/10.1016/j.brainres.2006.09.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heusch G, Deussen A, Thamer V (1985) Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J Auton Nerv Syst 13:311–326. https://doi.org/10.1016/0165-1838(85)90020-7

    Article  CAS  PubMed  Google Scholar 

  17. Hooshdaran B, Kolpakov MA, Guo X, Miller SA, Wang T, Tilley DG, Rafiq K, Sabri A (2017) Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Res Cardiol 112:62. https://doi.org/10.1007/s00395-017-0652-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kolkhir P, Elieh-Ali-Komi D, Metz M, Siebenhaar F, Maurer M (2022) Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat Rev Immunol 22:294–308. https://doi.org/10.1038/s41577-021-00622-y

    Article  CAS  PubMed  Google Scholar 

  19. Maun HR, Jackman JK, Choy DF, Loyet KM, Staton TL, Jia G, Dressen A, Hackney JA, Bremer M, Walters BT, Vij R, Chen X, Trivedi NN, Morando A, Lipari MT, Franke Y, Wu X, Zhang J, Liu J, Wu P, Chang D, Orozco LD, Christensen E, Wong M, Corpuz R, Hang JQ, Lutman J, Sukumaran S, Wu Y, Ubhayakar S, Liang X, Schwartz LB, Babina M, Woodruff PG, Fahy JV, Ahuja R, Caughey GH, Kusi A, Dennis MS, Eigenbrot C, Kirchhofer D, Austin CD, Wu LC, Koerber JT, Lee WP, Yaspan BL, Alatsis KR, Arron JR, Lazarus RA, Yi T (2019) An allosteric anti-tryptase antibody for the treatment of mast cell-mediated severe asthma. Cell 179(417–431):e419. https://doi.org/10.1016/j.cell.2019.09.009

    Article  CAS  Google Scholar 

  20. Meloni M, Caporali A, Graiani G, Lagrasta C, Katare R, Van Linthout S, Spillmann F, Campesi I, Madeddu P, Quaini F, Emanueli C (2010) Nerve growth factor promotes cardiac repair following myocardial infarction. Circ Res 106:1275–1284. https://doi.org/10.1161/CIRCRESAHA.109.210088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meng G, Zhou X, Wang M, Zhou L, Wang Z, Wang M, Deng J, Wang Y, Zhou Z, Zhang Y, Lai Y, Zhang Q, Yang X, Yu L, Jiang H (2019) Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways. EBioMedicine 44:656–664. https://doi.org/10.1016/j.ebiom.2019.03.066

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miri A, Warriner CL, Seely JS, Elsayed GF, Cunningham JP, Churchland MM, Jessell TM (2017) Behaviorally selective engagement of short-latency effector pathways by motor cortex. Neuron 95(683–696):e611. https://doi.org/10.1016/j.neuron.2017.06.042

    Article  CAS  Google Scholar 

  23. Mohajeri M, Kovanen PT, Bianconi V, Pirro M, Cicero AFG, Sahebkar A (2019) Mast cell tryptase—marker and maker of cardiovascular diseases. Pharmacol Ther 199:91–110. https://doi.org/10.1016/j.pharmthera.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  24. Mota CMD, Branco LGS, Morrison SF, Madden CJ (2020) Systemic serotonin inhibits brown adipose tissue sympathetic nerve activity via a GABA input to the dorsomedial hypothalamus, not via 5HT1A receptor activation in raphe pallidus. Acta Physiol (Oxf) 228:e13401. https://doi.org/10.1111/apha.13401

    Article  CAS  PubMed  Google Scholar 

  25. Niccoli G, Montone RA, Sabato V, Crea F (2018) Role of allergic inflammatory cells in coronary artery disease. Circulation 138:1736–1748. https://doi.org/10.1161/CIRCULATIONAHA.118.035400

    Article  CAS  PubMed  Google Scholar 

  26. Nolte H, Spjeldnaes N, Kruse A, Windelborg B (1990) Histamine release from gut mast cells from patients with inflammatory bowel diseases. Gut 31:791–794. https://doi.org/10.1136/gut.31.7.791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park GH, Noh H, Shao Z, Ni P, Qin Y, Liu D, Beaudreault CP, Park JS, Abani CP, Park JM, Le DT, Gonzalez SZ, Guan Y, Cohen BM, McPhie DL, Coyle JT, Lanz TA, Xi HS, Yin C, Huang W, Kim HY, Chung S (2020) Activated microglia cause metabolic disruptions in developmental cortical interneurons that persist in interneurons from individuals with schizophrenia. Nat Neurosci 23:1352–1364. https://doi.org/10.1038/s41593-020-00724-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perry JC, Bergamaschi CT, Campos RR, Silva AM, Tufik S (2014) Interconnectivity of sympathetic and sleep networks is mediated through reduction of gamma aminobutyric acidergic inhibition in the paraventricular nucleus. J Sleep Res 23:168–175. https://doi.org/10.1111/jsr.12110

    Article  PubMed  Google Scholar 

  29. Reid AC, Brazin JA, Morrey C, Silver RB, Levi R (2011) Targeting cardiac mast cells: pharmacological modulation of the local renin-angiotensin system. Curr Pharm Des 17:3744–3752. https://doi.org/10.2174/138161211798357908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reid AC, Silver RB, Levi R (2007) Renin: at the heart of the mast cell. Immunol Rev 217:123–140. https://doi.org/10.1111/j.1600-065X.2007.00514.x

    Article  CAS  PubMed  Google Scholar 

  31. Ridolo E, Triggiani M, Montagni M, Olivieri E, Ticinesi A, Nouvenne A, Magliacane D, de Crescenzo G, Meschi T (2013) Mastocytosis presenting as cardiac emergency. Intern Emerg Med 8:749–752. https://doi.org/10.1007/s11739-013-1012-0

    Article  PubMed  Google Scholar 

  32. Rizas KD, Nieminen T, Barthel P, Zurn CS, Kahonen M, Viik J, Lehtimaki T, Nikus K, Eick C, Greiner TO, Wendel HP, Seizer P, Schreieck J, Gawaz M, Schmidt G, Bauer A (2014) Sympathetic activity-associated periodic repolarization dynamics predict mortality following myocardial infarction. J Clin Invest 124:1770–1780. https://doi.org/10.1172/JCI70085

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schwartz PJ (2014) Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat Rev Cardiol 11:346–353. https://doi.org/10.1038/nrcardio.2014.19

    Article  PubMed  Google Scholar 

  34. Schwartz PJ, Stone HL (1980) Left stellectomy in the prevention of ventricular fibrillation caused by acute myocardial ischemia in conscious dogs with anterior myocardial infarction. Circulation 62:1256–1265. https://doi.org/10.1161/01.cir.62.6.1256

    Article  CAS  PubMed  Google Scholar 

  35. Shah AS, El Ghormli L, Vajravelu ME, Bacha F, Farrell RM, Gidding SS, Levitt Katz LE, Tryggestad JB, White NH, Urbina EM (2019) Heart rate variability and cardiac autonomic dysfunction: prevalence, risk factors, and relationship to arterial stiffness in the treatment options for type 2 diabetes in adolescents and youth (TODAY) study. Diabetes Care 42:2143–2150. https://doi.org/10.2337/dc19-0993

    Article  PubMed  PubMed Central  Google Scholar 

  36. Silver RB, Reid AC, Mackins CJ, Askwith T, Schaefer U, Herzlinger D, Levi R (2004) Mast cells: a unique source of renin. Proc Natl Acad Sci USA 101:13607–13612. https://doi.org/10.1073/pnas.0403208101

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun J, Sukhova GK, Wolters PJ, Yang M, Kitamoto S, Libby P, MacFarlane LA, Mallen-St Clair J, Shi GP (2007) Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 13:719–724. https://doi.org/10.1038/nm1601

    Article  CAS  PubMed  Google Scholar 

  38. Szodorai E, Bampali K, Romanov RA, Kasper S, Hokfelt T, Ernst M, Lubec G, Harkany T (2018) Diversity matters: combinatorial information coding by GABAA receptor subunits during spatial learning and its allosteric modulation. Cell Signal 50:142–159. https://doi.org/10.1016/j.cellsig.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  39. Tang X, Jaenisch R, Sur M (2021) The role of GABAergic signalling in neurodevelopmental disorders. Nat Rev Neurosci 22:290–307. https://doi.org/10.1038/s41583-021-00443-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, Bauersachs J, Wollert KC, Bengel FM (2018) Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol 71:263–275. https://doi.org/10.1016/j.jacc.2017.11.024

    Article  CAS  PubMed  Google Scholar 

  41. Undem BJ, Hubbard WC, Christian EP, Weinreich D (1990) Mast cells in the guinea pig superior cervical ganglion: a functional and histological assessment. J Auton Nerv Syst 30:75–87. https://doi.org/10.1016/0165-1838(90)90164-e

    Article  CAS  PubMed  Google Scholar 

  42. Vaseghi M, Gima J, Kanaan C, Ajijola OA, Marmureanu A, Mahajan A, Shivkumar K (2014) Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart Rhythm 11:360–366. https://doi.org/10.1016/j.hrthm.2013.11.028

    Article  PubMed  Google Scholar 

  43. Wang Y, Jiang W, Chen H, Zhou H, Liu Z, Liu Z, Liu Z, Zhou Y, Zhou X, Yu L, Jiang H (2021) Sympathetic nervous system mediates cardiac remodeling after myocardial infarction in a circadian disruption model. Front Cardiovasc Med 8:668387. https://doi.org/10.3389/fcvm.2021.668387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Yu L, Meng G, Wang Z, Zhou Z, Zhang Y, Xia H, Jiang H (2018) Mast cells modulate the pathogenesis of leptin-induced left stellate ganglion activation in canines. Int J Cardiol 269:259–264. https://doi.org/10.1016/j.ijcard.2018.07.126

    Article  PubMed  Google Scholar 

  45. Weinreich D, Undem BJ (1987) Immunological regulation of synaptic transmission in isolated guinea pig autonomic ganglia. J Clin Invest 79:1529–1532. https://doi.org/10.1172/JCI112984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wieck A, Andersen SL, Brenhouse HC (2013) Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun 28:218–226. https://doi.org/10.1016/j.bbi.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  47. Wilde AA, Bhuiyan ZA, Crotti L, Facchini M, De Ferrari GM, Paul T, Ferrandi C, Koolbergen DR, Odero A, Schwartz PJ (2008) Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N Engl J Med 358:2024–2029. https://doi.org/10.1056/NEJMoa0708006

    Article  CAS  PubMed  Google Scholar 

  48. Ye TY, Lai YQ, Wang ZY, Zhang XG, Meng GN, Zhou LP, Zhang YF, Zhou Z, Deng JL, Wang M, Wang YH, Zhang QQ, Zhou XY, Yu LL, Jiang H, Xiao XH (2019) Precise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near-infrared neuromodulation. Adv Funct Mater 29:1902128. https://doi.org/10.1002/Adfm.201902128

    Article  Google Scholar 

  49. Yu L, Wang Y, Zhou X, Huang B, Wang M, Li X, Meng G, Yuan S, Xia H, Jiang H (2018) Leptin injection into the left stellate ganglion augments ischemia-related ventricular arrhythmias via sympathetic nerve activation. Heart Rhythm 15:597–606. https://doi.org/10.1016/j.hrthm.2017.12.003

    Article  PubMed  Google Scholar 

  50. Yu L, Zhou L, Cao G, Po SS, Huang B, Zhou X, Wang M, Yuan S, Wang Z, Wang S, Jiang H (2017) Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias. J Am Coll Cardiol 70:2778–2790. https://doi.org/10.1016/j.jacc.2017.09.1107

    Article  PubMed  Google Scholar 

  51. Zeboudj L, Maitre M, Guyonnet L, Laurans L, Joffre J, Lemarie J, Bourcier S, Nour-Eldine W, Guerin C, Friard J, Wakkach A, Fabre E, Tedgui A, Mallat Z, Tharaux PL, Ait-Oufella H (2018) Selective EGF-receptor inhibition in CD4(+) T cells induces anergy and limits atherosclerosis. J Am Coll Cardiol 71:160–172. https://doi.org/10.1016/j.jacc.2017.10.084

    Article  CAS  PubMed  Google Scholar 

  52. Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, Charron P, Corrado D, Dagres N, de Chillou C, Eckardt L, Friede T, Haugaa KH, Hocini M, Lambiase PD, Marijon E, Merino JL, Peichl P, Priori SG, Reichlin T, Schulz-Menger J, Sticherling C, Tzeis S, Verstrael A, Volterrani M, Graaoup ESCSD (2022) 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 43:3997–4126. https://doi.org/10.1093/eurheartj/ehac262

    Article  PubMed  Google Scholar 

  53. Zhang L, Guo F, Xu S, Deng Q, Xie M, Sun J, Kwok RTK, Lam JWY, Deng H, Jiang H, Yu L, Tang BZ (2023) AIEgen-based covalent organic frameworks for preventing malignant ventricular arrhythmias via local hyperthermia therapy. Adv Mater. https://doi.org/10.1002/adma.202304620

    Article  PubMed  Google Scholar 

  54. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS (2004) Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95:76–83. https://doi.org/10.1161/01.RES.0000133678.22968.e3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.W., H.J., and L.Y. conceived the experiments. Y.W., Z.L., and L.Y. wrote the paper. All authors performed animal experiments. Y.W., Z.L., W.Z., J.W., R.L., J.S., Q.D., S.D., W.T., Y.W., and L.S. collected human data. Y.W. and Z.L. analyzed the data. H.J. and L.Y. secured funding.

Funding

This work was supported by the grants from National Natural Science Foundation of China (No. 82270532, 82241057, 82370286), Foundation for Innovative Research Groups of Natural Science Foundation of Hubei Province, China (2021CFA010) (Grant no. 82100530), and the Open Project of Hubei Key Laboratory (Grant no. 2023KFZZ019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Jiang or Lilei Yu.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6224 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Z., Zhou, W. et al. Mast cell stabilizer, an anti-allergic drug, reduces ventricular arrhythmia risk via modulation of neuroimmune interaction. Basic Res Cardiol 119, 75–91 (2024). https://doi.org/10.1007/s00395-023-01024-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-023-01024-y

Keywords

Navigation