Skip to main content

Advertisement

Log in

Logging-Based Petrophysical Estimation for Tight Sandy-Mud Reservoirs Employing a Geologically Regularized Learning System

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Ensuring accurate characterization of petroleum-bearing reservoirs is fundamental for successful exploration of hydrocarbon resources. Petrophysical models have been employed as solvers for quantitative evaluations of porosity, permeability, water saturation, and brittleness index. However, due to the high costs of well drilling, the core data obtained from limited wells are generally insufficient. Thus, most petrophysical models are generally impractical because of their unreliable employing coefficients determined statistically from insufficient core data. From the mathematical perspective, the popular petrophysical models reveal that porosity, permeability, water saturation, and brittleness index exhibit nonlinear fitting relationships with well logs. Thereby, the specific characteristics can be determined using a logging-based fitting. Light gradient boosting machine (LightGBM), a state-of-the-art regression technique, exhibits good performance. However, its performance depends on the support of favorable input and parametric optimization. To address this, continuous restricted Boltzmann machine (CRBM) and Bayesian optimization (Bayes) were integrated in this study, resulting in the proposed CRBM–Bayes–LightGBM framework. CRBM enhanced the input value by extracting significant features, while Bayes carried out the optimal initialization of hyperparameters of LightGBM. To comprehensively evaluate the proposed predictor, four experiments utilizing a dataset obtained from the tight sandstone reservoirs of the Ordos Basin were conducted. For further validation, five well-known regression models, including three-layer neural network, k-nearest neighbors, support vector regression, random forest, and extreme gradient boosting, were employed as competing models. An in-depth and comprehensive analysis of the experimental results yielded five key points: (1) The integration of CRBM and Bayes significantly enhanced the prediction performance of LightGBM; importantly, with the addition of geological regularization to mitigate the negative impact of mudstone during modeling, the fitting precision was further enhanced. (2) Compared to the five competing models, LightGBM-cored predictor yielded smaller fitting errors, establishing it as the best choice for petrophysical characterization. (3) LightGBM-cored predictor exhibited better generalization when trained using a larger dataset. (4) The application of transfer learning addressed the issue of under fitting in petrophysical characterization. (5) The proposed predictor demonstrated more robustness, as missing values in the training dataset do not hinder its feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

Notes

  1. *1 mD = 9.869233×–16 m2

References

  • Adeniran, A. A., Adebayo, A. R., Salami, H. O., Yahaya, M. O., & Abdulraheem, A. (2019). A competitive ensemble model for permeability prediction in heterogeneous oil and gas reservoirs. Applied Computing and Geosciences, 1, 100004.

    Article  Google Scholar 

  • Ali Ahmadi, M., Zendehboudi, S., Lohi, A., Elkamel, A., & Chatzis, I. (2013). Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization. Geophysical Prospecting, 61(3), 582–598.

    Article  ADS  Google Scholar 

  • AlsAnazi, A. F., & Gates, I. D. (2010). Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study. Computers and Geosciences, 36(12), 1494–1503.

    Article  ADS  Google Scholar 

  • Ao, Y., Li, H., Zhu, L., Ali, S., & Yang, Z. (2019). The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. Journal of Petroleum Science and Engineering, 174, 776–789.

    Article  CAS  Google Scholar 

  • Archie, G. E. (1950). Introduction to petrophysics of reservoir rocks. AAPG Bulletin, 34(5), 943–961.

    Google Scholar 

  • Bagheripour, P. (2014). Committee neural network model for rock permeability prediction. Journal of Applied Geophysics, 104, 142–148.

    Article  ADS  Google Scholar 

  • Bagnardi, M., & Hooper, A. (2018). Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochemistry, Geophysics, Geosystems, 19(7), 2194–2211.

    Article  ADS  Google Scholar 

  • Bai, J., Li, W., Liu, J., Wen, J., & Li, Z. (2022). The characteristics of sedimentary facies and reservoir of the Chang 8 member in Xunyi area Ordos Basin. Scientia Geologica Sinica, 57(1), 88–99.

    Google Scholar 

  • Behnoud Far, P., Hosseini, P., & Azizi, A. (2017). Permeability determination of cores based on their apparent attributes in the Persian Gulf region using naive Bayesian and random forest algorithms. Journal of Natural Gas Science and Engineering, 37, 52–68.

    Article  Google Scholar 

  • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1–27.

    Article  MathSciNet  Google Scholar 

  • Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281–305.

    MathSciNet  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Candelieri, A., & Archetti, F. (2019). Global optimization in machine learning: the design of a predictive analytics application. Soft Computing, 23(9), 2969–2977.

    Article  Google Scholar 

  • Chen, H., & Murray, A. F. (2003). Continuous restricted Boltzmann machine with an implementable training algorithm. IEEE Proceedings: Vision, Image and Signal Processing, 150(3), 153–159.

    Google Scholar 

  • Chen, Y., & Wu, W. (2017). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry Exploration Environment Analysis, 17(3), 231–238.

    Article  CAS  Google Scholar 

  • Chen, L., Lin, W., Chen, P., Jiang, S., Liu, L., & Hu, H. (2021). Porosity prediction from well logs using back propagation neural network optimized by genetic algorithm in one heterogeneous oil reservoirs of Ordos Basin. China. Journal of Earth Science, 32(4), 828–838.

    Article  Google Scholar 

  • Chen, T., Guestrin, C., (2016). XGBoost: a scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.

  • Czarnecki, W. M., Podlewska, S., & Bojarski, A. J. (2015). Robust optimization of SVM hyperparameters in the classification of bioactive compounds. Journal of Cheminformatics, 7, 38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekel, O., Gilad-Bachrach, R., Shamir, O., & Xiao, L. (2012). Optimal distributed online prediction using mini-batches. Journal of Machine Learning Research, 13, 165–202.

    MathSciNet  Google Scholar 

  • Eberhart, R.C., Shi, Y., (2001). Particle swarm optimization: developments, applications and resources. In Proceedings of the IEEE Conference on Evolutionary Computation, 81-86.

  • Gamal, H., & Elkatatny, S. (2022). Prediction model based on an artificial neural network for rock porosity. Arabian Journal for Science and Engineering, 47(9), 11211–11221.

    Article  CAS  Google Scholar 

  • Gao, J., Song, Z., Gui, J., & Yuan, S. (2022). Gas-bearing prediction using transfer learning and CNNs: an application to a deep tight dolomite reservoir. IEEE Geoscience and Remote Sensing Letters, 19, 3001005.

    Article  Google Scholar 

  • Gholanlo, H. H. (2021). Analysis of permeability based on petrophysical logs: comparison between heuristic numerical and analytical methods. Journal of Petroleum Exploration and Production, 11(5), 2097–2111.

    Article  Google Scholar 

  • Gu, Y., Bao, Z., & Cui, G. (2018). Permeability prediction using hybrid techniques of continuous restricted Boltzmann machine, particle swarm optimization and support vector regression. Journal of Natural Gas Science and Engineering, 59, 97–115.

    Article  Google Scholar 

  • Gu, Y., Zhang, D., & Bao, Z. (2021). A new data-driven predictor, PSO-XGBoost, used for permeability of tight sandstone reservoirs: a case study of member of Chang 4+5, western Jiyuan Oilfield, Ordos Basin. Journal of Petroleum Science and Engineering, 199, 108350.

    Article  CAS  Google Scholar 

  • Guo, Q., Zhuang, T., Li, Z., & He, S. (2021). Prediction of reservoir saturation field in high water cut stage by bore-ground electromagnetic method based on machine learning. Journal of Petroleum Science and Engineering, 204, 108678.

    Article  CAS  Google Scholar 

  • Hadavimoghaddam, F., Ostadhassan, M., Sadri, M. A., Bondarenko, T., Chebyshev, I., & Semnani, A. (2021). Prediction of water saturation from well log data by machine learning algorithms: boosting and super learner. Journal of Marine Science and Engineering, 9(6), 666.

    Article  Google Scholar 

  • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771–1800.

    Article  PubMed  Google Scholar 

  • Jiu, B., Huang, W., Li, Y., & He, M. (2021). Influence of clay minerals and cementation on pore throat of tight sandstone gas reservoir in the eastern Ordos Basin, China. Journal of Natural Gas Science and Engineering, 87, 103762.

    Article  Google Scholar 

  • Karimi, A. M., Sadeghnejad, S., & Rezghi, M. (2021). Well-to-well correlation and identifying lithological boundaries by principal component analysis of well-logs. Computers & Geosciences, 157, 104942.

    Article  Google Scholar 

  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T., (2017). LightGBM: a highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 3147-3155.

  • Kennedy, M. (2015). Log analysis part I: Porosity. Developments in Petroleum Science, 62, 181–207.

    Article  Google Scholar 

  • Koopialipoor, M., Noorbakhsh, A., Noroozi Ghaleini, E., Jahed Armaghani, D., & Yagiz, S. (2019). A new approach for estimation of rock brittleness based on non-destructive tests. Nondestructive Testing and Evaluation, 34(4), 354–375.

    Article  ADS  Google Scholar 

  • Krumbein, W. C., & Monk, G. D. (1943). Permeability as a function of the size parameters of unconsolidated sand. Transactions of the AIME, 151(01), 153–163.

    Article  Google Scholar 

  • Lai, J., Wang, G., Huang, L., Li, W., Ran, Y., Wang, D., Zhou, Z., & Chen, J. (2015). Brittleness index estimation in a tight shaly sandstone reservoir using well logs. Journal of Natural Gas Science and Engineering, 27, 1536–1545.

    Article  Google Scholar 

  • Lai, J., Wang, G., Wang, Z., Chen, J., Pang, X., Wang, S., Zhou, Z., He, Z., Qin, Z., & Fan, X. (2018). A review on pore structure characterization in tight sandstones. Earth-Science Reviews, 177, 436–457.

    Article  ADS  Google Scholar 

  • Li, C., Jiang, L., & Wu, J. (2009). Distance and attribute weighted k-nearest-neighbor and its application in reservoir porosity prediction. Journal of Information and Computational Science, 6(2), 845–851.

    Google Scholar 

  • Li, P., Sun, W., Wu, B., Huang, R., Gao, Y., Yan, J., & Huang, H. (2019). Occurrence characteristics and main controlling factors of movable fluids in Chang 8 1 reservoir, Maling oilfield, Ordos Basin, China. Journal of Petroleum Exploration and Production Technology, 9(1), 17–29.

    Article  Google Scholar 

  • Liu, G. (2021). Challenges and countermeasures of log evaluation in unconventional petroleum exploration and development. Petroleum Exploration and Development, 48(5), 1033–1047.

    Article  Google Scholar 

  • Liu, J. J., & Liu, J. C. (2022). Permeability predictions for tight sandstone reservoir using explainable machine learning and particle swarm optimization. Geofluids, 2022, 2263329.

    Google Scholar 

  • Liu, H., Zhao, Y., Luo, Y., Xiao, G., Meng, Y., Zhou, S., & Shao, L. (2020). Origin of the reservoir quality difference between Chang 8 and Chang 9 member sandstones in the Honghe oil field of the southern Ordos Basin, China. Journal of Petroleum Science and Engineering, 185, 106668.

    Article  CAS  Google Scholar 

  • Meng, F., Wong, L. N. Y., & Zhou, H. (2021). Rock brittleness indices and their applications to different fields of rock engineering: A review. Journal of Rock Mechanics and Geotechnical Engineering, 13, 221–247.

    Article  Google Scholar 

  • Moosavi, N., Bagheri, M., Nabi-Bidhendi, M., & Heidari, R. (2022). Fuzzy support vector regression for permeability estimation of petroleum reservoir using well logs. Acta Geophysica, 70(1), 161–172.

    Article  ADS  Google Scholar 

  • Naimi, S. R., Shadizadeh, S. R., Riahi, M. A., & Mirzakhanian, M. (2014). Estimation of reservoir porosity and water saturation based on seismic attributes using support vector regression approach. Journal of Applied Geophysics, 107, 93–101.

    Article  ADS  Google Scholar 

  • Nasseri, A., Mohammadzadeh, M. J., & Hashemtabatabaee, S. (2016). Evaluating Bangestan reservoirs and targeting productive zones in Dezful embayment of Iran. Journal of Geophysics and Engineering, 13(6), 994–1001.

    Article  ADS  Google Scholar 

  • Nelson, P. H. (1994). Permeability-porosity relationships in sedimentary rocks. Log Analyst, 35(3), 38–62.

    Google Scholar 

  • Okon, A. N., Adewole, S. E., & Uguma, E. M. (2021). Artificial neural network model for reservoir petrophysical properties: Porosity, permeability and water saturation prediction. Modeling Earth Systems and Environment, 7(4), 2373–2390.

    Article  Google Scholar 

  • Olvera, H. A., Garcia, M., Li, W. W., Yang, H., Amaya, M. A., Myers, O., Burchiel, S. W., Berwick, M., & Pingitore, N. E. (2012). Principal component analysis optimization of a PM2.5 land use regression model with small monitoring network. Science of the Total Environment, 425, 27–34.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Otchere, D. A., Ganat, T. O. A., Gholami, R., & Lawal, M. (2021). A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction. Journal of Natural Gas Science and Engineering, 91, 103962.

    Article  Google Scholar 

  • Otchere, D. A., Ganat, T. O. A., Ojero, J. O., Tackie-Otoo, B. N., & Taki, M. Y. (2022). Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions. Journal of Petroleum Science and Engineering, 208, 109244.

    Article  CAS  Google Scholar 

  • Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22, 1345–1359.

    Article  Google Scholar 

  • Pan, S., Zheng, Z., Guo, Z., & Luo, H. (2022). An optimized XGBoost method for predicting reservoir porosity using petrophysical logs. Journal of Petroleum Science and Engineering, 208, 109520.

    Article  CAS  Google Scholar 

  • Poupon, A., & Leveaux, J. (1971). Evaluation of water saturation in shaly formations. Log Analyst, 12(4), 3–8.

    Google Scholar 

  • Qadri, S. M. T., Islam, M. A., & Shalaby, M. R. (2019). Application of well log analysis to estimate the petrophysical parameters and evaluate the reservoir quality of the Lower Goru Formation, Lower Indus Basin, Pakistan. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 5(3), 271–288.

    Article  Google Scholar 

  • Qin, C., Zhang, Y., Bao, F., Zhang, C., Liu, P., & Liu, P. (2021). XGBoost optimized by adaptive particle swarm optimization for credit scoring. Mathematical Problems in Engineering, 2021, 6655510.

    Article  Google Scholar 

  • Qiu, L., Yang, S., Qu, C., Xu, N., Gao, Q., Zhang, X., Liu, X., & Wang, D. (2017). A comprehensive porosity prediction model for the upper Paleozoic tight sandstone reservoir in the Daniudi gas field, Ordos Basin. Journal of Earth Science, 28(6), 1086–1096.

    Article  CAS  Google Scholar 

  • Reeve, H. W. J., Cannings, T. I., & Samworth, R. J. (2021). Adaptive transfer learning. Annals of Statistics, 49(6), 3618–3649.

    Article  MathSciNet  Google Scholar 

  • Sam-Marcus, J., Enaworu, E., Rotimi, O. J., & Seteyeobot, I. (2018). A proposed solution to the determination of water saturation: Using a modeled equation. Journal of Petroleum Exploration and Production Technology, 8, 1009–1015.

    Article  CAS  Google Scholar 

  • Seeger, M. (2004). Gaussian processes for machine learning. International Journal of Neural Systems, 14(2), 69–106.

    Article  PubMed  Google Scholar 

  • Shao, R., Xiao, L., Liao, G., Zhou, J., & Li, G. (2022). A reservoir parameters prediction method for geophysical logs based on transfer learning. Acta Geophysica Sinica, 65(2), 796–808.

    Google Scholar 

  • Shi, J., Lin, Y., Zhao, A., Wang, X., An, K., Zhong, X., Hu, K., Zhu, Y., & Liu, L. (2021). Diagenetic features and porosity dense evolution of Chang 8 tight sandstone reservoir in Hujianshan area, Ordos Basin. Journal of Petroleum Exploration and Production, 11(3), 1037–1051.

    Article  CAS  Google Scholar 

  • Snoek, J., Larochelle, H., Adams, R.P., (2012). Practical Bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems, 2951-2959.

  • Sun, D., Lonbani, M., Askarian, B., Armaghani, D. J., Tarinejad, R., Pham, B. T., & Huynh, V. V. (2020). Investigating the applications of machine learning techniques to predict the rock brittleness index. Applied Sciences (Switzerland), 10(5), 1691.

    Article  CAS  Google Scholar 

  • Timur, A. (1968). An investigation of permeability, porosity, and residual water saturation relationship for sandstone reservoirs. Log Analyst, 9(4), 8–17.

    Google Scholar 

  • Tukey, J., (1975). Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians, 523-532.

  • Vargas-Guzmán, J. A. (2007). Spatial modeling of heterogeneous initial water saturation. Journal of Petroleum Science and Engineering, 58(1–2), 283–292.

    Article  Google Scholar 

  • Wang, M., Tang, H., Zhao, F., Liu, S., Yang, Y., Zhang, L., Liao, J., & Lu, H. (2017). Controlling factor analysis and prediction of the quality of tight sandstone reservoirs: a case study of the He8 Member in the eastern Sulige Gas Field, Ordos Basin, China. Journal of Natural Gas Science and Engineering, 46, 680–698.

    Article  CAS  Google Scholar 

  • Wang, R., Shi, W., Xie, X., Zhang, W., Qin, S., Liu, K., & Busbey, A. B. (2020). Clay mineral content, type, and their effects on pore throat structure and reservoir properties: Insight from the Permian tight sandstones in the Hangjinqi area, North Ordos Basin China. Marine and Petroleum Geology, 115, 104281.

    Article  Google Scholar 

  • Waxman, M. H., & Smits, L. J. M. (2003). Electrical conductivities in oil-bearing shaly sands. SPE Reprint Series, 55, 107–122.

    Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.

    Article  CAS  Google Scholar 

  • Wood, D. A. (2020). Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data. Journal of Petroleum Science and Engineering, 184, 106587.

    Article  ADS  CAS  Google Scholar 

  • Wyllie, M. R. J., Gregory, A. R., & Gardner, L. W. (1956). Elastic wave velocity in heterogeneous and porous media. Geophysics, 21(1), 41–70.

    Article  ADS  Google Scholar 

  • Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing, 415, 295–316.

    Article  Google Scholar 

  • Yasear, S. A., & Ku-Mahamud, K. R. (2021). Review of multi-objective swarm intelligence optimization algorithms. Journal of Information and Communication Technology, 20(2), 171–211.

    Google Scholar 

  • Ye, Y., Tang, S., Xi, Z., Jiang, D., & Duan, Y. (2022). A new method to predict brittleness index for shale gas reservoirs: Insights from well logging data. Journal of Petroleum Science and Engineering, 208, 109431.

    Article  CAS  Google Scholar 

  • Zhang, D., Ranjith, P. G., & Perera, M. S. A. (2016). The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review. Journal of Petroleum Science and Engineering, 143, 158–170.

    Article  CAS  Google Scholar 

  • Zhang, Q., Wei, C., Wang, Y., Du, S., Zhou, Y., & Song, H. (2019). Potential for prediction of water saturation distribution in reservoirs utilizing machine learning methods. Energies, 12(19), 3597.

    Article  Google Scholar 

  • Zhou, K., Hu, Y., Pan, H., Kong, L., Liu, J., Huang, Z., & Chen, T. (2020). Fast prediction of reservoir permeability based on embedded feature selection and LightGBM using direct logging data. Measurement Science and Technology, 31, 045101.

    Article  ADS  CAS  Google Scholar 

  • Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A comprehensive survey on transfer learning. Proceedings of the IEEE, 109, 43–76.

    Article  Google Scholar 

Download references

Acknowledgement

Thanks for the participation of Lin Xu, Qin Zuo, and Yinshan Gao in terms of reviewing and art work, which further improves the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Gu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Zhang, D., Xu, L. et al. Logging-Based Petrophysical Estimation for Tight Sandy-Mud Reservoirs Employing a Geologically Regularized Learning System. Nat Resour Res 33, 665–705 (2024). https://doi.org/10.1007/s11053-023-10289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10289-y

Keywords

Navigation